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Abstract
3D object matching and registration on point clouds are widely used in computer vision. However, most existing point cloud
registration methods have limitations in handling non-rigid point sets or topology changes (e.g. connections and separations). As
a result, critical characteristics such as large inter-frame motions of the point clouds may not be accurately captured. This paper
proposes a statistical algorithm for non-rigid point sets registration, addressing the challenge of handling topology changes
without the need to estimate correspondence. The algorithm uses a novel Break and Splice framework to treat the non-rigid
registration challenges as a reproduction process and a Dirichlet Process Gaussian Mixture Model (DPGMM) to cluster a pair
of point sets. Labels are assigned to the source point set with an iterative classification procedure, and the source is registered
to the target with the same labels using the Bayesian Coherent Point Drift (BCPD) method. The results demonstrate that the
proposed approach achieves lower registration errors and efficiently registers point sets undergoing topology changes and large
inter-frame motions. The proposed approach is evaluated on several data sets using various qualitative and quantitative metrics.
The results demonstrate that the Break and Splice framework outperforms state-of-the-art methods, achieving an average error
reduction of about 60% and a registration time reduction of about 57.8%.

Keywords: non-rigid registration, point cloud, topology changes, Gaussian Mixture Model, computer vision

CCS Concepts: • Computing methodologies → Point-based models; Computer vision tasks; Scene understanding

1. Introduction

Point cloud registration is a crucial step in the 3D acquisition and has
many applications in computer vision, including 3D reconstruction,
pose estimation, augmented reality, object matching and recogni-
tion [TCL*12, CTJ*18, WSMG*16, SBB17]. Accurate registration
of multiple point clouds obtained from different views or time in-
stants is necessary for building a complete and consistent 3D model
of the scene or object of interest. In addition, point cloud registra-
tion enables us to estimate the relative pose and motion of objects,
recognize and match objects in different scenes and create virtual
and augmented reality experiences [ZSG*18, DWB06].

While many registration methods work well on rigid ob-
jects [AHB87, CSK05], they often perform poorly on dynamic
scenes or deformed objects. This is because these objects have

non-rigid deformations and motions that cannot be modelled by
rigid transformations. In addition, non-rigid objects may undergo
topology changes such as connections and separations, which pose
additional challenges for registration methods that rely on cor-
respondences between the source point sets and the target point
sets point [HAWG08, MQZ*15]. Therefore, developing registration
methods that can handle non-rigid objects and dynamic scenes is an
active research area in computer vision.

Topological changes are common in dynamic scenes. Many pre-
vious works on non-rigid registration have failed to effectively ad-
dress the connection and separation issues, and large inter-frame
motions, which can lead to misregistration and inaccurate recon-
structions. In addition, large inter-frame motions can cause signifi-
cant deformations and changes in topology. Chui et al. [CR03] and
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Figure 1: Non-rigid registration challenges. The (a), (b), (c) and (d) show that the hat is separated from the hand from frame 69 to 89 in the
public data set, including two object separations [SBCI17].

Yang et al. [YOF15] proposed non-rigid registration methods based
on point correspondence to estimate affine transformations between
the source and the target point sets. However, thesemethodsmay not
be robust to changes in the topology of the point sets, such as con-
nections and separations. The accuracy of these methods is highly
dependent on the accuracy of the correspondence estimation, which
can be challenging in the presence of large deformations or changes
in topology.

To address these issues, recent approaches have focused on de-
veloping statistical methods that do not rely on explicit point corre-
spondence or feature extraction, but instead model the probabilistic
relationship between the point sets. Myronenko et al. [MSCP*07]
and Hirose [Hir21] have utilized statistical methods, such as the
motion coherence theory, to estimate maximum likelihood solu-
tions for non-rigid registration. However, some of these methods,
such as Coherent Point Drift (CPD), can suffer from local minima
and slow convergence. More recently, Zampogiannis et al. [ZFA21]
have explored a bidirectional estimation method, where pairs of
point clouds are aligned from the source to the target and from the
target to the source. However, this method still struggles to handle
large inter-frame motions, where the source and target point clouds
may undergo significant deformation between frames.

The challenge of handling objects’ separation and connection can
be best illustrated through an example shown in Figure 1. In this
example, from frame 69 to frame 89 where the hat is separated from
the hand, large inter-frame motions are manifested. The difficulty of
non-rigid registration stems from the effectiveness of the method in
dealing with a single point set when it is rapidly separated into two
point sets (the hat and the hand). The connection between the two
point sets is regarded as a reverse process of separation.

In this paper, we propose a novel statistical approach that can
handle changes in topology and large inter-frame motions. The pro-
posed framework utilizes a statistical approach based on the Dirich-
let Process GaussianMixture Model (DPGMM) to handle non-rigid
point sets without the need for explicit correspondence estimation,
leading to improved registration performance compared to previ-
ous methods. Our method in this paper regards non-rigid registra-
tion as a reproduction process with a four-step registration scheme,
as shown in Figure 2, which generates a model as close as possi-
ble to the target model. Another contribution of this paper is that
we design a Cluster and Refine scheme to handle the distribution
irregularities of point sets, making the topology of source points as
same as that of target points, which results in a great improvement of
the accuracy and efficiency of the proposed statistic-based methods.
The proposed method is evaluated on five datasets using a variety

of qualitative and quantitative metrics. It is important to note that
the experimental datasets only contain single object separations and
connections against a simple background.

2. Related Work

Non-rigid point cloud registration methods can be categorized into
general transformation models and Gaussian mixture models.

Chui et al. [CR03] used a thin plate spline (TPS) to define a gen-
eral transformation model that consists of an affine transformation
and a TPS smoothness kernel. Yang et al. [YOF15] used a global
and local mixture distance to estimate the correspondence between
the source point set and the target point set and update the rigid
and non-rigid transformations and minimized the mixture distance
using a TPS. Huang et al. [HAWG08] utilized a rigid local trans-
formation for each point to obtain a global non-rigid registration.
Meanwhile, the local affine transformation [ACP03, ARV07] is fre-
quently applied in non-rigid registration because the surface repre-
sentation allows surface details to be captured precisely due to its
more freedom. However, general transformation methods depend
on correspondence estimation based on the features of the source
point set and target point set, whose result would directly affect the
registration accuracy and efficiency.

Regarding Gaussian mixture models, Myro-
nenko et al. [MSCP*07, MS10] proposed a CPD algorithm.
They formulated the registration as a maximum likelihood esti-
mation problem, where one point set moves coherently to align
with the other set under motion coherence constraint over the
velocity field. The motion coherence theory [YG89] considers
two adjacent points that tend to move coherently, and this motion
coherence is an important feature that influences the smoothness
of the transformation. Golyaniet et al. [GTRS16] extended the
CPD registration algorithm using correspondence priors and a
coarse-to-fine optimization strategy to achieve robust non-rigid
point registration with an improved speed of the registration
process. Bai et al. [BYG17] proposed a statistical framework by
aligning two-point sets represented by Gaussian mixture models.
Hirose [Hir21] proposed the Bayesian Coherent Point Drift (BCPD)
method, which formulates CPD in a Bayesian setting to improve
registration accuracy and efficiency. These methods achieved good
results for the connection but failed to register the separation of
two objects. The main reason is that the CPD-based framework
requires all points to be transformed coherently as a whole (e.g. a
single point set) whose displacement must meet the CPD condition.
When there are separations and connections during the object
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Figure 2: Overview of Break and Splice registration framework (The different colours mean different labels, and the black arrow indicates
the process of our non-rigid registration.): Step 1, extracting boundaries of point sets to determine the partition template and allocating labels
to the partition template X. In Step 2, the labelled point set X and the unlabelled point set Y are merged into one. Step 3, assigning labels to
point set Y according to the labels of partition template X. Specifically, clustering the merged point sets into different groups and assigning
labels to unlabelled points in each cluster. X and Y will be re-assembled by Splice together the points in different clusters, respectively. Step
4, point sets with the same labels are registered to obtain the transformed source point set Y (The dashed arrows indicate registration with
the same labels.).

topology change, as shown in examples in Figure 1, the point set
will separate into two sets. Thus, CPD-based methods would fail to
address the non-rigid registration challenges to be solved in our pa-
per. Recently, Zampogiannis et al. [ZFA21] proposed a framework
to address the issues of separation and connection. However, this
method did not work well on large inter-frame motions, as shown
in our comparative studies (Section 4).

Non-rigid registration methods have been applied to dy-
namic reconstructions [SBI18, NFS15, DKD*16, GXY*17]. New-
combe et al. [NFS15] proposed a DynamicFusion system that fused
the live frame depth maps into the canonical space via the estimated
warp field to achieve high quality. However, the experiment in Dy-
namicFusion does not deal with large inter-frame motions with ob-
ject topology change issues of separations and connections. The Fu-
sion4D [DKD*16] and Kaiwen [GXY*17] used RGBD camera in-
puts to reconstruct dynamic scenes simultaneously. Although Kai-
wen’s method tackles the connection, object separation remains un-
solved. Slavcheva et al. [SBI18] and Li and Guo [LG20] propose
new methods to tackle this issue by incorporating volumetric data.
However, the 3D detail information of volume-based methods is
lower than that of other point-based registration methods.

Although CPD-based methods are inadequate in achieving non-
rigid registration of point sets with separations directly, we can
leverage the power of clustering methods to separate the topology

of a source point set and then match the clusters based on non-rigid
registrations. In terms of clustering, the DPGMM [Fer73] infers the
number of clusters from the data set instead of setting a prescribed
number of clusters as traditional clustering methods. As for registra-
tion, the BCPD method [Hir21] has shown point sets registrations
with large deformation, high accuracy and less computational cost.

In this paper, we proposed a Break and Splice registration frame-
work that integrates DPGMM and BCPD to achieve non-rigid regis-
tration with topology changes. We also utilize a statistical approach
to refine the clusters to increase the match of the similar topolo-
gies of the point sets to improve the accuracy and efficiency of both
DPGMM and BCPD in partitions and registration. In the follow-
ing sections, we detail our Break and Splice registration framework
and methodology.

3. Methodology

Given two 3D point sets X and Y, our proposed framework aims
to handle registrations between two point sets X and Y that ex-
hibit Connection and Separation topology changes. The frame-
work Break and Splice is designed to reproduce the states of Con-
nection and Separation between point sets. For brevity, we use
a Separation example to introduce our framework, where X is the
target point set, and Y is the source point set, as shown in Figure 2.
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Figure 3: Assigning labels for X: The top shows the process of extracting boundaries using triangulation, and the bottom illustrates the
allocating labels l1, l2 and l3 based on extracted boundaries. The red is the extracted boundaries. Black circles are the inner points Xl0 . Our
objective is to allocate labels to those inner points.

The Break and Splice framework can be divided into three mod-
ules: (a) Assigning labels to aim to determine the partition template
(point sets with more boundaries, such as X) to be allocated differ-
ent labels; (b) Break and Splice assigns labels to Y based on the
labels of X; (c) Registration utilizes the BCPD algorithm to achieve
registration between point sets with same labels.

We can take four steps to achieve Separation between the point
sets X and Y. Step 1, we determine the partition template by us-
ing Delaunay triangulation to extract boundaries of the target and
source point sets and assign labels for each point of partition tem-
plate X based on the boundaries in the Assigning labels module
(Section 3.1). Step 2, we mix the source and target point sets into
one to reduce the cluster difference that will occur in the Break and
Splice module (Section 3.2). Step 3, in the Break and Splice module,
we utilize the DPGMM to cluster point sets and assign labels to Y
according to the labels of X in each cluster. We then splice together
the partitions of points with the same labels to generate point sub-
sets that need to be registered. Step 4, in the Registration module
(Section 3.3), the BCPD method is used to register the source point
set groups and the target groups which have the same labels.

3.1. Assigning labels

The boundary extracting approach [Awr16] is used to identify the
boundaries of point setsX andY. We select the point sets with more
boundaries as the partition template, which will be allocated to dif-
ferent labels. We take target point setX as the example for boundary
identification and assigning labels, for brevity’s sake, as shown in
Figure 3.

3.1.1. Boundary identification

The point set X is projected to a 2D plane, and the Delaunay tri-
angulation is formed on plane points (shown in Figure 3). One of
the triangle sides along the periphery of X is associated with only
one triangle. All such edges on that side form the initial bound-
ary. Let dmax indicate the maximum distance between the near-

est neighbouring points in X. Any initial boundary edges whose
length exceeds 2dmax will be removed (dmax is achieved by K-
nearest-neighbour). The removal of long boundary edges contin-
ues iteratively until every edge along the boundary is at most dmax
in length.

3.1.2. Assigning labels for the target point set

Once the boundary of X is identified, different connected compo-
nents are assigned different labels. We can get an adjacency ma-
trix after using Delaunay triangulation to extract the boundaries of
X. The elements in the adjacency matrix represent the number of
triangles that share the same edges connected by nodes. Then the
breadth-first search (BFS) method is used to search for connected
components. Assuming that there are three different connected com-
ponents by boundary identification from X, the nodes/points in the
same connection component will be assigned the same label. The
points in X will be allocated the labels Lx = {l1, l2, l3}.

3.2. Break and splice

The Break and Splice framework is similar to that of the bisection
method. The Break process will not end until the category of the
labels of target points in each cluster is unique. Just like the bisection
method, the process of splitting the interval will not end until the
solution of a continuous function is found. This framework aims to
assign the labels of target points to the source points. The reason
to set the process of assigning labels to source points as a binary
tree structure is that there is more than one way to assign labels to
source points in one cluster after only one partition. To make the
label of source points in one cluster unique, we need to re-partition
the cluster where the labels of the target points are different, which
will be repeated until the category of the labels of target points is
unique in one cluster.

After attaining the labels Lx for the points set X, the goal then
is to allocate labels Lx to the points set Y. Assigning Lx to Y can
be regarded as the process of Break and Splice. Break involves the
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Figure 4: The structure of the Break and Splice module for assigning labels to source points set Y (The black arrow indicates the process
of our Break and Splice): The blue box shows Break, which involves the partitions and labels allocation of point sets. The tangerine arrows
represent Splice, which indicates the stitching of the partitions based on the labels. The Break is a binary tree with merged point sets as a root
node, and the leaf node Rjset keeps the points that will not be re-partitioned at the j + 1 level, and the branch node Djset contains the points
to be divided. R j

x and R
j
y represent the target points, and source points in the R

jset,∅ demonstrates that there is no point left to be partitioned,
which marks the end of the partition. Splice re-assembles the points (R j

x and R
j
y) in different R

jset to recover the labelled source point set Y
and target point set X.

partition of the merged point sets P = [X;Y] and the label alloca-
tion in each partition, which is the key, to handling the topology
changes between point sets for registration. Splice is to splice the
partitions ofY together based on the allocated labels. Figure 4 shows
how the Break and Splice process is carried out. Break can be re-
garded as a binary tree generation process. The root node of the
binary tree is the merged points set P = [X;Y], and the leaf nodes
Rjset include the target point sub-sets Rj

x and the source point sub-
sets Rj

y. The branch nodeD
jset keeps the merged points sub-set that

will be divided at the j + 1 level. The binary tree grows until one of
the leaf nodes is empty ∅. It is worth noting that the points in each
leaf node Rjset have the same labels, and the points in branch node
Djset have different labels. Namely, the number of category labels
in nodes determines whether the node is a leaf node or a branch
node. Splice recovers the labelled target points set X and labelled
source points set Y by re-assembling the Rj

x and R
j
y, respectively.

The process ofBreak can be divided intoCluster andRefine.Clus-
ter is to utilize DPGMM [Fer73] to attain the initial partitions Ck,
k ∈ {1, . . . ,K}, where K is the number of partitions. The advantage
of DPGMM is that it automatically discovers the number of clusters
and is likely to converge to the data’s actual clusters [MFHM19]. To
guarantee the consistency of the partitions for target points set X and
source points setY , we take Refine to overcome the significant irreg-
ularity of the initial partitions. Based on the pruned partitions, we
allocate the labels of target points Ck

x to the source points C
k
y . Fig-

ure 5 illustrates the structure of Break at Level 1 of the binary tree.
Especially, it is different from Step 1. In Step 1, the KNN is used to
search the K points close to the initial point, and then the K points
will be assigned the label of the initial point. DPGMM, as a cluster-
ing method, clusters the merged points according to the coordinates
of points without defining the number of clusters (such as the K in
the K-means clustering method).

3.2.1. Cluster

Assume the mixed point set P has been divided into K clusters by
DPGMM. P = {C1, . . . ,CK} and Ck = {Ck

x,C
k
y}, k ∈ {1, . . . ,K}.

Ck
x and Ck

y are the target points sets and source points sets in clus-
ter Ck, respectively. The number of target points in cluster Ck is Nk.
And the label of target points xi in cluster Ck is denoted as Lkxi . The

K clusters are divided into R
′
set (R

′
set includes target points with

a single label and source points after cluster) and D
′
set based on

the label category of target points Ck
x. Especially, even if no cluster

forms an R
′
set during the initial iteration, the original mixed point

cloud will be divided into several clusters, and the distribution of the
target point and the source point in each cluster is similar. Therefore,
with the refinement and clustering of the mixed point sub-sets, there
will always be an R

′
set where the labels of target points are unique.

τk =
Nk∏
i=1

δ

(
Lkxi −

∑Nk
i=1 L

k
xi

Nk

)
(1)

where δ is the Dirac function. If τk = 1, then Ck belongs to R
′
set,

otherwise Ck belongs to D
′
set. Equation (1) indicates that the R

′
set

includes those clusters where the label categories of Ck
y are

unique. D
′
set consists of those clusters where the label categories

of Ck
y are various.

3.2.2. Refine

The irregularity of the initial partitions achieved by DPGMM will
affect the subsequent partition results, confusing label allocation.
Furthermore, the confusion label will increase the error of registra-
tion. Thus, we propose Refine to prune the clusters in R

′
set. The reg-

ularized clusters compose the R set, which will be spliced together
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Figure 5: The structure of Break at Level 1 of Figure 4 (The black arrow indicates the process of the Break at Level 1). Cluster involves
the initial partitions (C1 and C2) of merged points using the DPGMM clustering method. The target points sub-set C1

x in C1 have different
labels and C2 contains the target points sub-set C2

x with the same labels. Besides, the cluster C1 and cluster C2 also include the source points
sub-set C1

y and C
2
y . The clusters with single labels form the R

′
set. D

′
set includes those clusters with different labels. Refine aims to overcome

the significant irregularity of R
′
set. The irregular point sets are selected asM set to be mixed with D

′
set to generate the brunch node D1 set,

which will be divided at Level 2. The R
′
set’s remaining source points will then be allocated the labels of the target points in the same clusters.

The target points and the source points with the same labels form the R1 set, which is the leaf node in Figure 4.

to recover the labelled source points set Y. We design the refining
path and direction according to the characteristics of point distribu-
tion. Then, the label Lx will be assigned to the source points y j in
the regularized clusters.

Assume that Ck̂ = [Ck̂
x,C

k̂
y] is a cluster in R

′
set, and Ck̂

x,C
k̂
y are

target points and source points in Ck̂, respectively. The degree of
dispersion of the Ck̂

x,C
k̂
y in each dimension determines the path for

refining points.

Stddx =

√√√√∑Nk
i=1

([
Ck̂
x

]
i,d

− [
Ck̂
x

]
:,d

)
Nk − 1

(2)

Stddy =

√√√√∑nk−Nk
i=1

([
Ck̂
y

]
i,d

− [
Ck̂
y

]
:,d

)
Nk − 1

(3)

where [Ck̂]i,d represents the coordinate of the ith point in the dth

dimension. [Ck̂]:,d indicates the mean value of the coordinates of
all points in the dth dimension. Stddx and Stddy show the standard

deviation of Ck̂
x,C

k̂
y in dth dimension, d ∈ {1, 2, 3}.

d∗ = argmax
d∈{1,2,3}

∣∣Stddx − Stddy
∣∣ (4)

d∗ involves the refining path, in which the object has the largest
deformation. For example, the stretching of an object in one di-
mension will lead to its squashing in another dimension. For ex-
ample, when d∗ = 1, we will refine points along with X-axis. If
|Stdd∗

x − Stdd
∗

y | < γ , there is no need to refine the Ck̂. Otherwise,
we must also determine the refining direction based on the refining
path.

Skey =
1

nk−Nk
∑nk−Nk

j=1

(([
Ck̂
y

]
j,d∗

−[
Ck̂
y

]
:,d∗

))3

[
1

nk−Nk−1
∑nk−Nk

j=1
([
Ck̂
y

]
i,d∗ −

[
Ck̂
y

]
:,d∗

)2] 2
3

(5)

Skey shows the skewness of the source points Ck̂
y in the d

∗th dimen-

sion. We denote the index of the minimal [Ck̂
y] j,d∗ as Jmin and the

index of the maximal [Ck̂
y] j,d∗ as Jmax. If Skey < 0, we will sepa-

rate the [Ck̂
y]Jmin,: from Ck̂

y and move it into a temporary setM set. If

Skey > 0, we will move the [Ck̂
y]Jmax,: into M set. [Ck̂

y] j,: represents

the jth point in Ck̂
y. It is worth noting that the initial M set is an

empty set.

Figure 6 takes the C2 in Figure 5 as an example to illustrate the
relationship between Skey andM set. Because of the positive skew-
ness of the source points C2

y on the x-axis, we transfer the source
points with the maximal x-coordinate to the M set.

Repeat calculating Equations (2)–(5) to determine the refining
path and direction until |Stdd∗

x − Stdd
∗

y | < γ . The pseudocode for

refining the Ck̂
y in R

′
set is shown in Alg. 1.

After being separated from R
′
set,M setwill be merged withD

′
set

to generate the branch node D set to be divided again. Also, the la-
bels of Ck̂

x will be assigned to Ck̂
y. The process for clustering and

refining will be repeated until there are no points in D set to be di-
vided.

As for Splice, it is a process to re-assemble the labelled source
points set Y and the target points set X. We denote the source group
with label l as Gl

y and the target group with label l as G
l
x. Splicing

the R set together can reduce the number of partitions and achieve
less computational cost for registration to improve registration ac-
curacy.

3.3. Registration

BCPD algorithm [Hir21] is used to register the source group Gl
y

and target group Gl
x. BCPD is the Bayesian formulation of the

CPD [MS10]. The key difference between BCPD and CPD is that
BCPD definesmotion coherence using a prior distribution instead of
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Figure 6: Illustration for the impact of skewness on Refine. Due to the positive skew of the C2
y on the x-axis, the points in the C

2
y with the

largest x-coordinate will be transferred to theM set.

Algorithm 1. Refine Ck̂
y in R set

the regularization term in CPD. Besides, the transformation model
in BCPD is a combination of non-rigid and similarity transforma-
tions, which enables it to handle the registration task with large de-
formation. As for the computational time, BCPD uses the Nyström
method [WS01] and the KD tree search [Ben75] to accelerate reg-
istration without losing registration accuracy.

The key models in the BCPD algorithm can be generalized as
follows:

Transformation model:

τ(yi) = T (yi + vi) = sR(yi + vi)+ t (6)

where s ∈ R is a scale factor, R ∈ R
D×D is a rotation matrix, t ∈

R
D is a translation vector and vi ∈ R

D is a displacement vector that
characterizes a non-rigid transformation.

Prior distribution:

p(v|y) = φ
(
v; 0, λ−1G ⊗ ID

)
(7)

where λ is a positive constant and⊗ denotes the Kronecker product.
G = (gmm′ ) ∈ R

M×M with gmm′ = K(ym, ym′ ) is a positive definite
matrix, whereK(, ) is a positive-definite kernel. φ(v; 0, λ−1G ⊗ ID)

is the multivariate normal distribution of v with a mean vector 0
and a covariance matrix λ−1G ⊗ ID.

4. Experiment

We evaluate our approach by performing experiments on five data
sets, three public data sets and two of our own data sets. The exper-
iments are implemented on Intel Xeon CPU E5-1603 @ 2.80 GHz
and 32 G RAM.

There are three groups of parameters in our framework: the
maximum distance between neighbouring points dmax for extract-
ing boundaries in Assigning labels module; the hyperparameters
{α, ρ, β,D} for Cluster and γ for Refine in Break and Splice mod-
ule and λ for registration. We set these three groups of parameters
empirically as follows in our experiments: dmax = 0.03; α = 1, ρ =
1, β = 3,D = 3; γ = 10−3 and λ = 10. In addition, these data sets
are filtered by down-sampling to compare the BCPD method and
tend to find the distribution and change of every point after regis-
tration. Its value is 0.002. At last, these data sets are without back-
ground since our non-rigid registration focuses on the deformed ob-
jects, and the background does not include the deformation. On the
other hand, it is to compare FB-Warp without any background.

We define large inter-frame motions as such that two frames are
separated by 20 frames at least, and the gap between objects usually
is large on Refs. [IZN*16, SBCI17], and RGB-D data sets created
by ourselves. We test our method against the BCPDmethod [Hir21]
and the FB-Warp [ZFA21] for separation and connection problems
with large inter-frame motion. We compare our algorithm and the
FB-Warp by quantitative evaluation. In terms of performance met-
rics, the accuracy of registration is measured by Root Mean Square
Error (RMSE), Similarity (AS) [AE18], Structural Similarity using
the colour-based feature (SSIM) [AE20] and the computation time
measures the efficiency of the algorithms. In these experiments, only
the point sets are used to register.

4.1. Non-rigid registration

We choose data sets with dynamic scene topology changes to evalu-
ate our algorithm on large inter-frame motions. A boxing sequence
in [IZN*16] as shown in Figure 7 and sequences of Hat and Alex
in Ref. [SBCI17] as shown in Figures 9 and 11 are selected because
these public data sets include both separations of two objects and
deformations. In addition, we created RGB-D data sets achieved by
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Figure 7: The results of Boxing data: (a) and (c) are colour images. (b) and (d) are their corresponding point sets. The second row shows the
result of registration from source points to target points, and the blue areas show the main differences: (e) uses the method of FB-Warp, (f)
uses the method of BCPD without Break and Splice and (g) is our algorithm.

Figure 8: The results of connection registration on Boxing data and the source point set and target point set in Figure 7 are exchanged
(Figure 7d as the source point set): (a) use the method of FB-Warp, (b) uses the method of BCPD without Break and Splice and (c) is our
algorithm.

Kinect v2 as shown in Figures 13 and 15 to demonstrate a rigid
bunny separated from a table surface and scenes that consists of the
separation of a deformed soft pillow from a table surface. Finally,
we experiment with the connection (shown in Figure 16) on the pil-
low data set.

Figure 7 shows the results of boxing, and source points (frame 95)
and target points (frame 130) are obtained by down-sampling with-
out any background. Significantly, body deformation also occurs in
addition to the separation. The second row of Figure 7 shows the
comparison of registration results. It can be seen that BCPD and
FB-Warp are unable to handle registration with the separation, as
shown in the final results containing points between the fist and the
face (green points). However, ourmethod can effectively register the
source and the target points. Similarly, the results of Alex sequences
(Figure 9) and Hat data sets (Figure 11) show that our Break and
Splice framework can achieve a better result than others.

In addition, to experiment with the connection, we exchange the
source point set and target point set, and the results are shown in
Figure 8 (Boxing data), Figure 10 (Alex data) and Figure 12 (Hat
data). The green points in Figure 8a on the face only locate on edge.
Although the result of BCPD shows good registration, between the
fist and the face only show the target points (the black circle in Fig-
ure 8b) compared with ours. For the Alex and Hat data results, there
are a few points between the topology changes, but the distribution
is uniform in our results.

In order to demonstrate the effectiveness of our Break and Splice
framework in dealing with different scenes, we use an RGB-D
camera to create additional point cloud data sets and compare our
method with BCPD and FB-Warp on these data sets. We use a rigid
object (bunny, Figure 13) and a non-rigid object (pillow, Figure 15)
to conduct the experiment. Figure 13 shows that when the bunny is
placed far away from the table, we use this final state as target points
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Figure 9: The results of Alex data: (a) and (c) are colour images. (b) and (d) are their corresponding point sets. The second row shows the
results of registration from source points to target points, and the blue areas show the main differences: (e) uses the method of FB-Warp, (f)
uses the method of BCPD without Break and Splice and (g) is our algorithm.

Figure 10: The results of connection registration on Alex data and the source point set and target point set in Figure 9 are exchanged (Figure 9d
as the source point set): (a) uses the method of FB-Warp, (b) uses the method of BCPD without Break and Splice and (c) is our algorithm.

and its initial state as source points. Figure 13e shows that although
the result of FB-Warp contains no points between the bunny and
the table, many green points are distributed on the boundary of the
transformed bunny points. The BCPD have many green points be-
tween the bunny and the table, as shown in Figure 13f. The result of
our method shown in Figure 13g has well-distributed transformed
points without any points between the object and the table.

For the connection, Figure 13a is used as the target point set to
register. Our method can achieve a suitable result, especially for the
bunny. The result of FB-Warp shows most of the green points of the
bunny distribute the head of the bunny, and the result of BCPD fails
to register the bunny (in Figure 14b).

In the Pillow experiment (Figure 15), the data set simultaneously
includes significant deformation and separation. Our method pro-

duces a better result than that of FB-Warp and BCPD. In the FB-
Warp, the transformed points appear at the bottom of the pillow,
and some points remain between the pillow and the table. In Fig-
ure 15f, although the transformed points are well-distributed for a
pillow, it fails to handle the separation between the pillow and the
table. Whereas in Figure 15g, our Break and Splice can effectively
deal with combined deformation and separation events and yield a
significantly improved result.

In addition, we exchange the source point set and target point set
to experiment with connection and the results shown in Figure 16.
It can be seen that the BCPD and our method can achieve good reg-
istration with well-distributed green points, but the FB-Warp has a
few green points (transformed point set) on the bottom half of the
pillow.
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Figure 11: The results of Hat data: (a) and (c) are colour images. (b) and (d) are their corresponding point sets. The second row shows the
results of registration from source points to target points, and the blue areas show the main differences: (e) uses the method of FB-Warp, (f)
uses the method of BCPD without Break and Splice and (g) is our algorithm.

Figure 12: The results of connection registration on Hat data and the source point set and target point set in Figure 11 are exchanged
(Figure 11d as the source point set): (a) uses the method of FB-Warp, (b) uses the method of BCPD without Break and Splice and (c) is our
algorithm.

4.2. Quantitative evaluation

We evaluate the accuracy and the cost of computation of our non-
rigid registration framework using RMSE (Equation 8), AS (Equa-
tions 9–11) and SSIM (Equation 12) as measurement metrics tested
on two consecutive frames (Table 2) and large inter-frame motions
(Table 3) with topology changes. RMSE efficiently measures the
registration error. Since the ground truth of non-rigid registration is
the target point set, we use AS to compare the similarity between
the target point set and the transformed point set. If the value of AS
is closer to 1, the transformed point sets are the more similar target
point sets. The similarity of colour can also be an important metric
because the colour is not influenced by registration, and it is easy to
find the difference between transformed point sets and target point
sets. Table 1 shows the number of point sets during the experiment.

RMSD =
√∑N

i=1 (yi − xi)
2

N
(8)

Table 1: Number of point sets.

Alex Boxing Hat Bunny Pillow

Source point set 1264 2813 1683 2411 2244
Target point set 1294 2786 1731 2145 2504

where yi is transformed point sets, xi is a target point sets, N is the
number of target point sets.

sX,Y =

√√√√∑M
i=1

(
1− 2

π
∗ arccos

(∣∣∣ �nyi ·�nxi‖�nyi‖‖�nxi‖
∣∣∣))2

M
(9)

sY,X =

√√√√√∑N
j=1

(
1− 2

π
∗ arccos(

∣∣∣∣ �nyj ·�nxj∥∥∥�nyj
∥∥∥∥∥∥�nxj

∥∥∥
∣∣∣∣))

)2

N
(10)

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



B. Bao & H. Fu / EG Author Guidelines 11 of 19

Figure 13: The results of our data set with Bunny: (a) and (c) are colour images. (b) and (d) are their corresponding point sets. The second
row shows the results of registration from source points to target points, and the blue areas show the main differences: (e) uses the method of
FB-Warp, (f) uses the method of BCPD without Break and Splice and (g) is our algorithm.

Figure 14: The results of connection registration on Bunny data and the source point set and target point set in Figure 13 are exchanged
(Figure 13d as the source point set): (a) uses the method of FB-Warp, (b) uses the method of BCPD without Break and Splice and (c) is our
algorithm.

AS = min
{
sX,Y , sY,X

}
(11)

where Y is the transformed point sets, X is a target point sets, sX,Y is
the score of angular similarity with Y as the reference point set and
sY,X is the score of angular similarity with X as the reference point
set. vecnx and vecny are the normal of X and Y point sets, N and M
are the number of Y and X point sets.

SSIMpointcolour = 1

N

N∑
i=1

(
1− |FX (q)− FY (p)|

max{|FX (q)|, |FY (p)|} + ε

)
(12)

where Y is the transformed point sets, X is a target point sets, F
is the feature based on colour [AE20], each neighbourhood of Y is
associated with a neighbourhood ofX , by identifying for every point
p of Y its nearest point q in X . ε equals the machine rounding error
for floating point numbers, and N is the number of Y point sets.

As shown in Table 2, our method is more accurate than FB-Warp
and BCPD, and the average error is lower by about 60% than the

Table 2: Registration error (consecutive frames).

Alex Boxing Hat Bunny Pillow Overall

RMSE (FB-Warp) 0.0170 0.0037 0.0208 0.0089 0.0526 0.0206
RMSE (BCPD) 0.0131 0.0037 0.0135 0.0181 0.0214 0.0140
RMSE (Ours) 0.0110 0.0029 0.0092 0.0074 0.0083 0.0078
AS (FB-Warp) 0.9508 0.9923 0.9113 0.9836 0.9577 0.9591
AS (BCPD) 0.8924 0.9105 0.8250 0.8680 0.6965 0.8385
AS (Ours) 0.9820 0.9839 0.9940 0.9910 0.9964 0.9895
SSIM (FB-Warp) 0.6246 0.6711 0.5859 0.5922 0.5120 0.5971
SSIM (BCPD) 0.6091 0.5905 0.5626 0.5740 0.4991 0.5671
SSIM (Ours) 0.6557 0.6571 0.6605 0.6314 0.6360 0.6481

The best results in each category are in bold.

FB-Warp. The results of the AS and the SSIM show that the average
values of our method are higher by about 3.2 and 8.5%, respectively.
FB-Warp can achieve better results for the Boxing data since the
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Figure 15: The results of our data set with Pillow: (a) and (c) are colour images. (b) and (d) are their corresponding point sets. The second
row shows the results of registration from source points to target points, and the blue areas show the main differences: (e) uses the method of
FB-Warp, (f) uses the method of BCPD without Break and Splice and (g) is our algorithm.

Figure 16: The results of connection registration on pillow data and the source point set and target point set in Figure 15 are exchanged
(Figure 15d as the source point set): (a) uses the method of FB-Warp, (b) uses the method of BCPD without Break and Splice and (c) is our
algorithm.

deformation is slight between the adjacent frames. Our method can
achieve the best results on all data for the large inter-frame motions
(Table 3). At the same time, registration time is lower than FB-Warp,
as shown in Table 4 (Cmeans consecutive frames, and Lmeans large
inter-frame motions). In this table, the Partition times are the Break
and Splice, and the registration times are the total times of two parts
registration by BCPD.

4.3. Evaluation with Gaussian noise

In order to evaluate the robustness of the proposed method against
noise, we perform experiments with Gaussian noise in the source
points and target points, respectively. In this section, Figure 11b
is source points and Figure 11d is target points. For the first
test, we sample noise from Gaussian distribution for each point
in the source point cloud, where the mean and the standard de-
viation are mean(sourcepoints) and α ∗ std(sourcepoints) (α ∈

Table 3: Registration error (large inter-frame motions).

Alex Boxing Hat Bunny Pillow Overall

RMSE (FB-Warp) 0.7694 0.0626 0.8681 0.3337 0.3341 0.4736
RMSE (BCPD) 0.4151 0.1375 0.6034 0.1647 0.5427 0.3727
RMSE (Ours) 0.1506 0.0486 0.1752 0.0995 0.1464 0.1241
AS (FB-Warp) 0.7303 0.7711 0.8426 0.7932 0.7215 0.77174
AS (BCPD) 0.8142 0.8462 0.8374 0.7932 0.7605 0.8103
AS (Ours) 0.8377 0.8632 0.8611 0.8407 0.8443 0.8494
SSIM (FB-Warp) 0.4776 0.6277 0.6531 0.6148 0.5412 0.5829
SSIM (BCPD) 0.6071 0.6412 0.6210 0.6392 0.5910 0.6199
SSIM (Ours) 0.6136 0.6458 0.6689 0.6698 0.6249 0.6446

The best results in each category are in bold.

{0.002, 0.004, 0.006}). During testing, we compare FB-Warp and
BCPDwith noise in source data for each algorithm. Figure 17 shows
the results before registration, and Figure 18 shows the results of
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Figure 17: The source point set with noise and target point set without noise (SNT) are for different α, and figures from left to right are 0.002,
0.004 and 0.006.

Figure 18: The results of registration on Hat data with noise: (a) uses the method of FB-Warp, (b) uses the method of BCPD without Break
and Splice and (c) is our algorithm.

registration. Our method results better than FB-Warp and BCPD
when α is 0.002 and 0.004. FB-Warp performs the worst, with many
inaccurate points on the hat. However, when the α is 0.006, there are
many wrong points between hand and hat for all methods except for
Figure 20c STN result (source point set is original and target point
set is with Gaussian noise).

In addition, we sample noise in the target point cloud (Figure 19),
where the mean and the standard deviation are mean(target points)
and α ∗ std(target points) (α ∈ {0.002, 0.004, 0.006}). Figure 20
shows the results of registration. At last, the source and target points
are sampled Gaussian noise (Figure 21). Figure 22 shows the results
of registration. We get similar registration results, and our method
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Figure 19: The source point set without noise and target point set with noise (STN) are for different α, and figures from left to right are 0.002,
0.004 and 0.006.

Table 4: Registration time (s).

Alex Boxing Hat Bunny Pillow Overall

FB-Warp-C 50.2430 15.8930 53.7950 36.7800 76.4530 46.6328
FB-Warp-L 45.6756 12.8875 42.8859 25.8088 53.2297 36.0975
Ours-C 13.6605 18.3537 21.6762 14.1161 28.3915 19.2496
Ours-L 10.5121 15.0353 12.2921 12.1661 9.8807 11.9773
Partition-C 1.5958 4.8619 1.1519 0.0761 0.8829 1.7137
Partition-L 0.1990 4.0456 1.1071 1.1031 1.0238 1.4957
Registration-C 12.0647 13.4918 20.5243 14.0400 27.5086 17.5259
Registration-L 10.3131 10.9897 11.0590 11.1890 8.8569 10.4815

The best results in each category are in bold.

based on Break and Splice is robust to Gaussian noise to some de-
gree. At the same time, we also compute the RMSE to evaluate dif-
ferent methods, and the results show in Table 5. Our method can
lower errors in different situations.

4.4. Discussion

Ourmethodworks well, as expected, in dealingwith separations and
connections in dynamic scenes for point set registrations. Especially
in the separation event, our method achieves excellent results. Al-
though the BCPD handles the connection event (Figure 16b), it fails
to register the target point set (Figure 15f). In addition, our Break
and Splice framework achieves lower errors and fast computing
time. In addition, there are no available public data sets with var-
ious viewpoints and special topological changes. Thus, we experi-
ment with significant view changes. As shown in the following (Fig-
ures 23a and 23c are images, Figures 23b and 23d are point sets),

we have acquired two-point clouds by moving the camera about
45ºfrom left to right as a case of significant view change. We have
applied our method to this case, as shown in the result of labelled
source points in Figure 23e. Our method still works for large view
changes. This is because we always find a part of the source and tar-
get points set under a common coordinate system after merging the
two-point clouds by Cluster. Based on this part, we can find one of
the labels by Refine, and the rest of the point cloud repeats this pro-
cess (Cluster and Refine) until there is only one label in the merging
point cloud. Therefore, our method will not be a failure without the
initial alignment.

Meanwhile, our refinement is sensitive to the parameter γ . If
the value of the parameter γ is not desirable, the source point
will not be refined, which will cause fewer source points to be
matched with the target points at the final registration stage. How-
ever, BCPD, as an advanced non-rigid registration method, can han-
dle the registration with an inconsistent number of point clouds.
The unsatisfied result is that the dense and sparse distribution of
the transformed point cloud is different from that of the target point
cloud.

5. Conclusion

Wepresent a novel non-rigid point cloud registration framework that
handles separation and connection topology changes. The Break
and Splice framework allows clustering and refinement of point sets
to overcome distribution irregularities of the point sets, which can
improve the accuracy of non-rigid registration efficiently. Experi-
ment results have shown that our method aligns two-point sets with
these topology changes more effectively than the state-of-the-art ap-
proaches.

Table 5: Registration error with Gaussian noise.

SNT STN SNTN
FB-Warp BCPD Ours FB-Warp BCPD Ours FB-Warp BCPD Ours

0.002 0.1543 0.1358 0.0267 0.1546 0.1229 0.1344 0.1296 0.1261 0.0274
0.004 0.1395 0.1224 0.0325 0.1470 0.1268 0.1325 0.1334 0.1241 0.0339
0.006 0.1660 0.1292 0.0448 0.1494 0.1228 0.1202 0.1703 0.1269 0.0484

The best results in each category are in bold.
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Figure 20: The results of registration on Hat data with noise: (a) uses the method of FB-Warp, (b) uses the method of BCPD without Break
and Splice and (c) is our algorithm.

Figure 21: The source point set with noise and target point set with noise (SNTN) are for different α, and figures from left to right are 0.002,
0.004 and 0.006.

Currently, the framework does not take into account RGB infor-
mation. Thus, no texture information is included in the results. In
future work, we will focus on developing a method using RGB in-
formation to obtain rich textures. Another issue is that our approach
requires parts of the two-point clouds to be found in a common co-

ordinate system, which must include the parts of the source point
set and target point set simultaneously. If this condition is not met,
for example, in the case of large deformation, some large camera
movements may cause a failure on the label onto Y in Figure 2. Es-
pecially our method cannot handle more clusters or self-occlusion
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Figure 22: The results of registration on Hat data with noise: (a) uses the method of FB-Warp, (b) uses the method of BCPD without Break
and Splice and (c) is our algorithm.

Figure 23: The result of registration about the large view changes:
(a) and (c) are colour images. (b) and (d) are their corresponding
point sets. The second row shows the results of assigning labels in
source points (e) and registration from source points to target points
(f).

data due to getting inaccurate labels, which are based on 2D bound-
ary extraction. For example, Figure 24 shows a dragon behind the
bunny. When the bunny is separated from the table, it is difficult to

Figure 24: An example for the cluster. (a) is a source point set, and
(b) is a target point set that a bunny is separated from the table.

find the boundary of the bunny since the bunny and the leg of the
dragon will be regarded as an object. In the future, we will explore
a new framework to solve the large changes of the camera with the
deformation of the object and focus on the extraction of boundaries
for clusters or self-occlusion data.
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Appendix

Suppose P is a mixture of K Gaussian distributions (K is un-
known). For simplicity, we note pi as the ith point in P. c =
{c1, . . . cM+N}(ci ∈ {1, . . . ,K}) is the indicator variables, and ci = k
indicates that point pi is generated from the kth Gaussian distribu-

tion. πk is defined to represent the weight of the kth Gaussian com-
ponent, where πk ≥ 0, k = {1, . . .K}, and ∑K

k=1 πk = 1.

The Gaussian mixture model with K components may be written
as

p(pi|θ1, . . . , θK ) =
K∑
k=1

πkN (pi|μk, Sk ) (A.1)

where θk = {μk, Sk, πk} is the set of parameters for component k.μk

is the mean vector for kth Gaussian component, and Sk is its preci-
sion (inverse covariance matrix). We set the prior joint distribution
on the component parameters as normal-Wishart distribution.

The conditional posterior class probabilities derived by the
Dirichlet Process Gaussian Mixture Model (DPGMM) are

for the kth component with n−i,k > 0:

p(ci = k|c−i,μk, Sk, α)

∝ n−i,k
M + N − 1+ α

N (pi|μk,Sk ) (A.2)

for new Gaussian component:

p
(
ci 
= ci′ f or all i 
= i′|c−i, ξ, ρ, β,W, α

)
∝ α

M + N − 1+ α

×
∫

p(pi|μ, S)p(μ, S|ξ, ρ, β,W) dμ dS

∝ α

M + N − 1+ α
tβn−D+1

(
ξ∗,

W∗(ρn + 1)

ρn(βn − D+ 1)

)
(A.3)

where α is the concentration parameter of the Dirichlet Process, α >

0. ξ ∈ R
D, ρ, β, andW ∈ R

D×D are hyperparameters common to all
mixture components. nk is the occupation number, which indicates
the number of points assigned to the kth Gaussian component. −i
indicates all indices except for i, and n−i,k is the number of points,
excluding pi, that are associated with the kth Gaussian component. t
is the Student’s t-distribution with βn − D+ 1 degrees of freedom.

βn = β + nk (A.4)

ρn = ρ + nk (A.5)

ξ∗ = ρξ + ∑
i:ci=k pi

ρ + nk
(A.6)

W∗ = W + ρξξT +
∑
i:ci=k

pipTi − (ρ + nk )ξ∗ξT∗ (A.7)

Collapsed Gibbs Sampling method is used for the inference on the
model above. For a detailed sampling process, please refer to Neal
[Nea00] for a detailed sampling process. The DPGMM model can
be expressed as follows. The maximum conditional posterior class
probability determines the clustering to which each point belongs.

pi|ci ∼ N (
μci ,Sci

)
(A.8)

ci|π ∼ Please) (A.9)
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π|α ∼ Dir
( α

K
, . . . ,

α

K

)
(A.10)

(μk|Sk, ξ, ρ ) ∼ N (
ξ, (ρSk )−1

)
(A.11)

(Sk|β,W) ∼ W (β,W) (A.12)

(μk, Sk ) ∼ NW (ξ, ρ, β,W) (A.13)

(n1, . . . nK ) ∼ Multi(π1, . . . , πK ) (A.14)

where α is the concentration parameter of the Dirichlet process,
α > 0. ξ ∈ R

D, ρ, β and W ∈ R
D×D are hyperparameters common

to all mixture components. nk is the occupation number, which indi-
cates the number of points assigned to the kth Gaussian component.
Cat is theCategorical distribution.Dir andMulti representDirichlet
distribution and Multinomial distribution, respectively.
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