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Abstract

Lightweight material capture methods require a material prior, defining the subspace of plausible textures within the large
space of unconstrained texel grids. Previous work has either used deep neural networks (trained on large synthetic material
datasets) or procedural node graphs (constructed by expert artists) as such priors. In this paper, we propose a semi-procedural
differentiable material prior that represents materials as a set of (typically procedural) grayscale noises and patterns that are
processed by a sequence of lightweight learnable convolutional filter operations. We demonstrate that the restricted structure
of this architecture acts as an inductive bias on the space of material appearances, allowing us to optimize the weights of the
convolutions per-material, with no need for pre-training on a large dataset. Combined with a differentiable rendering step and
a perceptual loss, we enable single-image tileable material capture comparable with state of the art. Our approach does not
target the pixel-perfect recovery of the material, but rather uses noises and patterns as input to match the target appearance. To
achieve this, it does not require complex procedural graphs, and has a much lower complexity, computational cost and storage
cost. We also enable control over the results, through changing the provided patterns and using guide maps to push the material
properties towards a user-driven objective.
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1. Introduction erator nodes that produce initial grayscale noises and patterns, and
a set of filter nodes that process the noise/patterns to produce mate-
rial parameter textures. These graphs produces realistic results and
allow for interactive editing and control over the generated material
textures. Recent work has proposed methods to estimate procedural
graph parameters from photos either by direct neural network-based
parameter prediction [HDR19] or by mapping procedural graphs
to differentiable programs that can be optimized to match the in-
put photos [SLH*20]. These methods produce results that are high-
quality, resolution independent and editable (by editing the graph
parameters). However, the requirement of complex node graphs
(which need to be manually designed by expert artists using pro-
fessional software) as priors to guide the optimization is limiting.

Re-constructing spatially varying surface reflectance from a sin-
gle image is an under-constrained problem that requires appropri-
ate materials priors to be solved properly. Recent work on ma-
terial capture has demonstrated the use of deep neural networks
to learn such priors by either directly training convolutional neu-
ral networks (CNNs) to regress material properties from images
[DAD*18, LSC18, ZK21] or by learning generative material mod-
els that can be used in an inverse rendering optimization scheme,
such as in the Material GAN approach [GSH*20]. While these pri-
ors are quite useful, the re-constructed materials are often limited
in terms of their quality, resolution and editability, and they require
training over large datasets of synthetic materials (since real mate-
rial datasets are not easily available). We instead design a high-quality material prior which can be used
to optimize for high-quality, tileable, resolution-independent and
editable materials without the need for node graphs and/or large ma-
terial datasets.

In contrast to such image-based material priors, recent work has
demonstrated the use of procedural priors for materials [SLH*20,
HDR19]. Procedural material graphs are composed of a set of gen-
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Figure 1: We introduce a lightweight material capture method based on a semi-procedural material prior. Constructing our prior only requires
choosing the initial patterns (left), which is a significantly easier task than designing a full procedural node graph for a material, as required
by existing work [SLH*20]. These patterns are processed by a convolutional architecture inspired by procedural node graphs. We can optimize
these weights to match target photographs of material samples (e.g., taken by a cell phone with flash). Note the closely matching appearance
achieved for this wood example: our result even shows knots in the wood pattern, despite the initial grayscale maps having no knot-like
features. Our method produces high-quality tileable results, and does not require graph structures, expert artists, nor training on large datasets

of example materials.

We note a common workflow in procedural material modelling:
initial noises and patterns are processed by image filtering opera-
tions to synthesize the final texture maps. This inspires our proposed
approach: we take a set of initial noises (unstructured grayscale
maps) and patterns (structured grayscale maps), and process them
using a sequence of filters with learnable coefficients to produce the
output material textures. Our model is similar to CNNs operating on
a fixed resolution and with specific restrictions on the convolution
shapes. Unlike previous learning-based methods that train these net-
works on large datasets [GSH*20], and similar to procedural mate-
rial estimation methods that do test-time optimization of procedural
graph parameters [SLH*20], we optimize the filter/network param-
eters per material. We call this approach ‘semi-procedural’ since we
start from (typically procedural) initial noises and patterns, but do
not require the full topology of a procedural node graph.

We observe that many nodes used in typical procedural graphs
(low and high pass filters, colour operations, etc.) can be exactly
or approximately expressed as one of two convolution operations
common in CNNs: first, a 1 x 1 convolution, which simply re-
combines input into output channels using per-pixel linear combi-
nations (plus bias), and second, depth-wise (per-channel) k x k con-
volution, which applies a spatial filter to each input channel with no
cross-channel communication (we use k = 5). These special con-
volutions lead to comparable inverse rendering results as general
convolutional layers but with fewer optimizable weights, reducing
storage of the model and providing additional regularization.

We find that the inductive bias of a network composed of these
special types of layers, together with a set of initial noises, is a good
material prior that does not require training on a large dataset, nor
finding a suitable node graph for each material. The reason is that
the operations are largely local and their expressive power is cho-
sen to approximately capture the power of typical image processing
operations in procedural node graphs. Thus, the weights of our ar-
chitecture can be overfitted to specific samples; the prior is defined

by the choice of initial noises/patterns and the inductive bias of the
architecture, not by the weights.

Our design is related to previous work on deep image priors,
which has shown that the structure of CNNs alone is a viable image
prior [UVL18]. However, such a prior would be too weak for our
application, as it is not specific to material textures in any way. In
our inverse rendering framework, this results in basic stationary tex-
tures with no features larger than a few pixels, and is not capable of
producing more global features common in tiles, wood, and many
other examples; our initial patterns are critical in achieving such
features. Our inductive prior limits the possible operations to a few
limited convolution layers applied at fixed resolution starting from
a chosen set of patterns/noises. This is an intentionally restricted
architecture, which may initially seem like a limitation; however,
this reduced generative power leads to a narrower (stronger) prior
on plausible material appearance, in contrast to the broader Materi-
alGAN and even broader deep image prior.

Our semi-procedural prior reduces the complex task of construct-
ing a full procedural node graph to a much easier task of choosing
a few initial noises and patterns (for stochastic materials, the noises
can even be chosen at random). Our approach retains several of the
advantages of procedural approaches, such as the effectiveness of
inverse optimization and tileability. We also maintain a high degree
of editability with the possibility to vary the input patterns. On the
other hand, our method is specific to the inverse setting (fitting tar-
get photographs) and it is not designed to be a forward generative
model for materials.

Our proposed material prior is combined with a differentiable ren-
dering layer and a perceptual loss to build an end-to-end inverse
material rendering pipeline. Similar to many SVBRDFs estimation
methods [DAD*18, LSC18, DAD*19, GLD*19, GSH*20, GLT*21,
ZK21], our target image is a photo of a planar surface lit by a collo-
cated flash; however, this configuration is orthogonal to our method,
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and other lighting and viewing conditions can be used, simply by
modifying the rendering layer.

We demonstrate that our inverse material estimation pipeline
is able to produce tileable, high-resolution and high-quality re-
sults (see Figure 1) comparable to the state-of-the-art approach
[SLH*20], despite not requiring pre-existing node graphs nor train-
ing on large material datasets. Moreover, we provide ways to edit the
results. We summarize our paper and its contributions as follows:

* We propose a semi-procedural material prior that maps procedu-
ral input patterns/noises to material maps using layers of learnable
1 x 1 and depth-wise convolutions.

» Using this prior, we demonstrate inverse material estimation re-
sults comparable or better than state-of-the-art approaches with
significantly less data requirements, code complexity, computa-
tional cost and memory requirements (under 1.5K parameters, or
under 6 KB).

* We demonstrate additional editing capabilities by changing initial
maps or providing guide maps.

2. Related Work
2.1. Material representation

Spatially varying materials are traditionally represented as a set of
material parameter maps, where each pixel represents parameters
for analytical shading models such as GGX or Phong [WMLTO7,
Pho75]. This representation is practical because it is compact, but
lacks editability as parameters are stored independently per pixel.
There is no simple way to create such material parameter maps
from scratch. To tackle this challenge, the graphics industry turned
to procedural representations of materials, enabling editable mate-
rial content creation. Different procedural models exist in the indus-
try [Ado22a] and research literature [GHYZ20, HHD*22]; however,
the creation of realistic editable procedural materials remains a chal-
lenge and relies typically on node graphs with complex topology.
Recently, neural material representations were proposed [KMX*21,
RIGW19, RGJW20, SRRW21], allowing to encode the shading
model itself in neural networks and query a reflectance given a light
and view direction; this is orthogonal to our goal of representing
and capturing the spatial variation of material parameters. In this
work, we propose a material representation which relies on the re-
combining initial noises and patterns (picked from a pool or proce-
durally generated) and a limited set of neural layers and operations,
building a prior on the space of plausible materials obtainable from
the initial noises and patterns.

2.2. Material acquisition

Material acquisition has been an active research area for
decades [GGG*16], and recent work has been focusing on
lightweight acquisition, typically using deep learning for re-
construction. Different approaches were proposed to capture ma-
terial from a single [DAD*18, GLT*21, LSC18, ZK21, MRR*22,
VPS21], multiple [DAD*19, GLD*19, GSH*20, HHG*22] pho-
tographs or a video [YDPG21]. These methods focus on the re-
covery of parameters maps per pixel and do not allow for much
post-acquisition control. With our method, we propose to train a
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specialized material prior, powered by a carefully chosen set of op-
erations, allowing to better constrain single image re-construction
and avoid typical artefacts such as burned-in specular highlights.
Recently Henzler et al. [HDMR21] proposed to use a U-net like
architecture to re-shape noise into material parameters given a sin-
gle flash picture. In contrast to our work, their neural architecture
is heavier and their approach is limited to stationary materials as
they rely on noise and purely statistical metrics, losing any non-
local spatial arrangement of the original image, as they do not use
input patterns.

2.3. Material control

Naive control over analytical SVBRDF maps requires an artist to
edit the parameters of each maps individually, using image editing
tools. To facilitate this process, different methods were proposed to
decompose SVBRDF in different components, easier to individu-
ally edit [LBAD*06, LL11]. More recently, learning-based meth-
ods were proposed to transfer material properties [DDB20, RPG22,
FR22] or interpolate and re-sample them [HDMR21]. Our method
allows to edit the input noises and patterns, as well as provide guide
maps to constrain the optimization result, providing control over the
generated material structure (see Figure 10).

2.4. Procedural material modelling

As mentioned, procedural materials representations maintain con-
trollability for users; however, their creation requires significant ex-
pertise. To simplify their use, Hu ef al. [HDR19] proposed to train a
neural network to map photos of material samples to parameter vec-
tors of a procedural node graph. Later, Guo ef al. [GHYZ20], Shi
et al. [SLH*20] and Hu et al. [HGH*22] used differentiable proce-
dural material definitions (in the form of hand-written programs or
node graphs, respectively) to optimize parameters to match a user-
provided photograph. To alleviate the need for a pre-existing pro-
cedural material database, Hu er al. [HHD*22] proposed a semi-
automatic pipeline which, given a set of material maps and their
segmentation, generates a simple material graph reproducing its ap-
pearance. However, it requires already having a material (and its
segmentation) to proceduralize, and is not a material capture method
per se. As opposed to previous work, we do not require a full pro-
cedural node graph; we instead use a compact convolutional neural
architecture which starts with a few chosen noises and patterns, and
combines and processes them to reproduce a target photograph.

3. Method

Our goal is to design a differentiable material prior defining a sub-
space of plausible material textures. Specifically, this prior takes the
form of a function M, that maps a set of initial patterns and noises
into material texture maps. The function is defined by a neural ar-
chitecture parameterized by weights 6, fitted per material. Thus,
M, functions as a deep texture prior, additionally limited to tex-
tures obtainable from the initial patterns/noises using a small num-
ber of restricted convolutions. Because M, is differentiable with
respect to its weights 6, we can use a differentiable renderer and
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Figure 2: Examples of initial patterns (left) and noises (right). Pat-
terns are structured grayscale maps that are chosen by the user
based on the material category and content; noises are general
grayscale spatial variations that help adding detail to the material,
and can often be chosen at random.

back-propagation to optimize the weights to match a given target
photo of a real-world material.

In practice, our pipeline takes a series of noises 7 and patterns p
as input and outputs material parameter maps (for example, but not
limited to, the albedo map a, height map & and roughness map r.
While we could also directly infer normals, inferring height instead
of normal leads to more plausible maps and optionally enables dis-
placement [SLH*20, HHD*22, HDMR21]):

(a,h,r) = My(n,p). ¢y

All initial noises and patterns are grayscale images of equal size
(typically but not necessarily square); see Figure 2. The output maps
are of the same size, and are typically grayscale or RGB (albedo).

To design the architecture for M, we first observe the node types
used in a typical procedural node graph, such as procedural graphs
built using Adobe Substance Designer [Ado22a]. Generator nodes
produce initial grayscale maps that are similar to our noises and pat-
terns. These are combined and adjusted by filter nodes, which im-
plement basic image processing operations: blending, blur, sharpen,
channel shuffle, per-pixel curves, directional blur, spatial offsets, ro-
tations or warps etc. Typically, all intermediate and final maps are
of the same resolution. The common image processing operations
can be classified into three types.

 Per-pixel linear or non-linear operations on multiple channels.
* Spatial convolutions within each channel.

X. Zhou et al. / A Semi-Procedural Convolutional Material Prior
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Figure 3: Our architecture. Initial noise and pattern maps are pro-
cessed alternatingly by pixconv and channelconv layers, resulting
in material parameter maps (albedo, height, roughness) that are
turned by a differentiable rendering operator into a material image
lit by flash illumination. This rendered image is optimized to match
a target image using a perceptual loss. Backpropagation updates
the parameters of the pixconv and channelconv layers, minimizing
the difference between the rendered image and the target.

» Spatial transformations, such as translation, scaling, rotation and
warping.

Inspired by these operation types, our material prior is designed as
a special kind of CNN that uses two types of intermediate layers:

* PIXCONV: 1 x 1 convolution layers, which compute per-pixel lin-
ear combinations of channels plus bias, and

* CHANNELCONV: k x k per-channel convolution layers, with no
channel cross-talk.

All convolutional layers preserve the input size, so the entire archi-
tecture operates at a fixed resolution. All CHANNELCONV convolu-
tions use circular padding, so that tileable (periodic) inputs always
lead to tileable outputs. We have experimented with using spatial
transformation layers as well, but found that the above two convo-
lution types are already sufficient for a large number of materials.

Our architecture consists of three PIXCONV layers interleaved with
two CHANNELCONV layers (Figure 3). The LeakyReLU function is
used in between all layers. The last layer uses a sigmoid function
to map the output values into a desired range. In our results, we
use 16 channels for all internal layers. The starting channel count is
given by the number of desired initial noises and patterns, and the
final channel count is 5 when using albedo, roughness and height as
the output maps. For CHANNELCONYV layers, we use a kernel size of
5x5.

These design decisions enable us to reproduce most of the im-
age processing power of typical procedural node graphs, but using
a compact differentiable neural architecture with a very small num-
ber of parameters and with lower risk of overfitting to a target image
than with more powerful networks.

3.1. Matching target images

Given a target image I* (not necessarily tileable), our goal is to pro-
duce high-quality tileable SVBRDF maps, which can be re-rendered
into an image / with a similar style as /*. This requires combining
our prior with a differentiable rendering layer and a perceptual loss
to capture the style of the target image. Therefore, we use a dif-
ferentiable direct illumination renderer to render an image under
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Figure 4: Single-image material capture (inverse rendering) examples. For each triple, we demonstrate the input noises/patterns, our cor-
responding optimized result and relighting results given the target photo. Note the close match in appearance achieved by our method, even
given input patterns that are very simple and do not explicitly contain some of the appearance features found in the resulting materials.

flash lighting. More specifically, we convert the height map into a
normal map using central finite differences (where height scaling is
itself an optimizable parameter), use the albedo map as a Lamber-
tian term, and compute the specular component using the roughness
map and a standard microfacet BRDF with the GGX normal dis-
tribution [WMLTO07]. We assume a dielectric Schlick Fresnel term
with a typical index of refraction 1.5; other Fresnel terms or specu-
lar/metallic maps could be added trivially. The rendered image [ is
computed as

I = Ren(a,h,r) = Ren(My(p, n)), 2)

where Ren is the differentiable rendering operation, following the
BRDF model described earlier. To capture the style of target image,
we use the style loss based on Gram matrices of VGG features as
proposed by Gatys et al. [GEB15, GEB16] instead of a per-pixel
loss; this loss has been used for procedural material capture be-
fore [GHYZ20, SLH*20]. Additionally, we use an L, loss between
downsampled images to match colour and highlight shape better. So
our full optimization loss is defined as

Lt = M1 To() — To)) N + Aol — I (3)

‘We minimize Ly, over 6 by gradient descent optimization. (In prac-
tice, we also optimize height scaling and light intensity as additional

scalar parameters.) Here 7;; represents concatenated Gram matrices
of five deep feature layers (after each pooling operation) of the pre-
trained VGG19 network [SZ15]. I; and I represent downsampled
d x dresolution images, where we set d to 16 or 32; adding the don-
wsampled L1 difference to the loss helps matching low-frequency
features like colour and highlight shape, while avoiding match-
ing high-frequency features like the exact locations of scratches or
bumps. The weights A; and A, are set to 1.0 and 0.1, respectively.

3.2. Patterns and noises

As discussed, we classify the initial grayscale maps into patterns p
and noises n. Our noise pool contains around 200 noises that are
widely used in Substance Source [Ado22b] graphs across material
classes. The pattern pool contains more structured maps that are
widely used in specific material classes. Here we consider six ma-
terial classes: wood, leather, stone, metal, tiles and fabric. We build
this pattern pool using 88 Substance graphs from the above material
classes. In our results, we typically use three initial noises and two
initial patterns for most classes; for tiles, we use three initial noises
and one initial tile pattern. The input noises are typically selected
randomly from our noise pool, while the patterns are chosen by the
user. Note that all the noises and patterns are tileable, and that our
architecture is designed to preserve this tileability in all generated
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Figure 5: More material capture examples, including both stochastic and structured materials, also showing the resulting material maps.
Note that the maps are artefact-free, tileable and directly usable in 3D content creation pipelines. The corresponding initial noises/patterns
are in the supplementary materials.

material maps. Moreover, all noises and patterns can be constructed 3.3. Implementation details and performance
at arbitrary resolutions and can be described by a small number of
parameters and random seeds. We will release our pattern and noise
pool upon publication.

We implement our approach in PyTorch, including the rendering op-
erator. To implement the CHANNELCONYV operation, we use the group
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convolution operation in PyTorch, setting the number of groups to
the number of channels (16).

We use the Xavier approach [GB10] to initialize our network and
do not require any form of pre-training. For optimization, we use
the Adam optimizer [KB14] with an initial learning rate of 0.005.
The internal hyper-parameters of Adam are kept at their defaults in
PyTorch. For fine-tuning network during editing, we keep the same
optimizer settings. We typically perform 2000 iterations for opti-
mization and 50 iterations for editing. Optimization takes around 2—
3 min and editing takes less than 5 s on single Nvidia 2080 Ti GPU.
Our method requires 2GB of GPU memory and takes around 2 min
for 2k optimization steps; using Shi et al. [SLH*20]’s method, the
memory and runtime depend on the complexity of the input graphs.
Our observation shows that on average Shi ef al.’s method takes
4~6GB and 10~20 min for 1k optimization steps. Both were tested
on a single RTX2080 Ti.

3.4. Editing

Note that our goal is to propose a compact alternative to complex
procedural node graphs. Our proposed architecture achieves high-
quality tileable SVBRDFs comparable to procedural graphs; how-
ever, procedurals also enable the user to perform flexible and inter-
active editing. For example, in Substance graphs, artists can control
the appearance of the generated material maps either by changing
the input generators or tweaking the parameters of different graph
nodes. We propose similar editing operations for our framework:
We would like to control the estimated material maps by changing
the initial maps or performing fine-tuning on the optimized network
given a guide map provided by the user.

Changing input noises. In procedural modelling, one common
way to control generated material maps is to control the initial
pattern generators. This approach maps directly into our pipeline.
The intuition is that after our convolutional architecture is opti-
mized to represent a target image, a user can simply edit the input
pattern/noises (by slightly adjusting them or completely changing
them), resulting in another plausible material.

However, our observation shows that only changing the initial
maps, with no change to the weights 0, can cause some artefacts.
Therefore, we propose to perform a small number of fine-tuning
steps on the optimized weights under the new noises and patterns.
Our experiments show that this fine-tune process usually takes less
than 50 gradient descent steps (compared to about 2000 when start-
ing from scratch), which enables users to edit the initial maps
quickly and conveniently.

Guide map. Apart from changing initial patterns and noises, in the
classic procedural graph pipeline, users can play with the parameters
of graph nodes to adjust the different image processing operations,
which further control the resulting material maps. In our pipeline,
no precisely analogous operation exists, but we propose an opera-
tion with a similar editing power. Specifically, a user can provide
a guide map (for example, an albedo map or roughness map), and
these guide maps can be used as a constraint to guide optimization
to a different desired result. For example, given that users provide a

Origin Tiled Origin Tiled

Figure 6: Demonstration of tileability. We tile our resulting mate-
rial maps 2 x 2 to show that our results are seamlessly tileable.

guided albedo map a,, the loss used to fine-tune the system can be
written as

Legit = L + A To(@) — To(ap) |, 4

where X, represents the magnitude of the editing term. We use A, =
100 to ensure that the guide is closely followed. Similarly, we can
design losses for other material maps as well. Our experiments show
that this fine-tuning takes a small number of steps and lets a user
apply a wide range of edits to the resulting material maps.

4. Results

In this section, we first show a number of results of applying our
semi-procedural prior to inverse rendering (single-image material
capture). Next, we demonstrate editing capabilities, comparisons
with other material capture approaches and demonstrate resolution
invariance. For all stochastic material results, we randomly select
the input noises. For more structured materials, we roughly pick a
matching pattern, but show in Figure 12 that our approach can still
perform well with loosely corresponding patterns.

4.1. Inverse rendering

In Figure 4, we show material capture results for a number of mate-
rials across multiple categories, both stochastic and structured (pro-
vided a similar structure is provided in the input patterns): leather,
wood, brick, fabric, wall paint, concrete. In each example, we show
the initial noise/pattern images (left), the resulting re-rendered ma-
terial (middle) and the target photo (right). In Figure 5, we show fur-
ther examples, including the resulting material maps (albedo, rough-
ness and normal; we convert height to normal for visualization, to
facilitate comparison to most previous works which generate normal
maps. These results show that our approach is capable of produc-
ing high-quality, visually plausible results covering many different
material classes. Note that the resulting material maps are free of
artefacts, and never burn in specular highlights or light falloff. Our
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8 of 14 X. Zhou et al. / A Semi-Procedural Convolutional Material Prior

Target photo

Specular Output Novel lighting

Normal Albedo Roughness

Output Novel lighting

Normal Albedo Roughness Specular

Deschaintre
etal. 2018

Guo Zhou
et al. 2020 etal. 2021

Ours

Target photo

Guo Zhou Deschaintre
et al. 2020 etal. 2021 etal. 2018

4
S
o

Figure 7: Comparison with other per-pixel single image SVBRDF estimation approaches. We compare our approach with Refs. [DAD*18,
ZK21, GSH*20]. Other single image SVBRDF estimation approaches have strong highlight burn-in onto material maps, but the estimated
material maps of our approach are consistent and do not show artefacts. Note that the albedo brightness can be inconsistent between methods
because albedo and light intensity have an inherent ambiguity. This issue could be easily resolved by calibration with a target of known
reflectance, and is orthogonal to all methods tested.

match the input image directly. As is shown in Figure 7, our ap-
proach does not bake highlights into material maps, which is a com-
mon problem with other single-image SVBRDF approaches. Fur-
thermore, our maps are tileable and ready for use in a 3D content
creation system.

method always produces tileable results given tileable initial pat-
terns and noises, as is shown in Figure 6.

4.2. Comparison with other approaches

To compare our results with MATch [SLH*20], we directly use
the output material maps from their paper. Both our approach
and MATch produce high-quality results (Figure 8). However, our
method is more compact and computationally efficient than MATch.
We simply require the user to choose initial patterns and noises

We compare our approach with per-pixel single-image estimation
approaches [DAD*18, ZK21, GSH*20] as well as a previous pro-
cedural material capture approach [SLH*20]. We use the code pro-
vided by authors to generate the results of Refs. [DAD*18, ZK21].
For Material GAN [GSH*20], as discussed in this paper, we first op-

timize the latent and noise space to embed the results of Deschain-
tre et al. [DAD*19] for initialization, and then optimize further to

from a pool, which is substantially easier than constructing a com-
plete procedural node graph. Additionally, node graphs may not be
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Figure 8: Comparison with MATch [SLH*20] on real images with
ground truth pictures with a different lighting. We find that both
methods produce high-quality tileable material maps without over-
exposure artefacts. However, MATch requires a complete procedu-
ral node graph which can represent the material of interest, while
our approach requires only a few noises/patterns.

Table 1: Numerical Gram Matrix difference comparison with per-pixel sin-
gle image SVBRDF estimation approaches [DAD*18, ZK21, GSH*20] on 53
synthetic images and 51 captured real images (Reall) with ground truth; as
well as comparison with MATch [SLH*20] on 11 captured real images with
ground truth, which we know can be reproduced by procedural materials
(Real2). On synthetic data, the error is computed over comparable material
maps and on real data over rendered images. Our approach reaches state of
the art quality on synthetic data, without being trained on it and exceeds it
on real data while not requiring a pre-designed procedural material graph.
(The bold values represent the lowest values under each category)

Synthetic Reall Real2
Albedo Rendered Rendered Rendered
Des18 0.0133 0.0084 0.0108 -
Zhou21 0.0129 0.0056 0.0089 -
Guo20 0.0145 0.0078 0.0092 -
MATch - - - 0.0037
Ours 0.0137 0.0059 0.0055 0.0036

Input noises/patterns
3 ¥z Y 3

Upsample

Target Photo Optimized

Figure 9: Demonstration of higher resolution. Optimize: optimized
512 x 512 results given specific target image. Direct: directly ap-
plying the optimized network to high-resolution 1024 x 1024 ini-
tial maps. Upsample: we upsample the convolutional kernels of the
optimized network and use these with 1024 x 1024 initial maps.

available for all types of target photos, while our pool of patterns
and noises, together with our prior, can cover a potentially much
larger range of materials, and is easier to extend by simply adding
new patterns and noises.

We further analyse our results quantitatively in Table 1 and show
that despite not being trained on synthetic data to recover the mate-
rial per pixel, our results quality on synthetic data is on par with
previous work trained on synthetic data, and does better on real
data. We also quantitatively compare to MATch [SLH*20], confirm-
ing that we achieve similar quality, without requiring pre-designed
graphs. For real data, we use 51 real photographs to compare with
most methods (Reall) and a subset of 11 that have matching proce-
dural graphs, to compare to MATch (Real2).

4.3. Higher resolutions

We demonstrate that our results can be easily extended to higher res-
olutions than the target resolution used for optimization. As shown
in Figure 9, the model optimized at a 512 x 512 resolution can be
directly used with high resolution (1024 x 1024) initial maps; how-
ever, the output lacks high-frequency details (see third column).
This is because our 5 X 5 CHANNELCONV operations are adapted to
the original resolution. To adapt the model correctly to higher reso-
lutions, we upsample the convolutional kernels from 5 x 5t0 9 x 9
(or equivalently, double their radius from to 2 to 4) and then nor-
malize the sum of the original kernel weights to preserve energy. By
using this technique, we are able to generate high-resolution results
from low-resolution targets without losing high-frequency details.
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Target Photo
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EFEE

Edit Patterns

Edit Diffuse

Figure 10: Material editing. We show two types of edits. In rows
1-3, we show editing the initial patterns and noises. In rows 4-6,
we show editing results by providing different guide albedo maps.
All examples are generated by re-optimizing network for 50 steps.
The corresponding edited patterns are demonstrated in the supple-
mentary material.

L1 only Full Loss

Gram Loss only Target Photo

Figure 11: Effect of different losses. In this figure, we compare our
full loss with L1 loss and Gram loss alone. As shown, the L1 loss
alone misses high-frequency details, while the Gram loss alone fails
to capture the specular behaviour. By combining both losses, we
capture both specular behaviour and texture details.

X. Zhou et al. / A Semi-Procedural Convolutional Material Prior

Initial Initial

noises/patterns Optimized Target Photo noisesipatterns Optimized

Target Photo

Figure 12: Effect of input noises and patterns. We optimize our net-
work for a given target image with different input noises and pat-
terns. We see that even with different noises/patterns, our approach
is able to generate outputs that correctly match the target style. In
the highly structured tiles examples, we show input patterns which
significantly differ from the one in the target, yet our method still
matches the desired appearance.

4.4. Editing results

As discussed in Section 3, we perform editing by fine-tuning the
network given different input noises or guide maps. Our experi-
ments show that for most examples this re-optimization will con-
verge within 50 iterations (less than 5 s). Edits are illustrated in
Figure 10. Given different input noises, we can quickly obtain
the different material maps with the same appearance and dif-
ferent initial patterns; given an albedo guide map, we can also
change the appearance of material maps to match the guide map.
Our observation shows that this indirect editing strategy works
for most scenes. Limitations of this strategy are discussed in
Section 5.2
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Figure 13: Effect of number of input on the optimized results. Given target photos, we increase the number of input noises and patterns from 1
to 5 (4 for the tile example) and show the corresponding optimized results. As shown in the figure, as we add inputs signals, results show finer
details and become more visually pleasing. For a target with strong structured patterns (left-most example), we show the effect of different
input signals ordering. With only the structure input (top-left, first column), the optimized results are well-structured but lack realistic fine
details, and without only noise (top-left, third column), our approach focuses on the overall appearance, but cannot reproduce structured

patterns until a suitable signal is provided as input (5th row, 4th column).

5. Discussion

In this section, we add ablation studies, and discuss limitations and
future work of our approach. In the ablation studies, we analyse the
effects of different losses, network architectures and input noises.

5.1. Ablation study

Effect of different losses. We first analyse the effect of different
losses on our approach. More specifically, we compare our full loss
results with L1 loss only and Gram matrix loss only, as shown in
Figure 11. With only L1 loss, results are overall blurry and lack fine
details; with only Gram loss, results are sharp but fail to reproduce
the specular reflection. With our full loss, combining the downsam-
pled L1 loss and Gram loss, our results capture the style correctly
as well as reproduce the specular reflection.

Effect of different initial noises and patterns. We also analyse
the effect of different input noises and patterns. Given the same
target image, our neural network is optimized using different input

combinations as well as different number of inputs. In Figure 12, we
show all five input noises and their corresponding optimized results.
As shown, our approach is able to produce high-quality results that
matches the style of target images even though different input noises
are taken as input. In Figure 13, we show the effect of progressively
adding inputs. In the first wood example (left-most in the figure),
when only a structured pattern is fed as input, the optimized results
only follows this structure, without any fine details, which appear as
we add more inputs noises. Similarly, if only input noises are fed as
input, the results only simulate the style of target, losing structured
patterns, which is easily solved by providing a pattern (shown in the
3rd and 4th column). We empirically set the number of input as five
to keep enough fine details using small network. In practice, thanks
to the flexibility of our approach, users can select patterns from our
provided pattern pool or create any preferred patterns as input, using
any pattern generator [GAD*20, Ado22a, HHD*22].

Network architecture. We compare our proposed architecture
with PIXCONV layers only, as well as standard CNN convolution lay-
ers (Figure 14). With pixconv layer only, the output images are
the results of per-pixel operations only, without considering any
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PixConv Regular Conv Ours Target Photo

Figure 14: Effect of different network architectures. We compare
our architecture with using only pixconv layers and with standard
CNN operations. Our results are much closer to target than pix-
conv and comparable with standard convolution, while using sig-
nificantly fewer parameters.

spatial coherence, leading to unrealistic re-rendered images follow-
ing the initial maps too closely and lacking details. Compared with
a standard CNN with full convolutions, our proposed approach pro-
duces comparable results with significantly fewer training parame-
ters. With our current architecture, regular convolutions would have
10,437 training parameters, while our proposed model contains only
1258 training parameters. Combined with the fact that the initial in-
put patterns and noises are typically themselves procedural (and thus
described by at most tens of parameters), our method also provides
an extremely storage-efficient material representation.

5.2. Limitations and future work

Even though our approach is lightweight and can produce high-
quality materials, some limitations remain. As shown in Figure 15,
given strongly structured target photos, initial patterns that are not
chosen well for the target appearance will fail to capture its style.
Therefore, for these strongly structured target photos, users need to
manually provide initial patterns that are sufficiently close to the
target structure (even though pixel correspondence is not required).
Similarly, if multiple structured patterns are provided to represent
the same signal, the optimisation risks getting into a local minimum
that combines both patterns. Automatic initial pattern selection is
an interesting future direction.

Even though our method allows for several editing operations,
it still does not provide as direct control over some material prop-
erties as a native procedural model. Optimization with guide maps
may in some cases take longer to fine-tune or cause material map
entanglement issues as shown in Figure 16. An interesting future
solution could rely on a hypernetwork, capable of directly editing
our network’s weights to achieve direct and more accurate editing.

X. Zhou et al. / A Semi-Procedural Convolutional Material Prior

Initial

Output noises/patterns

Target photo

Figure 15: In strongly structured target images, using initial pat-
terns that are too distant from the target structure results in outputs
that do not match the desired appearance (first two lines). Further,
if multiple patterns matching a signal are provided as input, our op-
timisation may fail (third line). A better choice of initial patterns is
required to resolve this.

300 steps

Figure 16: Limitation: Given this guide albedo map, our method
takes more than 50 steps to converge and shows some entanglement
with the roughness being modified too.

Guided map 0 step 50 steps

Height

Our prior is not a generative model and is designed to be used
through inverse rendering. It would be interesting to extend our ap-
proach to a generative model in the future.

6. Conclusion

We present a differentiable semi-procedural material prior, defining
a set of plausible materials constructible from a set of initial pat-
terns and noises. We rely on a set of restricted convolution kernels
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to constrain the generative output space of our prior. We demon-
strate the use of this prior for single-image material capture, achiev-
ing state-of-the-art results previously achievable only when using
pre-existing procedural graphs as priors. The benefits of our ap-
proach include tileability, resolution independence and editability.
Our prior can handle non-stationary materials with larger features,
does not suffer from flash artefacts typical in per-pixel methods and
does not require pre-existing complex procedural materials, artistic
expertise, nor training on large datasets.
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