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Abstract
As-rigid-as-possible (ARAP) surface modelling is widely used for interactive deformation of triangle meshes. We show that
ARAP can be interpreted as minimizing a discretization of an elastic energy based on non-conforming elements defined over dual
orthogonal cells of the mesh. Using the intrinsic Voronoi cells rather than an orthogonal dual of the extrinsic mesh guarantees
that the energy is non-negative over each cell. We represent the intrinsic Delaunay edges extrinsically as polylines over the mesh,
encoded in barycentric coordinates relative to the mesh vertices. This modification of the original ARAP energy, which we term
iARAP, remedies problems stemming from non-Delaunay edges in the original approach. Unlike the spokes-and-rims version
of the ARAP approach it is less susceptible to the triangulation of the surface. We provide examples of deformations generated
with iARAP and contrast them with other versions of ARAP. We also discuss the properties of the Laplace-Beltrami operator
implicitly introduced with the new discretization.

Keywords: modelling, deformations, polygonal modelling
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1. Introduction

As-rigid-as-possible (ARAP) surface modelling [SA07] is a pop-
ular and practically relevant approach for interactive deformation
of triangle meshes with significant impact on research in geometry
processing [LZX*08, BKP*10, TCL*13, BDS*12]. The basic ap-
proach is to minimize a deformation energy subject to a set of con-
strained vertices. The deformation energy is governed by penalizing
the deviation of a vertex star from transforming rigidly:

Ei(V,Ri) =
∑
j∈Ni

wi j

2
‖ei j − Riêi j‖2. (1)

This energy is minimized over the set of vertex positions V and the
per-vertex rigid transformations Ri simultaneously. Deviation from
rigidity is measured by comparing the rotated original edge vec-
tors êi j to the edge vectors ei j in the deformed mesh among the
edges incident on a vertex. The weights wi j control the influence
of each edge. Sorkine and Alexa suggest to use the cotan weights
known from discrete Laplace operators for triangle meshes [PP93,
MDSB03]. Their argument is heuristic and based on the observation
that the choice of diagonals in a rectangular grid should not affect

the deformation (cf. Figure 1). The fact that the weights are negative
for non-Delaunay edges is a well known problem, because it may
cause the per-vertex energy term to become negative.

This may explain why it has become more common to use a
modified version of the ARAP energy, following a proper dis-
cretization of the continuous deformation energy suggested by Chao
et al. [CPSS10]. The idea of this energy, similar to ARAP, is to pe-
nalize the deviation of the gradient (coordinate wise, i.e. Jacobian)
of a deformation mapping f : R

3 �→ R
3 from a rigid transformation.

The smooth version of this energy can be evaluated exactly in closed
form for a linear deformation function and constant rigid transfor-
mation over a triangle [PP93]:

Et = 1

2

∫
t
‖df − R‖2 = 1

4

∑
(i, j)∈t

cotαt
i j‖ei j − Rêi j‖2. (2)

Here, αt
i j is the interior angle in triangle t opposite edge (i, j), as in

the definition of the cotan Laplace operator.

Modifying the ARAP energy to sum over the triangles incident
on vertex i leads to the so-called spokes-and-rims version (Figure 2)
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Figure 1: Deformation of a mesh [SA07, LSHXY22]. The con-
strained vertices (coloured in red) are displaced orthogonal to the
plane. The results exhibit the asymmetry in the energy of the spokes-
and-rims approach. As the initial mesh is Delaunay the iARAP ap-
proach coincides with the original ARAP approach.

Figure 2: Edges contributing to the ARAP energy associated with
vertex i coloured in orange. Line thickness indicates magnitude of
the cotan weights – thin lines have weights close to 0.

where in addition to the edges incident on vertex i also the edges
in the link (i.e. the boundary of the vertex star) contribute. While
the cotan weights still may be negative for non-Delaunay edges,
the energy exactly expresses the non-negative contribution of each
triangle and cannot become negative in any part.

The addition of the rim edges introduces a potentially detrimental
asymmetry in the cells that are governed by a common rigid trans-
formation (see Figure 1). In Section 3, we interpret the different
versions of ARAP as different discretizations of the elastic defor-
mation energy by Chao et al. [CPSS10]. This shows that the spokes-
and-rims version of ARAP is based on the mesh triangles, while the
original ARAP may be considered using orthogonal dual cells. If
the mesh is Delaunay the orthogonal dual cells are intrinsic Voronoi
regions and this works well. Non-Delaunay edges, however, lead to
dual cells that are not properly immersed. We ensure valid dual cells
by considering the intrinsic Delaunay triangulation, whose dual is
the intrinsic Voronoi diagram and the dual cells are properly im-
mersed. This construction leads to the iARAP energy. The necessary
computation of local rotations requires that we need to make the in-
trinsic triangulation available extrinsically. In Section 4, we explain
how to represent the intrinsic Delaunay edges as polylines living on
the original triangle mesh using barycentric coordinates.

The modified ARAP discretization differs from the original ver-
sion in that it is guaranteed to be non-negative for each vertex star.
This remedies the artefacts observed in the original ARAP version.
It behaves similar to the spokes-and-rims variant, yet avoids un-
wanted asymmetries for meshes whose discretization fails to reflect
the symmetries. We provide visual results and quantitative data in
Section 5.

A particular appeal of ARAP surface modelling is a straightfor-
ward block-descent scheme for minimizing the energy: Rotations
are computed locally by non-linear optimization, vertex positions
are computed globally by solving a linear system with fixed system
matrix. The system matrix is a discrete Laplace operator, for both
the original and spokes-and-rims version of ARAP. The matrix re-
sulting from our approach is different. In other words, the original
ARAP and the spokes-and-rims variant have the same left-hand side
in the linear system, and the problems resulting from the possibly
negative energy are resolved by modifying the right-hand side of the
system by spokes-and-rims. In the iARAP approach, the right-hand
side is similar in spirit to the original ARAP, but the left-hand side
is modified. We analyse the properties of the left hand side as a dis-
crete Laplace operator in the spirit of the discussion by Wardetzky
et al. [WMKG07] in Section 6. As it turns out, the new construction
allows trading symmetry for a maximum principle.

Lastly, we briefly discuss how our approach relates to other mod-
ifications of the energy, in particular those that address the depen-
dence of bending on the discretization. We also provide an outlook
on using the implicitly introduced Laplacian operator for other ap-
plications.

2. Background and Notation

We consider the immersion of a fixed triangle mesh M̂ that is being
deformed by a function f : M̂ �→ R

3. The immersion M̂ is defined
by the positions v̂i of the vertices V and the assumption that triangle
i jk ∈ T is realized as the convex hull of its vertices.

The deformed mesh M is the result of applying f to the vertex
positions, that is vi = f(v̂i), and then realizing the triangles as the
convex hull of their mapped vertices, identical to the definition of
M̂. Note that we explicitly avoid asking that f also maps the interi-
ors of the triangles to the convex hull of the mapped vertices. This
gives us the freedom to consider functions f that are not necessarily
piecewise linear or continuous on the given mesh.

Given a realization of the mesh, edge vectors can be computed
as ei j = v j − vi. This can be done for both, the original ei j and the
deformed version of the edge êi j. The circumcentre of triangle i jk
in the original mesh is ĉi jk. The dual cell �i of vertex i is a polygon
formed by the circumcentres of the triangles incident on i. See Fig-
ure 3 for an illustration. The dual cell is immersed if all primal edges
i j are Delaunay; otherwise, it is self-intersecting, with dual edges
�êi j corresponding to non-Delaunay edges having opposite orienta-
tion.

Discrete laplace operators. It will be useful to recall the construc-
tions of the cotan Laplace operator. There are two substantially dif-
ferent constructions leading to the same result. They have recently
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Figure 3: Notation used for primal and dual elements of the mesh.

been contrasted by Alexa el al. [AHKSH20] in the context of point-
ing out that the constructions differ for tetrahedralizations. The pri-
mal discretization is based on linear basis functions associated with
the triangles of the mesh. We provide slightly more detail on the
dual approach for context of our derivation of the ARAP energy;
for more detail we ask the reader to consult the extensive literature
on the subject and also see the derivation in Section 6.

Assuming the mesh consists of Delaunay edges, consider the
dual cell �i. The integrated Laplacian over �i turns into a sum over
triangles spanned by vertex i and consecutive circumcentres, e.g.
vi, ci jk, ci jk′ . For each triangle we need to make an assumption of
the function. The common approach is to consider only the (values
in the) vertices along the primal edge, for example i and j. Other
vertices, such as k and k′, only contribute to the triangles associate
with corresponding primal edges. This means, the function value as-
sumed in ci jk generally differs depending on the primal edge being
considered. Therefore the underlying finite element space is non-
conforming: The function is discontinuous along the edges of the tri-
angles comprising the dual cell. In contrast, the finite element space
for the primal construction is based on linear elements on triangles
that agree on edges and is conforming. In general there is no reason
for two different discretizations to agree and the fact that that the pri-
mal and dual constructions do lead to the same discrete operator for
the Laplacian on triangle meshes is a coincidence. More generally,
there are no inherent advantages or disadvantages of conforming or
non-conforming finite element spaces and both are commonly used
in different domains.

Intrinsic triangulations. The dual edge �ei j of non-Delaunay
edges points in the “opposite” direction and leads to negative edge
“lengths”. This results in negative weights for the cotan Lapace-
Beltrami operator and may even result in negative cell areas. This
can cause problems when the cotan discretization is used [SA07,
CWW17]. The intrinsic Delaunay triangulation of the mesh yields a
principled solution to this problem. An intrinsic edge between two
vertices on a polyhedron is a geodesic edge on the piecewise lin-
ear surface. In the realization of the surface it may be considered
a polyline (compare Figure 7). Bobenko and Springborn [BS07]
define the Laplace-Beltrami operator based on intrinsic Delaunay
edges. They show that any polyhedron has a unique intrinsic De-
launay triangulation that can be constructed by intrinsically flipping
non-Delaunay edges. Other constructions of the intrinsic Delaunay

triangulation are possible [LFXH17] and they differ in their worst-
case time complexity. In practice the computation is observed to be
linear in the number of elements of the mesh for real-world mod-
els [SSC19, LFXH17]. For representation there exist several data
structures [FSBS06, SSC19, GSC21] with support for different de-
mands in applications.

3. Derivation of the ARAP Energies

We start from the elastic deformation energy introduced by Chao
et al. [CPSS10]:

E(f,R) = 1

2

∫
t
‖df − R‖2. (3)

Themain idea of ARAP is to restrict the rotationsR. It seems that all
published variants of ARAP restrictR to be piecewise constant. The
variants differ in the regions over which R is considered constant,
and in the restrictions imposed on the deformation function f.

As shown by Chao et al. [CPSS10], a necessary condition for
minimizers of the energy in Equation (3) is

�f = divR, (4)

which can be thought of as analogous to the situation for minimizers
of Dirichlet energy having vanishing Laplacian. This is, in fact, the
global step common to different versions of ARAP, andmay be used
as an explanation why all of them are based on the cotan Laplace-
Beltrami operator on the LHS in the linear system.

The simplest version of ARAP results from using constant rota-
tions per triangle. This choice has the drawback that bending across
edges is not penalized, but it may be useful when other constraints
are considered simultaneously [LG15, ZG18, LJ21]. In this case, R
is computed in the local step based on the three vertices of a tri-
angle, and divergence is computed in the usual way [PP03, Hir03],
considering the columns of the rotation matrices as vector-valued
functions for each of the three coordinates.

Explaining the original ARAP energy and the spokes-and-rims
version in this framework requires making somewhat “unusual”
choices. Both are based on fixing a rotation for each vertex and it
seems natural that the boundary of this region intersects each edge
at its midpoint

mi j = 1

2

(
vi + v j

)
, (5)

which we define for both the original and the deformed geometry. In
this way we have set mi j to be the midpoint of the mapped vertices
vi, v j, meaning we assume that f maps edge midpoints to edge mid-
points.

With this assumption, we can interpret the rotations of spokes-
and-rims ARAP as being defined over the polygon formed by the
edge midpoints. While it was originally suggested to compute Ri

from the vertex star of vertex i, using the polygon of edge mid-
points is identical, except for an irrelevant scale factor. This means,
we can interpret spokes-and-rims ARAP as considering the energy
over only 3/4 of each triangle as depicted in Figure 4. Looking at
derivations for spokes-and-rims ARAP, we see that divergence of
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Figure 4: In spokes-and-rims ARAP rotations are fitted per vertex
star. The weighting can be interpreted as using only the dark-blue
triangles for defining the rotation Ri. This means, spokes-and-rims
ARAP effectively integrates over 3/4 of the surface.

Figure 5: Both the original and spokes-and-rims ARAP assume
constant rotations per vertex. The orange indicates the different re-
gions associated to the vertices. Note that the area in the original
ARAP is independent of the chosen diagonal, whereas in spokes-
and-rims ARAP the triangulation is reflected in the cells.

the rotations in vertex i is computed by first averaging the three ro-
tations over each triangle, and then computing the divergence from
the triangle-wise quantities as usual.

Using the polygon of edge midpoints makes the discretization
dependent on not only the positions of vertices, but also the connec-
tivity of the mesh. A natural alternative, avoiding at least the depen-
dence of the choice of edges, would be to use the Voronoi regions of
the vertices. We depict the area considered for the two cases in Fig-
ure 5. Indeed, it is possible to interpret the original version of ARAP
in this way. Note that the Voronoi cell around vertex i is spanned by
a set of circumcentres, if the mesh is Delaunay. Our assumption will
be that the deformation f may map these circumcentres freely and
also differently depending on what triangle incident on the circum-
centre we consider. In other words, we allow f to be discontinuous.

Consider the primal edge (i, j) and assume it has the Delaunay
property. The part of the dual (Voronoi) cell �i corresponding to the
edge is the triangle v̂i, ĉi jk, ĉi jk′ . This triangle is intrinsically flat, but
in its realization it is comprised of two triangles, connected along the
edge v̂i, m̂i j. Let us focus on the triangle v̂i, ĉi jk, m̂i j. By our choice
of f, it will be mapped to the triangle vi, ci jk,mi j. Note that ci jk is
the result of mapping ĉi jk considering the sub-triangle incident on
vertex i and edge (i, j). When considering the sub-triangle on the

Figure 6: ARAP [SA07] may be interpreted as the elastic deforma-
tion energy of a discontinuous deformation mapping f . The illus-
tration shows how f would affect the input triangulation if it were
applied the surface and not only the vertices of the mesh.

same edge but incident on vertex j the edge is considered in the
opposite direction and the mapped circumcentre is c jik. Likewise,
sub-triangles incident on edges ( j, k) and (k, i) lead to four more
circumcentres c jki, ck ji and cki j, cik j. Because we allow f to be dis-
continuous, all six mappings may be chosen different. This degree
of freedom can be exploited in order to minimize the deformation
energy. This means, applying f to the piecewise linear surface M̂ re-
sults in decomposing each triangle into six triangles, not necessarily
connected across edges, illustrated in Figure 6. Note that although
f is discontinuous our definition of M means that its triangles are
flat and different from the original triangles mapped by f (except
for the edges).

Equation (2) describes the contribution of this smaller triangle to
the deformation energy. Notice that edge ci jk − vi is opposite to a
right angle, so its contribution is zero. The edge m̂i j − ĉi jk trans-
forms to mi j − ci jk. For any choice of Ri minimizing the energy,
we can set ci jk so that Ri(m̂i j − ĉi jk ) = mi j − ci jk. In this way we
have chosen f so that the contribution of this edge to the energy is
minimal, namely zero.

This leaves only the transformed edge vi − mi j contributing to
the energy. This is true for both sub-triangles of v̂i, ˆci jk, ĉi jk′ . The
overall contribution of this triangle to the energy then is:

Ei j = cot∠mi jci jkvi

∥∥∥∥vi + v j
2

− vi − Ri

(
v̂i + v̂ j

2
− v̂i

)∥∥∥∥2

=1

4
cotαi j

∥∥ei j − Riêi j
∥∥2

.

(6)

Here we have exploited the fact that the angles ∠vici jkmi j and
∠vivkv j are identical (∠vici jkmi j is half the central angle ∠vici jkv j,
which is twice the inscribed angle ∠vivkv j). Considering also the
triangle vi,mi j, ci jk′ we get the suggested choice for the weights wi j

in Equation 1.

Lastly, for computing divergence ofR consistent with the original
ARAP formulation we consider the diamonds (v̂iĉi jkv̂ j ĉi jk′ ) around
vertex i (instead of the triangles). Each diamond consists of the
surface spanned by two primal vertices incident on an edge and
the corresponding two dual vertices (circumcentres). The rotation
per diamond is computed by averaging the two rotations associated
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Figure 7: Notation used for points along the intrinsic polyline. Two
adjacent extrinsic triangles where the diagonal edge (u, v) is flipped
in the intrinsic triangulation coloured in red.

with the primal vertices. Then divergence is computed over the di-
amonds, similar to computing it over triangles [PP03].

Note that this derivation is based on the assumption that dual cells
are immersed and that basing the realization on circumcentres yields
Voronoi cells. If the mesh is not Delaunay, these assumptions are in-
validated. Our idea to overcome this problem is to use the intrinsic
Delaunay triangulation to define intrinsic Voronoi cells as the ele-
ments used for the discretization. This, in contrast to the approach
of Chao et al. [CPSS10], keeps the spirit of computing divergence
from the diamonds (albeit of the intrinsic Delaunay triangulation)
for the RHS in Equation 4, but it changes the Laplace operator on
the LHS.

4. Intrinsic ARAP Energy

The intrinsic Delaunay triangulation has been used mostly in
a context where it is sufficient to compute the length of the
edges [CWW17]. In order to measure the deformation of the sur-
face we need to consider the realization of the intrinsic Delaunay
edges. Note that each intrinsic Delaunay edge (i, j) is a polyline
living on the piecewise linear surface. We denote the line segments
of this polyline as sti j, where t denotes the triangle of the original
mesh that carries the segment. In case the intrinsic edge coincides
with an edge of the mesh the choice of t is not unique, but this has
no consequences. The intersections puvi j of the polyline with the ex-
trinsic edge (u, v) are the start and end points of a segment:

ŝuvw
i j = p̂uwi j − p̂uvi j . (7)

For an illustration see Figure 7.

Note that this notation is not well defined, as a single intrinsic
edge may intersect the same extrinsic edge multiple times [SSC19].
To avoid clutter we omit this complication in our presentation – it
has no impact on the calculations.

We want that the energy depends on the vertex positions in the
deformed state (and not the segment vectors). Note that we can ex-
press the intersections of an intrinsic edge with a mesh edge in terms
of barycentric coordinates relative to the mesh vertices. A segment
is the difference of two such barycentric coordinates, living on the
same triangle. This means we can write for the segments in the rest
state

ŝti j = V̂bti j, (8)

where V̂ = (v̂0 v̂1 . . .) is the matrix that stores the vertex positions
in the rest state column wise and bti j is a sparse vector representing
the segment in barycentric coordinates. The fact that bti j encodes a
vector (and not a point) means its elements sum to zero instead of
one; and since both endpoints are on the same triangle it has at most
three non-zero elements. If the segment coincides with a mesh edge
it has only two non-zero elements. In particular, this is how original
mesh edges are represented if they are Delaunay.

Similar to fixing the weights wi j based on the rest state geometry
we also fix the barycentric representations bti j. In this way we now
simply replace the straight segment ei j in the ARAP energy with the
corresponding set of line segments {sti j}:

Ei(V,Ri) =
∑
j∈Ni

∑
t∈Ti j

σ t
i j

wi j

2
‖sti j − Riŝti j‖2

=
∑
j∈Ni

∑
t∈Ti j

σ t
i j

wi j

2
‖Vbti j − Riŝti j‖2.

(9)

The scalar factors σ t
i j account for the fact that the intrinsic edge has

been divided into smaller segments. We determine these factors by
asking that the energy contribution of an edge is independent of its
subdivision into segments (we drop subscripts referring to the edge
to avoid clutter). Consider the intrinsic view, in which the edge is
straight, we have st = ‖st‖

‖e‖ e and note that
∑

t ‖st‖ = ‖e‖. Equality
of energy for the edge and the sum of the segments yields

‖e − Rê‖2 =
∑
t

σ t

∥∥∥∥‖st‖
‖e‖ e − R

‖st‖
‖e‖ ê

∥∥∥∥2

=
∑
t

σ t ‖st‖2
‖e‖2 ‖e − Rê‖2.

(10)

This suggests the choice

σ t
i j = ‖ei j‖

‖sti j‖
(11)

because this ensures

∑
t

σ t ‖st‖2
‖e‖2 =

∑
t

‖e‖
‖st‖

‖st‖2
‖e‖2 =

∑
t

‖st‖
‖e‖ =

∑
t ‖st‖
‖e‖ = 1, (12)

as required. We further define wt
i j = σ t

i jwi j.

4.1. Derivatives

For the optimization it is necessary to calculate derivatives. The gra-
dient of the energy with respect to the vertex position vk is

∇vkE(V, {Ri}) = ∇vk

∑
i∈V

∑
j∈Ni

∑
t∈Ti j

wt
i j

2
‖sti j − Riŝti j‖2

=
∑
i∈V

∑
j∈Ni

∑
t∈Ti j

wt
i j(s

t
i j − Riŝti j )∇vk

(
sti j

)

=
∑
i∈V

∑
j∈Ni

∑
t∈Ti j

wt
i j(b

t
i j )k(s

t
i j − Riŝti j ),

(13)

where (bti j )k is the k-th element of bti j, as s
t
i j = Vbti j.
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As (bti j )k is only non-zero for segments within the star of vk and
each segment sti j also appears negated in the energy, as segment stji,
with the same weight wt

i j = wt
ji, we can write the derivative as

∇vkE(V, {Ri}) =
∑
sti j∈Sk

wt
i j(b

t
i j )k(s

t
i j − Riŝti j )

= 1

2

⎛
⎜⎝ ∑

sti j∈Sk
wt
i j(b

t
i j )k(s

t
i j − Riŝti j )

+
∑
stji∈Sk

wt
ji(b

t
ji)k(s

t
ji − R j ŝtji)

⎞
⎟⎠

=
∑
sti j∈Sk

wt
i j(b

t
i j )k

(
sti j −

(
Ri + R j

2

)
ŝti j

)
,

(14)

where Sk defines the set of directed segments within the extrinsic
star of k, not the intrinsic.

4.2. Optimization

We can use the same block-descent optimization method as the orig-
inal ARAP method [SA07]. The optimization is divided into a local
step that optimizes {Ri} given V and a global linear step optimizing
V given {Ri}.

For given vertex positions, the local step consists of calculating
optimal rotations Ri for each cell centred around ṽi. Our approach
differs from the original version only by the definition of the edges
associated with cell of i. We arrive at the following covariance ma-
trix:

Si =
∑
j∈Ni

∑
t∈Ti j

wt
i j(s

t
i j )

Tŝti j. (15)

Optimal rotations Ri can be computed in different ways – we use
the polar decomposition Si = TiRi.

The global step is directly given by setting the gradient w.r.t. ver-
tex positions (Equation 14) to zero:

∑
sti j∈Sk

wt
i j(b

t
i j )k

(
sti j −

(
Ri + R j

2

)
ŝti j

)
= 0

⇔
∑
sti j∈Sk

wt
i j(b

t
i j )ks

t
i j =

∑
sti j∈Sk

wt
i j(b

t
i j )k

(
Ri + R j

2

)
ŝti j.

(16)

Note that this is the same linear system of equations for every di-
mension and the system matrix only depends on the initial mesh.

Recall that we can write sti j as Vb
t
i j. This suggests that the system

matrix is

L = BDwBT, (17)

where B contains all the barycentric coordinate vectors bti j of all
segments and Dw is a diagonal matrix with the weights correspond-
ing to the segments in B. This representation is similar to the def-
inition of the polygon Laplacian by Alexa and Wardetzky [AW11,

Table 1: Execution times for the precomputation (Cholesky factorization,
plus intrinsic Delaunay triangulation for iARAP) and a single iteration (lo-
cal rotations from extrinsic or intrinsic edges, plus solving) averaged over
100 runs for the different ARAP variants. All times are in milliseconds.

Model Bunny Dachs Arma

Vertices 3K 20K 200K

Times Pre Step Pre Step Pre Step

Original ARAP 55 3.2 336 23.5 943 72.7
Spokes-and-rims 46 3.2 280 22.7 825 75.9
iARAP 80 5.2 507 37.1 1405 95.5

Table 2: Execution times for the local step in iARAP depending on the num-
ber of segments per intrinsic edge. All instances have the same number of
vertices (35K) and edges (105K) but differ in the ratio of segments to edges.
Times are in milliseconds.

Segments/Edges 1.05 1.16 1.29
Execution Time 62.9 65.8 69.5

Equation 3] for Delaunay meshes, as B reduces to the co-boundary
operator in this case.

The matrix L is symmetric by construction and positive semi-
definite because the weights in Dw are positive. So we can use the
Cholesky factorization similar to the other ARAP methods.

5. Results

We implemented the iARAP method using Eigen [GJ*10] and li-
bigl [JP*18]. For the intrinsic Delaunay triangulation we use the
signpost data structure [SSC19] implementation of geometry cen-
tral[SC*19]. All results were computed in a single thread on an
AMD Ryzen 7 2700X.

The iARAP discretization requires computing the intrinsic De-
launay triangulation in a preprocess, adding to the time required for
precomputation (Table 1). After this, each step in the optimization
is comparable to the original ARAP and spokes-and-rims ARAP.
Only the calculations of the segments comprising an intrinsic edge
aremore involved.We store the precalculated sparse barycentre vec-
tors bti j and then the additional effort is a single sparse matrix-vector
multiplication. The overhead grows with the number of intrinsic
edge crossings as shown in Table 2. The resulting overhead is neg-
ligible in practice, see Table 1.

In Figure 8, we show the decay of the energy over the iterations.
We observe that iARAP behaves similar to spokes-and-rims ARAP
and slightly better than the original ARAP. Anecdotally, all meth-
ods seemed to offer the same degree of interactivity during mod-
elling sessions.

The visual differences compared to the original ARAP on non-
Delaunay meshes, as shown in Figure 9, are noticeable. Due to neg-
ative energy contributions the original ARAP exhibits creases, for
example at the ears of the Bunny. In fat, the creases already appear
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Figure 8: Visualization of the energy decay per iteration on a mesh
with ≈ 20K vertices. The three methods perform roughly similar,
with the original ARAP method converging slightly slower.

Figure 9: Result for a non-Delaunay mesh. Constraints are
coloured in red. The original BUNNY mesh has many ill-shaped tri-
angles in the ears. This results in unwanted deformations for the
original ARAP methods. Spokes-and-rims ARAP and iARAP gener-
ate similar and better results.

without displacing the constraints. As the spokes-and-rims ARAP
and iARAP energies are well defined, we regularly observe smooth
and similarly looking deformed meshes, see Figure 10.

The difference between spokes-and-rims ARAP and iARAP
clearly shows onmeshes consisting of nearly regular quads that have
been triangulated by inserting diagonals. Figure 11 shows the defor-
mation of a cube with the top of the cube moved backwards. From
the side all three methods look the same, which is whywe only show
one instance. In the front view we see asymmetries in the spokes-
and-rims variant. This effect may also be observed on real world
shapes, such as the balloon depicted in Figure 12.

Figure 10: The results of spokes-and-rims ARAP (mid) and iARAP
(right) are often very similar for reasonably well triangulated sur-
faces.

Figure 11: Deformation of a subdivided cube mesh. The con-
strained vertices are shifted to the back. The results exhibit the asym-
metry in the energy of the spokes-and-rims approach. As the input
mesh is Delaunay the result of iARAP and original ARAP coincide.

Figure 12: A balloon mesh from Thingi10K [ZJ16] is squeezed.
Spokes-and-rims ARAP rotates the entire mesh asymmetrically.
Original ARAP is omitted as it behaves identical to iARAP on this
mesh.
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Figure 13: Deformation of a stool from Thingi10K [ZJ16]. Notice the symmetric gap between the legs in the input. As the original ARAP
energy diverges we stopped the optimization after a few steps (and the image shows only a subset of the resulting mesh). Spokes-and-rims
ARAP and iARAP both converge, but only iARAP preserves the symmetry.

Figure 14: On the base of the lion, intrinsic edges (red) cross a lot
of extrinsic edges (blue). While the results of spokes-and-rims ARAP
and iARAP are roughly similar, spokes-and-rims slightly bends the
base.

Asymmetries are also visible in symmetric shapes whose repre-
sentation as a triangle mesh fails to represent the symmetries. The
stool from thingi10K [ZJ16] has symmetric legs. Symmetric defor-
mations should not remove this symmetry, yet only iARAP exhibits
the desired behaviour (Figure 13).

Subtle differences can be observed in quite generally when the
triangulation of the surface is far from being Delaunay or, in other
words, if the intrinsic Delaunay edges intersect many extrinsic
edges. The base of the lion in Figure 14 is triangulated with many
non-Delaunay edges. While iARAP is oblivious to this triangula-
tion, spokes-and-rims ARAP slightly bends the flat region, presum-
ably due to numerical issues.

6. Laplace-Beltrami Operator

Both the original ARAP method and spokes-and-rims ARAP yield
the cotan Laplace-Beltrami operator as the left hand side of the lin-

Figure 15: Two cases of intrinsic edges intersecting a vertex star
coloured in red and orange. Bold arrows follow intrinsic edges. Blue
lines are extrinsic edges. Dashed lines are outside of the vertex star
of vx. The solid red polyline starts at vx and ends at the boundary
of the vertex star of vx. The solid orange polyline starts and ends at
the boundary of the vertex star.

ear system of equations for the global optimization step. The iARAP
discretization leads to a different matrix. We discuss this matrix in-
terpreted as a Laplacian operator (Section 3) in terms of the list of
properties introduced by Wardetzky et al. [WMKG07].

As mentioned before, Equation 17 shows that L is symmetric and
positive semi-definite.

The operator is local in the sense that Li j = 0 if there is no
edge between vi and v j. This is the case because the derivative
with respect to vi only depends on the star of vi. On the other
hand, the weights depend on the intrinsic Delaunay triangulation,
which is global, so the operator is only weakly local in the sense
that moving vertices may affect the weights of vertices that are far
away [WMKG07, AHKSH20].

Linear precision is equivalent to (Lv)x = 0 for each interior ver-
tex vx if all vertices are straight-line embedded into the plane. Given
such a vertex vx we prove linear precision by first grouping all seg-
ments sti j ∈ Nx in the star of vertex x according to their intrinsic edge
ei j. It is clear that each group defines a straight polyline starting and
ending at the boundary of the star or starting/ending at vx. The two
cases are visualized in Figure 15. We represent a polyline as an or-
dered list of extrinsic points (p0, p1, . . .) using sparse barycentric
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vectors (similar to segments, see Section 4):

pi = Vbi.

The contribution of a polyline P that starts and ends at the boundary
of the star of vx is∑

sti j∈P
wt
i j(b

t
i j )xs

t
i j =

∑
sti j∈P

wt
i j(b

t
e − bts)xs

t
i j

=
∑
sti j∈P

(bte − bts)x
‖ � ei j‖±

‖sti j‖
sti j,

where pts is the start point and pte the end point of the segment sti j.
Since all points lie in a common plane, all segments of the polyline
between i and j point in the same direction. Therefore

‖ � ei j‖±
‖sti j‖

sti j

is the same for all segments and equals

‖ � ei j‖±
‖(v j − vi)‖ (v j − vi).

This simplifies the contribution since successive segments share a
point:

(btne − bt0s )x
‖ � ei j‖±

‖(v j − vi)‖ (v j − vi),

where pt0s is the start and ptne is the end vertex of the polyline. As
both are on the boundary of the star of x this contribution is 0 as
(bi)x = 0 for all points i on the boundary of the 1-ring.

For the second case we only consider polylines P ∈ Px that start
at vx, as the segments are directed and the opposite direction con-
tributes the same way: ∑

P∈Pi

∑
sti j∈P

(bti j )iw
t
i js

t
i j.

Note that x = i and that all polylines in Pi that start at i contain only
one segment. This is clear as the end point of a segment in a triangle
t that starts at vi must be on the edge opposite to vi. We can again
rewrite the term due to the linearity of the vertex positions and the
fact that the polylines start at vi as∑

j∈Ni

(btne − bi)i
‖ � ei j‖±

‖(v j − vi)‖ (v j − vi),

where Ni describes the intrinsic Delaunay neighbourhood of i and
ptne is the end vertex of the polyline. As ptne is on the boundary of the
star of i by definition and (bi)i = 1 we end up with:∑

j∈Ni

‖ � ei j‖±
‖(v j − vi)‖ (v j − vi).

In the planar embedding this is the same contribution as the in-
trinsic Laplace-Beltrami operator and according to Stokes’ theorem
this adds up to zero [AHKSH20]. Concluding, the iARAP operator
yields the same result as the intrinsic cotan Laplace-Beltrami for all
linear functions embedded in a plane, by weighting only the extrin-
sic neighbourhood.

Table 3: Overview of the properties of the two Laplace-Beltrami operators.
The operator L is the one used in iARAP, L+ is the asymmetric modification.

Loc

Prop Sym weak strong Lin Pos Psd

L • • ◦ • ◦ •
L+ ◦ • ◦ • • •

From the results of Wardetzky et al. [WMKG07] it follows di-
rectly that the “positive” weight property cannot be satisfied or else
we would have a contradiction with their main result. Note that the
definition of the sign of the Laplacian varies in the literature. In our
setup we would ask that all off-diagonal elements of L are nega-
tive. There is no reason why BBT should not contain positive and
negative weights, as bti j contains negative and positive values.

An overview of the properties is shown in Table 3. Summarizing,
the properties of the Laplacian implicitly defined by the intrinsic
ARAP discretization of the elastic energy of Chao et al. [CPSS10]
has properties that are identical to the cotan Laplacian. We want
to stress, however, that the Laplacian corresponding to iARAP is
generally not the cotan Laplacian. Experimentally we find that if
both have (unwanted) negative off-diagonal entries, the iARAP dis-
cretization leads to smaller absolute values. This may help to alle-
viate unwanted effects of the wrong sign of these coefficients.

Alternative derivation. Onemay derive the operator implicitly de-
fined by iARAP in a slightly more general way using Stokes’s the-
orem: ∫

C
� f =

∫
∂C

n · ∇ f . (18)

Here, f is an arbitrary function,� the Laplace-Beltrami operator,∇
the gradient operator,C a cell on the domain of f and n the outward
pointing normal of the cell boundary δC.

In a discrete setting the function f is represented as vector f. If
we define C to be the intrinsic Voronoi cell �i, the dual edges �ei j
resemble the boundary. By assuming a constant gradient along the
dual edge �ei j, we can approximate the integrated gradient in normal
direction: ∫

�ei j

n · ∇ f ≈ ‖ � ei j‖ (f j − fi)
‖ei j‖ . (19)

We arrive at the (integrated) intrinsic cotan Laplace-Beltrami oper-
ator:∫

�i
� f =

∑
�ei j∈δ�i

∫
�ei j

n · ∇ f ≈
∑

�ei j∈Ni

‖ � ei j‖
‖ei j‖ (f j − fi), (20)

where Ni is the intrinsic neighbourhood of i.

In the case that i has only knowledge of the function values of
its extrinsic neighbours this approximation is not possible anymore.
If we still want to resemble the intrinsic Voronoi cell, we could ap-
proximate the intrinsic edges by tracing outwards. The intersections
of the extrinsic link with the intrinsic Delaunay edges could be used
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to approximate the function value of the intrinsic neighbour by lin-
early interpolating the two extrinsic neighbours on the link.

Using our notation for the barycentric coordinates of the traced
edges we find the following term

∑
j∈Ni

‖ � ei j‖±
‖(b j

pV − vi)‖
(b j

pf − fi),

whereNi is the intrinsic neighbourhood of i and b j
pV is the intersec-

tion of the intrinsic edge (i, j) and the boundary of the vertex star
of i.

In fact this is exactly the iARAP Laplace-Beltrami formulation
considering only polylines that start at i. If we set the contribution
to all other polylines within the star of i to 0 we arrive at an extrinsic
approximation of the intrinsic Delaunay Laplace-Beltrami operator
derived from finite volumes. This new Laplace-Beltrami operator
L+ has positive off-diagonal entries as all weights and interpolation
coefficients are positive. Yet it is not symmetric: as the vertices used
for the interpolation are not incident on the intrinsic edge (i, j) the
influence is one-directional. If we want to overcome this asymmetry
we need to consider those segments, as in the iARAP discretization.

Note that for symmetry it would be enough to only consider the
first segment of an intrinsic edge, not all. That would lead to yet
another operator defined by changing the iARAP energy to only de-
pend on the first segment of the intrinsic edge.

7. Discussion

In this work, we show that the “missing” continuous picture of the
original discrete ARAP energy can be found by discretizing the en-
ergy of Chao et. al. [CPSS10] over non-conforming elements of dual
cells. This interpretation makes clear that the orthogonal dual cell
associated with a vertex needs to be immersed. We ensure this by
using intrinsic Voronoi cells. The corresponding Laplace-Beltrami
operator approximates the intrinsic connectivity using the extrinsic
connectivity. It has the same sparsity pattern (stencil) as the standard
cotan Laplace-Beltrami operator (i.e. the adjacency matrix of the
mesh) but approximates the intrinsic Laplacian. As the connectivity
of the intrinsic Laplacian depends on the geometry and may change
as the geometry changes, factorizations would have to be recalcu-
lated. THe iARAP Laplacian allows for a fixed symbolic factoriza-
tion or sparse optimizations techniques that assume a fixed sparsity
pattern [HTS*22] even after geometry changes.

Our general perspective on the different ARAP discretizations di-
rectly leads to further alternatives, which would be worthwhile to
investigate in future work. Instead of making the map of the cir-
cumcentres part of the optimization, one may assume that they are
mapped relative to the vertex positions (i.e. retain their barycentric
coordinates). This would lead to another Laplace-Beltrami operator
in case of using the extrinsic as well as intrinsic triangulation.

There are various other versions of ARAP modelling, defining
the energy in slightly different ways to improve upon the original
method. Problems of ARAP also arise from the rigid cells being de-
fined per vertex. The energy penalizes stretching and bending dif-
ferently because the rotations are defined over vertex stars. Chao

et al. [CPSS10] found that the bending penalty decreases as the
resolution grows and pointed out that the penalty arises from the
vertex wise discretization. This problem can be solved by defining
the rotations per triangle and then adding a second term that penal-
izes bending explicitly [ZG18, LG15]. Most of the methods that are
based on ARAP or improving on it define energies that sum over
edge sets. Those sets contain the edges of a vertex star or a single
triangle, whether they define rotations vertex wise or triangle wise.
We note that our approach based on the intrinsic Delaunay triangu-
lation is orthogonal to these variations and could be incorporated by
using the representation of an intrinsic edge as a sequence of extrin-
sic segments. It would be interesting to test whether such intrinsic
versions of these methods further improve their results on poorly
triangulated surfaces.

In a different direction, our derivation also motivates the investi-
gation of other ways to restrict the rotations. Another way to address
the above mentioned problems might be a richer function space for
the rotations, lifting the restriction from piecewise constant func-
tions. This would also require a proper discretizations of divergence.
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