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Abstract
Detailed and accurate feature representation is essential for high-resolution reconstruction of clothed human. Herein we in-
troduce a unified feature representation for clothed human reconstruction, which can adapt to changeable posture and various
clothing details. The whole method can be divided into two parts: the human shape feature representation and the details feature
representation. Specifically, we firstly combine the voxel feature learned from semantic voxel with the pixel feature from input im-
age as an implicit representation for human shape. Then, the details feature mixed with the clothed layer feature and the normal
feature is used to guide the multi-layer perceptron to capture geometric surface details. The key difference from existing methods
is that we use the clothing semantics to infer clothed layer information, and further restore the layer details with geometric
height. We qualitative and quantitative experience results demonstrate that proposed method outperforms existing methods in
terms of handling limb swing and clothing details. Our method provides a new solution for clothed human reconstruction with
high-resolution details (style, wrinkles and clothed layers), and has good potential in three-dimensional virtual try-on and digital
characters.
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1. Introduction

The high-fidelity 3D model of clothed human is crucial in many
graphic related applications, including virtual reality, digital hu-
man, and virtual try-on, and so on, which requires the reconstruc-
tion of clothed human with arbitrary postures and clothing details
(style, wrinkles and clothed layers) from details and accurate fea-
ture representation. Considering the monocular images are more
available than camera matrix [ZWG*21], many images-basedmeth-
ods using high-capacity deep learning models have been proposed
for the clothed human reconstruction recently. For instance, Zhu
et al. [ZZW*19] proposed a template-based method that recovers
detailed human shapes from even a single image with joint, an-
chor and per-vertex. Although the parametric template-based meth-
ods can perform the human posture, the template is mainly used to
infer the naked body, it is often difficult to deal with the topolog-

ical changes caused by clothing details. Instead, the implicit rep-
resentation have shown great promise in acquiring reconstructions
of clothed human with multifarious details. As representative of
the state-of-the-art approaches, the pixel-aligned implicit function
(PIFu) [SHN*19] has been proposed to infer clothed human shape,
which performs implicit function prediction from latent code and
the z value of query point from a single image. In addition, a subse-
quent study by Saito et al. [SSSJ20] enhances the geometric results
of PIFu for fine-grained details recovery by using predicted nor-
mal priors and higher resolution input. However, PIFu-related meth-
ods are difficult to fit the challenging posture, and they are prone to
generate faulty structures, for example broken or slim limbs. Con-
sequently, above methods concentrate on the reconstruction of 3D
posture or the recovery of clothing details and they are limited to
the dimensional constraints of pixel information, failing to generate
3D model with both arbitrary posture and clothing details.
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Researcher has also proposed depth-aware reconstruction meth-
ods to overcome the limitations about challenging posture men-
tioned above. He et al. [HCJS20] predicted the occupancy proba-
bility from pixel-aligned and voxel-aligned feature. However, the
application scenario and robustness of this method are limited
by the depth features extracted from known 3D meshes. Zheng
et al. [ZYLD21] estimated parameter model from a single image
and convert it into 3D feature volume. Then, the voxel-aligned fea-
ture is extracted from the 3D feature volume and predicts the oc-
cupancy probability for query point. Using stereo images, Yang
et al. [HZJ*21] can infer human shape and predict human location
in camera space without normalizing human shape into a canonical
space. Previous methods have been limited by the large variation
in human pose that cannot be adequately represented by parametric
or volumetric shapes. Different from these methods, we render the
depth semantic code onto the voxelization of skinned multi-person
linear model (SMPL) [LMR*15]. Compared with mesh or simple
voxel, depth priors provide approximate inference, which is help-
ful to eliminate depth ambiguity. The semantic voxel encodes in-
formation about both posture and shape of clothed human, and thus
provides a reasonable freedom of output space.

Integrity and detail seem to be on the opposite side in this task,
the depth-guide methods avoid wrong structures but destroys de-
tails. A convincing approach deals with geometric surface details
through adding a branch pipeline, to improve the robustness of re-
covering details. Hong et al. [HZJ*21] obtained a depth map based
on the confidence volume. A relative z-offset between the sam-
ple point and its projected pixel’s predicted depth is then added to
this implicit function to recover details. Lahner et al. [LCT18] only
exploited a two-levels, normal-based representation for generating
high-frequency wrinkles detail. Our observation is that the above
methods only deal with a single garment or take the clothing details
as a flimsy layer, ignoring the high-quality details of multi-layer
clothed human. Buffet et al. [BRB*19] proposed a method with
collision-free state for untangling an arbitrary number of cloth lay-
ers, which relies on an intermediate, implicit representation. By cat-
egorizing the points as lying inside the body, between the body and
the clothing, or outside the clothing, Bhatnagar et al. [BSTPM20]
predicted a double-layer surface to reconstruct multi-layer clothed
human. Corona et al. [CPA*21] transformed the garment template
into an implicit function and tie it with the parameterized body tem-
plate to finish the reconstruction for clothed human even for multi-
layer case, which is a typical template-based method. Although this
method infers clothing parameters to generate layered, independent
garment mesh, it often does not faithfully reproduce the realistic de-
tails (such as collar, pocket) that present in the single view image be-
cause of the shortage of details module. By adding the pixel feature
that are more sensitive to style details (such as collar, pocket) and
additional detail feature module, our method can obtain more realis-
tic clothing details than the template-based method [CPA*21]. An-
other important observation is that the existing methods [CPA*21,
LIPM19, APMTM19] use the clothing semantics to divide the re-
gions of clothing and body, but ignore the layered information con-
tained therein, which misses the necessary part of the detailed repre-
sentation. We construct a layer deformation to represent the clothed
layer information of the clothed human, and recover the details of
clothing on different layers.

We aim to reconstruct a multi-layer clothed human with high pre-
cision from a single view image, taking into account the changeable
posture and the complex details of clothing. The single view image
contains many visual information that are interlaced and interactive
but deeply ambiguous. Unravelling the complex relationship of
visual information and learning positive feature representation will
improve the performance of 3D reconstruction. So high-precision
reconstruction needs reasonable feature representation for 3D
posture and cumbersome clothing details. In response to these
challenges, we untangle the feature representation in the process
of high-resolution clothed human reconstruction. Specifically, we
use the mixed human shape features to implicitly represent the 3D
pose of the clothed human. Then, the detail feature representation
is constructed to restore clothing details. The highlight is that we
parse the clothed layer semantics and generate the layer deforma-
tion to recover the clothing layer details. Our method can recover
clothing details with geometric height at different layers and align
with watertight model space. The main contributions of this work
are as follows:

(1) We propose a unified feature representation for high-resolution
clothed human reconstruction, which integrates the human
shape feature representation and the details feature represen-
tation to finish high-quality reconstruction for clothed human
with arbitrary poses and clothing details.

(2) We utilize the voxel feature with depth priors semantics to help
implicit occupancy inference in the human shape feature rep-
resentation, which significantly improves the robustness of 3D
posture reconstruction compared with the body template.

(3) We introduce the layer deformation to represent the layer infor-
mation for multi-layer clothed human and further recover high-
resolution clothing details at different layers in the details fea-
ture representation, which is more accurate in the multi-layer
case.

2. Related Work

2.1. RGB-D based reconstruction

Zeng et al. [ZCD*15] designed a non-rigid deformation method to
compensate motion between different views, thus registering the
shape of clothed human. However, registration is a strongly related
problem and the dimension of naked body shape is not enough
to represent the complex clothed human’s shape. Another major
problem is the rapid accumulation of alignment errors between
two frames and the scan does not close seamlessly. An explicit
“loop closure” is proposed by Wang et al. [WZD*18] to address
the drifting problem in a global non-rigid registration framework.
The method proposed by Zheng et al. [ZYL*18] uses a single depth
camera and sparse inertial measurement units to reconstruct real-
time human bodies. With this hybrid motion tracking algorithm
and efficient sensor calibration technique, fast motions and chal-
lenging poses with severe occlusions can be easily recreated with-
out the need for rigid surface reconstruction. Yu et al. [YZZ*19]
and Zuo et al. [ZWZ*20] designed a two-layer structure to rep-
resent the clothed human shape, including the inner body and the
outer garment mesh. The former [YZZ*19] separates the cloth-
ing template and carries out independent tracking to obtain the
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body-garment independent reconstruction. The latter [ZWZ*20]
uses the body parameters to guide the fusion and obtain the water-
tight reconstruction. Zhi et al. [ZLT*20] is a novel approach that
reconstructs clothed human with full-body texture from RGB-D
video. These methods achieve robust reconstruction results and pro-
vide some highly available datasets [ZYW*19, YZG*21]. However,
the depth camera can work well in the experimental scene with clear
background and controllable light [GLD*19, LFB17], but not in the
wild. In addition, registration performs high time complexity and
often fails with complex data. The RGB-D based method requires
strict experimental environment and cumbersome dynamic capture
and registration, the image-based reconstruction method [HLB19]
has a promising prospect because of the simple input.

2.2. Parametric template representation

3D pose and shape of human have the characteristics of high
dimension and strong constraint, which makes the task of body
shape reconstruction learnable and easy to converge. Some
methods [GRH*12, PLPM20] are proposed to generate the final
reconstruction results by combining the two parts that consists of
estimating the 3D pose and shape of naked body by statistical tem-
plate [LMR*15, ASK*05] and simulating the wearing effect by gar-
ment templates [ZCJ*20]. Thus, Guan et al. [GRH*12] proposed an
automatic 3D reconstruction method based on the parametric tem-
plate. But it is limited in the garment deformation recovery caused
by human pose. To tackle this problem, Patel et al. [PLPM20] pre-
dicts 3D garment deformation with three constraints including 3D
pose, 3D shape, and clothing style to generate highly reliable wrin-
kles. Corona et al. [CPA*21] proposed a learn-basedmethod to learn
body parameters, garment parameters, and generate pose-dependent
vertex deformation, which can finally combine them into the model
of clothed human. In these works, garments and body are indepen-
dent of each other. Thus, the ability to restoring pose-dependent de-
formation is constrained, and complex collision need to be handled.

There are other methods that offset the vertices of a body para-
metric template [LMR*15] to generate a clothed human model, but
these methods are unable to simulate the complex, non-linear geom-
etry of pose-dependent garment shapes. To address this problem,Ma
et al. [MYR*20] designed a new pipeline, which learns a generative
model of clothed human from 3D scans with varying pose and cloth-
ing. Multi-Garment Net [BTTPM19] is a data-driven network that
completes 3D reconstruction by learning the mapping relationship
between images and geometric shapes. Alldieck et al. [AMB*19]
presented a learning-based model to infer the mesh of clothed hu-
man from a few frames of monocular video. The image-to-image
translation methods [LIPM19, APMTM19] are novel and effec-
tive in this task which use the clothing semantics to divide the re-
gions of clothing and body. We consider untangling the layer struc-
ture between different garment, which is challenging and the above
work are not perfect. DeepHuman [ZYW*19] is an image-guided
volume-to-volume convolutional neural network for 3D human re-
construction from monocular image. The above methods are sen-
sitive to limb changes because of the pose priors. Body shape and
clothing details are both recovered on the watertight surface that
is limited by the number of vertices (6890) resulting in loss of
many details.

2.3. Implicit representation

In the implicit method, the geometric surface is represented as
a continuous energy field by inferring the occupancy probability
of space. Such as PIFu [SHN*19] defines an implicit function of
pixel alignment by deep learning, which transforms the regression
of implicit surface into the two classifications of occupying grids,
and extracts the iso-surface to generate clothed human model. As
a supplement to the recovery of details, Saito et al. [SSSJ20] pro-
posed a two-layer framework that reconstructs clothed human from
high-resolution images (1024×1024) and recovers recognizable
details from normal map. Huang et al. [HXL*20] is a learning-
based pose perception model which finishes reconstruction from
single image and applies them to animation. Furthermore, He
et al. [HXS*21] introduces joint-space occupancy estimator, to
improve the robustness of complex posture who sharpen depth
ambiguity. He et al. [HCJS20] extracts hidden voxel and pixel
features from a single image, combines them into the joint features,
and calculates the probability of each space point occupied by the
implicit function to estimate geometric surface. Liu et al. [LSGC21]
present a framework for reconstructing 3D clothed humans from
a single RGB image in which they combine an explicit and an
implicit model. Xiu et al. [XYTB22] divide the details infor-
mation into body details and clothing details, and reconstruct
clothed human from individual video frames. The above methods
do not subdivide the various features contained in the clothed
human image, especially the detail module does not consider the
layered information in multi-layer case, resulting in the lack of
some details.

3. Method

3.1. Overview

The whole method can be divided into two parts as shown in Fig-
ure 1, the human shape feature representation and the details feature
representation. Given the image of clothed human I and correspond-
ing normal map In as input, the semantic image Is and the seman-
tic voxel V are inferred naturally by available methods [ZSZX20,
LMR*15]. In voxel feature module, we estimate 3D pose from the
input image and transform it into semantic voxel V , then we ex-
tract the voxel feature matrix Mv from the semantic voxel V using
the 3D stacked hourglass network (3D-SHN) Ev (·). Similarly, the
pixel feature matrix Mp is obtained from the input image I using
the 2D U-Net [RFB15] Ep(·) in the pixel feature module. In details
feature module, we parse the clothing semantic from the superposi-
tion of input image I and semantic image Is using VGG16, and build
the layer deformation that is responsible for providing the clothed
layer feature. The normal feature is extracted from the normal im-
age In using the 2D stacked hourglass network (2D-SHN) Ed (·).
A set of features is obtained for each query point P. The voxel
feature and the pixel feature are aligned to the human shape fea-
ture representation. The clothed layer feature and the normal fea-
ture are aligned to the details feature representation. Multi-layer
perceptron (MLP) with parameters θ is used to implement the im-
plicit surface function fθ (·). A continuous function F (P) ∈ [0, 1]
to deduce the occupancy of query point P with the human shape
feature representation and the details feature representation. It is
formulated in Equation (1). Finally, the geometrical reconstruction
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Figure 1: The pipeline of proposed method. We combine the pixel feature and the voxel feature extracted from semantic voxel to represent
human shape. The details feature module constructs the layer deformation from the inferred clothed layer semantics to obtain the clothed
layer feature. The clothing details are restored by using the details feature mixed with the clothed layer feature and the normal feature on
different layers.

result can be drawn from implicit surfaces byMarching Cubes (MC)
algorithm [LC87].

fθ ( f1(Ev (V ),Ep(I),P), f2( f3(I, Is),Ed (In),P)) �→ F (P) (1)

3.2. Human shape feature representation

The shape of clothed human is limited by arbitrary posture and
clothing, and the reconstruction for clothed human can not be com-
pleted only by inferring 3D posture and body shape parameters. We
propose the human shape feature representation f1(Ev (V ),Ep(I),P)
in Equation (1) to integrate the latent code of human shape, which is
composed of the voxel features and the pixel features respectively.
For each query point P, voxel feature provides shape and depth in-
formation to constrain the degrees of freedom of limb and invisible
back shape. As a supplement, pixel feature provides fine-grained
geometric information, which helps to generate geometric surfaces
with clothing details rather than smooth skin.

3.2.1. Voxel feature

Ev (V ) in the human shape feature representation encodes the se-
mantic voxel V into a voxel feature matrix Mv . Mv is aligned with
the model space of the final output result, so we can separate it by
marching cube algorithm to get a rough result. During inference, we
store the latent code and depth value as voxel features. Compared
with the existing methods [XYTB22, ZYLD21], our semantic voxel
has three advantages: (1) it encodes inherent position about both
the shape and pose of the clothed human, thus provides a reason-
able freedom of output space, (2) the semantic provides approximate
depth to help voxel feature inference and (3) it is easy to obtain from
the image and does not depend on the accuracy of the datasets mesh.

Specifically, we firstly exploit the method proposed by Zhu
et al. [ZZW*19] to estimate 3D pose from input image I. Then,
we render the depth semantic code onto the image plane to ob-
tain a semantic map and generate a semantic voxel by voxeliza-
tion of SMPL [LMR*15]. Finally, we propagate the semantic codes
into the occupied voxel. The 3D-SHN is composed of four repeated
standard hourglasses. Each hourglass obtains the size invariant ten-
sor and the heat map as the next input and intermediate supervi-
sion, respectively. We simplify the cross-entropy error (CEE) in He
et al. [HCJS20] and take 6, 890 vertices on the surface S of SMPL
as sampling points in training.

CEE = 1

n

∑

P∈S
f (P∗

i ) · log( f (Pi)) + (1 − f (P∗
i )) · log(1 − f (Pi))

(2)

where n is the number of point samples, Pi is a 3D point sample
indexed by i, P∗

i is a ground truth point indexed by i, f (·) computes
the predicted occupancy value for query point P or P∗.

3.2.2. Pixel feature

Ep(I) in the human shape feature representation encodes the input
image I into the latent space and obtains the pixel features of the
query pointP. The pixel-aligned implicit functionwas first proposed
by PIFu [SHN*19] and widely used in similar methods [SSSJ20,
HZJ*21]. These methods usually require an encoder with a wide
receptive field in order to support overall perception and consistent
inference of depth. However, the large receptive field cannot pay at-
tention to local, fine feature, contrary to expectation that generates
high-fidelity result. In this grid, we store information about surfaces
of a small local neighbourhood in the form of independent latent
codes. In addition to simplifying the prior distribution that the net-
work must learn, this decomposition of scenes into local shapes also
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makes inference more efficient. In the training stage, we encode the
input image I into the pixel feature matrixMp by 2DU-Net [RFB15]
with the cross-entropy error [HCJS20]. For each query point P,Mp

provides the local depth features and depth values from local volume
as pixel feature, instead of global depth feature like PIFu [SHN*19].

3.3. Details feature representation

The surface details of clothed human are distributed on different
clothing layers, which brings difficulties to the representation for
geometric details [CPA*21]. To represent the varying clothing in-
formation on different layers, we propose the details feature repre-
sentation f2( f3(I, Is),Ed (In),P) in Equation (1) which is two levels
representation to approach toward high-resolution result for clothed
human. Specifically, f3(·) uses the layer deformation to implic-
itly represent the clothed layer information of clothed human, and
compute the deformation from different semantics to predict the
clothed layer feature on geometric surface. Then, Ed (·) encodes
the normal feature as the proxy for 3D geometry. Finally, the re-
construction is guided by the details feature representation which
mixes with the clothed layer feature and the normal feature to
predict a 3D geometry, making it easier for the MLP to produce
details.

3.3.1. Layer deformation

In daily life, people wear clothes in a certain order. For top, T-shirt
is on the inner layer, coat is on the outer layer, and sweater is in
the middle layer. For bottom, leggings are inside and dress is out-
side [YLL14]. This observation is a more restrictive attribute than
the clothing semantics. We analyse the clothing semantics labels in
the datasets proposed by Yang et al. [YLL14] that contain 58 com-
plex labels, including top, bottom, shoes and accessories. We delete
the labels of shoes and divide the rest into three categories: top (t),
bottom (b), and accessories (a). The top and bottom contain three
layers, as shown in Table 1. The layer semantics corresponding to
the same clothing semantics is uncertain (e.g. the coat may be worn
in the second or third layer. Dress or shorts is the second layer when
wearing tights.). The clothing semantic sx ∈ Sclothing for each pixel

Table 1: Clothing semantic labels and clothed layer semantic labels

Top (21) Bottom (11) Accessories (15)
First
layer
(31)

Intimate Bra
T-shirt Shirt
Blouse Vest
Sweatshirt
Swimwear

Shorts Pants Dress
Tights Romper
Jeans Leggings
Panties

Wallet Tie Cape
Watch Ring Scarf
Gloves Hat Belt
Earrings Glasses
Necklace Bracelet
Purse Sunglasses

Second
layer
(13)

Blazer Coat
Hoodie Cape
Jumper Jacket
Sweater Suit
Bodysuit
Cardigan

Dress Shorts
Bodysuit

None

Third
layer
(3)

Coat Cape Suit None None

x can be transform to Slayer. These prioris can be formulated as fol-
lows:

Slayer = {(x, f (sx))} (3)

In Equation (3), f (sx) denotes the transformation of semantic in-
formation, such as f (T-shirt) < f (sweater) < f (coat), which is in-
ferred from the above prioris. Based on these rules and the semantic
labels contained in Table 1, we define the constraint knowledge ϕ

of daily clothing as follows.

ϕ = {t1, t2 · · · t21} ∪ {b1, b2 · · · b11} ∪ {a1, a2 · · · a15} (4)

For top t and bottom b, ϕ contains the transformation rules of
different layer. Such as we infer t1 > t3, which means t1 is the upper
layer than t3, from t1 > t2 and t2 > t3. For accessories a, ϕ contains
the relation of dependence. Such as we infer a1 > t1, which means
a1 is the upper layer than t1, from a1 ∈ t1.

Ideally, ϕ infers the layer labels from the parsing result that con-
tains rich semantics. However, it is difficult for the existing datasets
to cover all clothing styles, and complex labels can also fragment re-
gions. To solve the problem of having difficulties in understanding
the multiple layers of unlabelled or complex semantics, we propose
a segmentation method for clothed human that can automatically
predict the layer information of clothing. Specifically, we take the
joint points as the landmark of different regions, and sample the
clothing region. Then, we compute the average of Euclidean dis-
tance ‖‖2 between the coordinate of sample point pki and the coor-
dinate of landmark m in each semantic area k, as the evidence of
predicting. This process can be formulated as follows:

Ek = avg
∥∥pki − m

∥∥2
(5)

f3(I, Is) in Equation (1) consists of two main steps: (1) Parsing
the clothed layer semantics. (2) Calculating deformation offset. Fol-
lowing Zhang et al. [ZSZX20] work, the clothing semantic image
Is can be predicted and the joint points can be extracted by Open-
Pose [CSWS17] from input image I. Then we use VGG16 network
to parse the clothed layer semantics Sclothing from the superposition
of clothing semantic images Is and clothed human images I. In order
to complete the transformation from the clothing semantics Sclothing
to the clothed layer semantics Slayer, we use joint points to calculate
the Euclidean distance of each clothing semantics Ek, and take it as
the optimization item of the loss function. Specifically, the midpoint
of neck and hip joint is used as the landmark of top area, wrist joint
as the landmark of sleeve area, and ankle joint as the landmark of
bottom area. The layer of semantic is higher with the increase of Ek.
More details see Figure 2.

We train VGG16 network with the mixed cross entropy error
(Equation 6) that calculates the cross entropy between the ground
truth y∗

i and the predicted clothing semantic yi to predict the clothed
layer semantic Slayer. The performance is improved by minimiz-
ing the cost function λ

∑N
k Ek to ensure reasonable results in train-

ing. Different from the existing method [YLL14] that parses wide
range of clothing semantics and contains a large number of la-
bels (Table 1), our proposed method only classifies N = 8 re-
gions of layer, including background, skin, accessories, first-top,
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Figure 2: We explain the proposed method on an enlarged version
of the semantic diagram. Calculating the average of the Euclidean
distance between the sampling point and the landmark in each re-
gion, we can infer the clothed layer semantic. The distance of the
uppermost layer (blue) is the largest, and the distance of the lower-
most layer (purple) is the smallest.

second-top, three-top, first-bottom, second-bottom, which is easy
to learn through conventional segmentation algorithm.

LOSS =
∑

i

y∗
j · log(yi) + λ

N∑

k

Ek (6)

Based on the clothed layer semantic Slayer, we construct the layer
deformation to represent clothed layer information of clothed hu-
man. Essentially, the layer deformation is a vector-valued function
that represents a latent vector field. Each latent vector β on geomet-
ric meshesMk consists of the normal direction of the original vertex
vi ∈ Ver and the deformation increment that forms height difference
on geometric surface. Unlike Huang et al. [HXL*20] that predict
the global displacement of vertices with joint, pose and skinning
weights, our method infers the deformation increment with differ-
ent semantics si ∈ Slayer by computing the deformation T (si). Then,
the deformation propagates along the normal direction of the origi-
nal vertex vi. The vector-valued function define as:

f (Ver, Slayer ) =
∑

i=1

T (si)vi (7)

3.3.2. Normal feature on different layers

The clothing details of the multi-layer clothed human are distributed
at different layers, which is difficult to untangle and recover them.
We take the latent vector β representing the height difference in Sec-
tion 3.3.1 as the clothed layer feature to recover the clothed layer de-
tails, and further use Ed (·) encodes the normal feature from normal
map In to represent the folds at different layers. As a supplement to
the human shape feature, the predicted details feature for each query
point P is composed of the clothed layer feature and the normal fea-
ture, which helps to infer the geometric surface with style, clothed
layer and wrinkles.

The stacked hourglass network is used as the encoder Ed (·). The
residual structure of hourglass module can effectively extract multi-
scale features that extend the image channel into the stereo depth
space. It is a size invariant transformation network that ensures the
size of details feature is aligned with the output space. The mean

square error (MSE) is used during training and densely sample on
the ground truth mesh by the geometric sampling strategy.

MSE = 1

n

n∑

i=1

|F (Pi) − F (P∗
i )|2 (8)

where n is the number of samples, Pi is a 3D sample indexed by i, P∗
i

is a ground truth point indexed by i, F (·) computes the occupancy
value of query point Pi or P∗

i .

4. Experimental Results and Analysis

We complete our experiment on a NVIDIA GeForce RTX 2080ti
GPU with 32GB DDR4 2666MHz RAM and the system is Ubuntu
16.04. The convolution neural network is constructed by PyTorch
13.0.1.

4.1. Datasets

Different from image to image vision algorithm, 3D reconstruction
algorithm relies on high-resolution 3D model as ground truth
supervision [FAZ21]. The existing 3D datasets of clothed human
are divided into two categories: the scanned watertight models (e.g.
RenderPeople, TWINDOM, Yu et al. [YZG*21]) and the synthetic
models (e.g. 3DPeople [PSRC*19], CLOTH3D [BME20]).

In order to provide high-precision 3D supervision from ground
truth mesh, we use the datasets built by us and the datasets pro-
posed by Yu et al. [YZG*21] as training datasets. In addition, we
use the datasets proposed by Zhang et al. [ZPBPM17] as a sup-
plementary evaluation, which is a completely unlearned 3D people
in training stage. Furthermore, we select web-images to verify the
proposed method, which can qualitatively evaluate the robustness
of our method to posture and clothing details. Considering that the
low-resolution images lack information and the high-resolution im-
ages cause memory constraints, we resize all images to 512×512
size as input.

4.2. Comparison and analysis

4.2.1. Quantitative analysis

We use four popular evaluation metrics provided by He
et al. [HCJS20] to quantitatively compare with DeepHu-
man [ZYW*19], PIFu [SHN*19], and Saito et al. [SSSJ20]
on different datasets [YZG*21, ZPBPM17]. During evaluation, all
methods use the pre-trained model provided by the author. We use
the iterative nearest point algorithm to register the results with the
ground truth (GT). Then, we measure the metrics follows:

• P2S: The average point-to-surface Euclidean distances
(signed/unsigned) from the vertices on the reconstructed surface
to the GT.

• L2: The normal L2 distances to evaluate the reconstruction accu-
racy.

• CD: The Chamfer distances between the result and the GT sur-
faces to evaluate minimum reconstruction error.

• HD: The Hausdorff distances between the result and the GT sur-
faces to evaluate maximum reconstruction error.
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Table 2: Quantitative evaluation of related methods on different datasets

Our datasets Yu et al. [YZG*21] Zhang et al. [ZPBPM17]
P2S* L2 CD HD P2S* L2 CD HD P2S* L2 CD HD

DeepHuman [ZYW*19] 8.80 - 4.50 9.55 8.57 - 4.44 9.30 5.33 - 3.30 8.23
PIFu [SHN*19] 4.43 0.34 3.02 8.85 4.23 0.33 2.98 8.80 1.15 0.09 1.14 8.65
PIFuHD [SSSJ20] 4.21 0.30 2.98 8.75 4.01 0.30 2.73 8.74 1.63 0.13 1.75 7.60
Ours (Human shape) 4.20 0.29 3.01 8.55 4.15 0.32 2.74 8.53 1.50 0.18 1.30 7.44
Ours (Human shape+Details) 4.20 0.25 2.99 8.55 4.10 0.29 2.73 8.53 1.47 0.13 1.31 7.44

∗It is an unsigned P2S.

Figure 3: Qualitative comparison results of our method and other methods [ZYW*19, SHN*19, SSSJ20, ZYLD21, XYTB22]. Columns 4, 6,
8 and 10 show the visualization of signed P2S error. The maximum threshold is set 2, which means that the distance error greater than 2 or
less than -2 cannot be distinguished by colour. The experimental results show that the proposed method has higher fidelity than the related
methods.

The results shown in Table 2. Compared with the voxel-
based method like DeepHuman [ZYW*19], proposed method
shows superiority in four metrics. Compared with the image-based
method [SHN*19, SSSJ20], our method achieves significant re-
duction in HD metric. This error comes from the wrong structure
or fragmentation of limbs, and our method can effectively solve
this problem. Compared with PIFu [SHN*19] on our datasets and
the datasets proposed by Yu et al. [YZG*21], the HD error of our
method is reduced by 3.16% and 3.07%, respectively. L2 and CD
are used to evaluate the accuracy of reconstruction, in these parts,
our method is similar to Saito et al. [SSSJ20].

We completed the signed P2S error analysis of our method and
the state-of-the-art methods on cloud compare,1 then drew the vi-
sualization results (as shown in Figure 3). DeepHuman [ZYW*19]
uses single voxel feature to infer the human shape, ignoring the
representation of the clothing visual information, and only recon-
structs the coarse posture without surface details. Furthermore, the
expansion of voxels is negative for the extremities and surface de-
tails. PIFu [SHN*19] uses single pixel feature to infer the human
shape, which is perspicacious of surface details but unable to bridge

1https://www.cloudcompare.org

the gap of deep ambiguity and to adapt to changes in limbs. Saito
et al. [SSSJ20] uses the features extracted from high-resolution im-
ages (1024×1024) to guide fine-grained reconstruction, and uses
the predicted front and back normal maps to enhance the perfor-
mance of detail recovery. In these pixel-based methods [SHN*19,
SSSJ20], due to the lack of effective three-dimensional constraints,
many errors appeared on the invisible back and limbs. [ZYLD21]
and [XYTB22] are outstanding contributions of the hybrid feature
based reconstruction. After the fusion of voxel features, the robust-
ness of the reconstruction to pose has been significantly improved.
As a result, proposed method is more accurate than either voxel-
based or pixel-based methods. In summary, our method achieves a
high fidelity digital clothed human.

4.2.2. Qualitative analysis

We select representative from the related works and compare
them with our method. Figure 4 demonstrates the comparison
results with the fusion-based method [ZWZ*20]. The experimental
results show that our method restores more details on some simple
imitation examples. However, some errors are highlighted that
the texture is incorrectly identified as wrinkles. We also exhibit
the results of related works and ours, see Figure 5. The voxel

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://www.cloudcompare.org


8 of 13 J. Pu et al. / Feature Representation for High-resolution Clothed Human Reconstruction

Figure 4: Comparison with the fusion-based method [ZWZ*20].
Our method achieves better detail restoration, including layered de-
tail and wrinkles. Some errors are highlighted due to texture inter-
ference (woman’s T-shirt).

provides rough human shape information, which is positive for
body structure, but blurs the surface clothing details, as shown in
the results of DeepHuman [ZYW*19]. The template-based method
uses parameterized template [LMR*15] to estimate posture and
restores clothing details by offsetting vertices [CPA*21]. These
methods can not reconstruct realistic human model from a single
image. The pixel-based methods [SHN*19, SSSJ20] infer the
implicit expression of clothed human shape and achieve advanced
detail recovery. The hybrid-based methods [ZYLD21, XYTB22]
have excellent performance, but there are still some unpredictable
error representation. In contrast, our method reconstructs complete
posture and limb ends, and recovers the multi-layer detail with
height difference, which is better than the related methods.

4.3. Ablation study and analysis

We highlight the improvement of the feature representation by using
different MLP and the unsigned P2S to evaluate the results (shown
in Table 3). MLP01’s size is [257, 1024, 512, 256, 128, 1], MLP02’s
size is [257, 1024, 1024, 512, 256, 128, 1], MLP03’s size is [257,
512, 1024, 1024, 512, 256, 128, 1]. The experimental results show
that the feature representation proposed in our paper is effective for
high-resolution clothed human reconstruction. According to the ex-
perimental results and computational power constraints, we choose
MLP01 as fθ (·) in Equation (1).

As shown in Figure 6, benefiting from the robustness of voxel pri-
ors to 3D pose estimation, our method can reconstruct a 3D clothed
human with challenging pose rather than simple A or T pose. The

Table 3: Effectiveness evaluation of the feature representation using differ-
ent MLP

Our datasets
Yu et al.
[YZG*21]

Zhang et al.
[ZPBPM17]

MLP01 4.20 4.10 1.47
MLP02 4.20 4.20 1.48
MLP03 3.99 4.20 1.48

depth blurring between the limbs is difficult to be restored by a
single pixel feature [SHN*19]. In addition, the fine-grained pixel
feature and the details feature help to infer geometric surface de-
tails, which is important for clothed human reconstruction. Figure 7
shows the applicability of our method for clothing details and small
accessories and our method can finish high-resolution reconstruc-
tion for clothed human.

To demonstrate the importance of human shape feature repre-
sentations and details feature representations for high-fidelity infer-
ence, we conduct an ablation study (as shown in Figure 8). We use a
simple trainedMLP to infer geometric results from the voxel feature
and the human shape feature, which contain human shape (the 2–5
columns in Figure 8). The last two columns in Figure 8 provide the
final result of our method. The single voxel feature can constrain the
reconstruction result to a reasonable degree of freedom, but it can
only deal with the approximate human shape without clothing de-
tails. Due to the expansion of voxels, the visualization results look
bloated. Inversely, the pixel feature constrains the shape within the
query contour range. The mixed human shape feature shows ex-
cellent inference performance in implicit expression. Furthermore,
the experiment results show that the detail feature optimization de-
signed by us is effective for clothed human, and can restore high-
precision surface details scattered at different layers. The voxel fea-
tures provide priors to help deal with challenging poses, such as
Figure 8a and b. The mixed human shape feature and details feature
optimization enhance details representation which can restore style
details and small accessories, such as hat, belt in Figure. 8c. Our
method is also good at rich wrinkles scene such as Figure 8d.

As shown in Figure 9, we use web-images to evaluate the effec-
tiveness of our method. The model in these images is dressed in
complex and without geometric model as GT.We learn simple layer
semantic labels to replace complex clothing semantic labels that can
demarcate accurate areas, but the connotation is not accurate. For
example, long skirt (Figure 9 c) and pleated skirt (Figure 9b) are
all considered dress. On the contrary, our method cares about the
layer rather than the type of clothing. Our method needs the pri-
ori method [ZSZX20] to provide the semantic integrity of clothing
rather than fragmentation. For the parsing results of new clothing
semantics that have never appeared, the adaptability of our method
is poor. Furthermore, the detailed feature module computes offsets
of the different layers and restores clothing details with geometric
height after learning the layer semantics. We also show the appli-
cation prospect of real digital human, more results of the proposed
method are shown in Figure 10, including the display of different
perspectives of reconstruction results and the full-body textured re-
sults. Our method can reconstruct 3D clothed human with accurate
posture and rich details, which shows potential in the field of 3D
virtual try-on and digital character.

5. Conclusions

The performance of clothed human reconstruction is limited by the
changes in posture and the intricate variations in clothing. In or-
der to solve these two problems comprehensively, a unified fea-
ture representation for clothed human is proposed in this paper,
which integrates shape and details feature representation to re-
construct clothed human. Specifically, the human shape feature
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Figure 5: Qualitative comparison with other methods [ZYW*19, APMTM19, SHN*19, SSSJ20, ZYLD21, XYTB22]. Our method credibly
reconstructs the geometric mesh for clothed human with limbs and clothing details (red box).

Figure 6: We utilize the voxel features with depth priors semantics
to help implicit occupancy inference, which significantly improves
the robustness of 3D posture reconstruction for clothed human. Our
method can reconstruct a geometric result with challenging posture.

representation uses the semantic voxel feature to constrain the infer-
ence of body shape within a reasonable degree of freedom, which
can improve the accuracy of reconstruction for limb changing and
invisible back. Moreover, the details feature representation untangle
the layered details and restore high-resolution clothing details at dif-
ferent layers, which promotes the accuracy and fidelity. Our method
can cope with changeable posture and complex clothing details, but

Figure 7: Our method can reconstruct high-precision geometric
details, including clothing details and some small accessories (such
as hat, belt, handbag).

it still fails in the case of expansively challenging posture (as shown
in Figure 11a) or unpredictable large clothing and accessories (as
shown in Figure 11b and c). This is because extreme posture, large
clothing and accessories tear the depth gap between two to three-
dimensional representation and destroy the latent dimensional space
of results. Furthermore, we infer three layers clothing semantic that
is rely on prioris accuracy. For cases with more than three layers, our
method is powerless. Our method relies on the absolute correctness
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Figure 8: Ablation study on our method. The inference performance of the human shape feature mixed with voxel and pixel feature is better
than the single voxel feature’s. Our method can restore style details and small accessories (green box). The details feature representation
contributes to high-precision inference which reduces the collapse caused by textured mapping (yellow box) and is adaptable for the multi-
layer case (red box). We manually adjust the joint points to reduce the large errors in the attitude prior, see case (c).

Figure 9: We simplify the clothing semantic labels (left) and use eight layer semantic labels (right) to indicate the order of dressing. The
detail feature module can restore clothing details at different layers and finally generate a hierarchical clothed human model.

of clothing semantic parsing and 3D posture estimation rather than
improving them, and their errors will spread to our method. Recon-
struction relies on high-precision 3D datasets that can not contain all
poses and clothing, which challenges the generalization of clothed
human model. Besides, we find that the reconstruction results ob-
tained from render images are better than those from real scenes.
These input images look similar, get different results. A reasonable
explanation is that the render image is the calculation product from
geometric model, texture and controllable lighting, while the real
image is the induction product of optical elements and the distor-
tion caused by perspective affects the reconstruction (as shown in
Figure 11d). In the design of detail module, how to untangle cloth-
ing texture and wrinkles, to avoid misjudgment is still a problem to
be solved (as shown in Figure 4, woman’s T-shirt. Figure 5, sec-

ond line, boy’s T-shirt). This work lacks the adaptive performance
of seasonal clothing.

An important direction of future work is to get rid of the depen-
dence on high-precision datasets and improve the robustness of re-
construction method for real images by exploring 3D inference un-
der weak supervised or unsupervised environment. These are also
our goals that remove artefacts in voxel representation to get more
suitable body shape feature and improve the detail restoration accu-
racy of clothing for special occasions (fashionable evening dresses,
ethnic minority clothing, etc.) and different season’s clothing. The
former can be solved by obtaining more accurate body weight from
the image, and the detailed feature representation of a specific scene
can be considered to deal with the latter. Moreover, our method

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



J. Pu et al. / Feature Representation for High-resolution Clothed Human Reconstruction 11 of 13

Figure 10: We show the reconstruction results from different perspectives. The last column, we provide the results after stitching the texture
map in blender. Our approach shows promising potential in fields such as digital character generation.

Figure 11: Fails case. Our method fails in the case of extremely
challenging posture or unpredictable large accessories. The distor-
tion caused by perspective also affects the accuracy.

focuses on posture and clothing details, but has errors in hair, head
and other details which are worth considering in future work.
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