The European Association for Computer Graphics
44th Annual Conference

EUROGRAPHICS 2023
Saarbrücken, Germany
May 8 – 12, 2023

Organized by

EUROGRAPHICS
THE EUROPEAN ASSOCIATION
FOR COMPUTER GRAPHICS

Full Papers Chairs
Karol Myszkowski, MPI Informatics, Germany
Matthias Niessner, TU Munich, Germany

Conference Chair
Hans-Peter Seidel, MPI Informatics, Germany

Published by
The Eurographics Association and John Wiley & Sons Ltd.
in Computer Graphics forum, Volume 42 (2023), Issue 2
ISSN 1467-8659
Organizing Committee

STARs Chairs
Adrien Bousseau, INRIA, France
Christian Theobalt, MPI Informatics, Germany

Tutorials Chairs
Ana Serrano, University of Zaragoza, Spain
Philipp Slusallek, Saarland University and DFKI, Germany

Short Papers Chairs
Vahid Babaei, MPI Informatics, Germany
Melina Skouras, INRIA, France

Education Papers Chairs
Alejandra Magana, Purdue University, USA
Jiri Zara, Czech Technical University in Prague, Czechia

Posters Chairs
Gurprit Singh, Max Planck Institute for Informatics, Saarbrucken, Germany
Mengyu (Rachel) Chu, Peking University, Beijing, China
Preface

This issue of the Computer Graphics Forum contains the technical full papers program of the Eurographics Association 44th annual conference, held in Saarbrücken, Germany from May 8th-12th 2023. The Eurographics annual venue presents a unique opportunity to present outstanding technical contributions in computer graphics. The full papers selected for publication in the Computer Graphics Forum journal are arguably the most prestigious feature of the conference.

The technical paper selection process involved a group of 68 experts forming the International Program Committee (IPC). We invited experts without more than three consecutive years of participation in the IPC, so that the committee can be regularly renewed. We received a total of 111 full submissions. A sorting committee, consisting of the two Chairs and five advisory board members (Pierre Alliez, Theodore Kim, Sylvain Lefebvre, Belen Masia, Michael Wimmer), subsequently assigned each paper to two IPC members, as either primary or secondary reviewer, up to five papers, respecting to their preferences, expertise, conflicts, and automatically computed matching scores between IPC members and submitted papers. The primary and secondary reviewers in turn invite three additional tertiary reviewers on each submission.

After the initial five reviews per submission were collected, the authors had seven days to consult these reviews and write a 1000-word rebuttal, addressing key questions and potential misinterpretations. Two submissions were withdrawn by their authors who decided to forgo the rebuttal. Finally, all reviewers assigned to a paper read the rebuttal and all reviews and together reached an initial decision.

This year, we continued a tradition that began in 2012 and has since been continuously improved. Instead of holding an in-person IPC meeting, we opted for a one-week virtual asynchronous meeting. The IPC members engaged in off-line discussions via a bulletin board and other forms of personal communication, resulting in thorough deliberations about the papers and reviews, with other IPC members acting as additional readers when necessary. Each paper had a discussion board, and every IPC member contributed to the discussions that they felt qualified to participate in, resulting in extensive debates. Other IPC and advisory board members were acting as additional readers when necessary.

All papers conditionally accepted with minor revisions went through a short second review cycle, with evaluations from the primary reviewer, and sometimes the secondary reviewer, before being finally accepted. In the end, 34 papers out of the 111 full submissions were accepted with minor revisions for a 30.06 with major revisions to be considered for publication in a future issue of Computer Graphics Forum (CGF). In addition to the full papers submitted directly to Eurographics, the full paper program includes 12 papers to be presented from the CGF highlighting the synergy between Eurographics and CGF. This year we had papers on a diverse range of topics including machine learning, neural rendering, generative modeling, computational photography, geometry, meshes, appearance and shading, texture, rendering, 3D scans analysis, physical simulation, visualization, human animation and motion capture, simulation of clothes and crowds, editing, 3D printing, fabrication.

All accepted full papers are published as open-access Computer Graphics Journal papers. It is worth noting that for all submissions conflict-of-interest was managed on all levels, from reviewers, committee, advisory board, best paper committee, up to the chairs. The review process was double-blind and in case the original set of reviewers did not conclude with a decision, additional reviewers were invited to perform a full review and assist the decision process.

We extend our sincere gratitude to all those who contributed to making this possible. First and foremost, we are grateful to all the members of the IPC who dedicated a remarkable amount of their time to finding tertiaries, reviewing and discussing papers, and subsequently shepherded the accepted papers undergoing the minor revision cycle. We wish to thank all the reviewers, who provided 564 high-quality and thoughtful reviews and, of course, all the authors for their efforts in preparing and revising the submitted papers. We are especially grateful to Michael Wimmer who shared with us the insights from previous years and was indefatigable with his help and assistance. We would like to express strong appreciation to the advisory board for their support with paper sorting, help with emergency reviews, and their participation in the virtual IPC meeting. Lastly, we thank Stefanie Behnke from Eurographics Publishing for her remarkable support in managing SRM functionality and her responsiveness, which played a critical role in the successful paper selection process. As for the on-site conference in Saarbrücken, we were thrilled that a significant proportion of the computer graphics community could come together once more, fostering an environment that would inspire future computer graphics research.

We are very happy to present the full paper proceedings of Eurographics 2023. We believe that these papers reflect the extraordinary variety of computer graphics research and its best contributions. It was both an honor and a pleasure for us to lead this selection process and we hope that you will find both the papers and the entire conference thought-provoking and inspiring of your future endeavors.

Karol Myszkowski and Matthias Nießner
EG 23 Full Papers Co-Chairs
Full Papers Advisory Board

Alliez, Pierre
Inria Sophia Antipolis, France

Kim, Theodore
Yale University, USA

Lefebvre, Sylvain
Inria, France

Masia, Belen
Universidad de Zaragoza, Spain

Wimmer, Michael
TU Wien, Austria
International Programme Committee

Alexa, Marc
TU Berlin, Germany

Assarsson, Ulf
Chalmers University of Technology, Sweden

Attene, Marco
CNR-IMATI, Italy

Baecher, Moritz
Disney Research, Switzerland

Barbic, Jernej
University of Southern California, USA

Batty, Christopher
University of Waterloo, Canada

Bender, Jan
RWTH Aachen University, Germany

Bi, Sai
Adobe, USA

Berentzen, Jakob Andreas
Technical University of Denmark, Denmark

Castellani, Umberto
University of Verona, Italy

Chrysanthou, Yiorgos
University of Cyprus, Cyprus

Cignoni, Paolo
ISTI-CNR, Italy

Cohen-Or, Daniel
Tel Aviv University, Israel

Deschaintre, Valentin
Adobe Research, USA

Didyk, Piotr
University of Lugano, Switzerland

Digne, Julie
LIRIS-CNRS, France

Georgiev, Iliyan
Adobe Research, USA

Goesele, Michael
Facebook, USA

Guerin, Eric
LIRIS, France

Guthe, Michael
University of Bayreuth, Germany

Hachisuka, Toshiya
University of Waterloo, Canada

Hanika, Johannes
Karlsruhe Institute of Technology, Germany

Hanocka, Rana
University of Chicago, USA

Havran, Vlastimil
Czech Technical University in Prague, Czechia

Heide, Felix
Princeton University, USA

Hildebrandt, Klaus
TU Delft, The Netherlands

Holden, Daniel
Epic Games, USA

Huang, Jin
Zhejiang University, China

Huang, Jia-Bin
University of Maryland College Park, USA

Igarashi, Takeo
The University of Tokyo, Japan

Jarabo, Adrián
Meta Reality Labs Research, USA

Kaufman, Danny
Adobe Research, USA

Kautz, Jan
Nvidia, USA

Kellnhofer, Petr
TU Delft, The Netherlands
International Programme Committee

Khademi Kalantari, Nima
Texas A&M University, USA

Konaković Luković, Mina
MIT, USA

Kry, Paul
McGill University, Canada

Lensch, Hendrik
University of Tübingen, Germany

Levin, David
University of Toronto, Canada

Liu, Yebin
Tsinghua University, China

Memari, Pooran
CNRS, LIX, Ecole Polytechnique, France

Michels, Dominik
KAUST, Saudi Arabia

Paulin, Mathias
IRIT, Université de Toulouse, CNRS, UPS, France

Peng, Yifan (Evan)
University of Hong Kong, China

Pietroni, Nico
University of Technology Sydney, Australia

Poranne, Roi
ETH Zurich, Switzerland

Rhodin, Helge
University of British Columbia (UBC), Canada

Richardt, Christian
Meta Reality Labs, USA

Ritchie, Daniel
Brown University, USA

Ritschel, Tobias
University College London, UK

Rohmer, Damien
Ecole Polytechnique, France

Solomon, Justin
MIT, USA

Stamminger, Marc
Friedrich-Alexander-Universität, Erlangen-Nürnberg (FAU), Germany

Subr, Kartic
University of Edinburgh, UK

Sueda, Shinjiro
Texas A&M University, USA

Teschner, Matthias
University of Freiburg, Germany

Thiery, Jean-Marc
Adobe Research, USA

Thies, Justus
Max Planck Institute for Intelligent Systems, Germany

Tompkin, James
Brown University, USA

Tursun, Cara
University of Groningen, The Netherlands

Vaxman, Amir
University of Edinburgh, UK

Vilanova, Anna
Eindhoven University of Technology, The Netherlands

Wang, Wenping
University of Hong Kong, China

Wei, Li-Yi
Adobe Research, USA

Wu, Hongzhi
Zhejiang University, China

Xin, Tong
Microsoft Research Asia, China

Yeung, Sai-Kit
Hong Kong University of Science and Technology, China

Zachmann, Gabriel
University of Bremen, Germany
Reviewers

Aberman, Kfir
Ahmed, Abdalla
Aigerman, Noam
Aittala, Miika
Aliaga, Carlos
Aliaga, Daniel
Amenta, Annamaria
Andrews, Sheldon
Aristidou, Andreas
Averbuch-Elor, Hadar
Babaei, Vahid
Badki, Abhishek
Bagautdinov, Timur
Bailey, Stephen
Bako, Steve
Bar-Tal, Omer
Barthe, Loïc
Bemana, Mojtaba
Benard, Pierre
Benthin, Carsten
Berio, Daniel
Beskow, Jonas
Bessmeltsev, Mikhail
Bitterli, Benedikt
Bittner, Jiří
Bolkart, Timo
Bousseau, Adrien
Bradley, Derek
Bukenberger, Dennis
Cao, Chen
Carrara, Fabio
Casas, Dan
Ceylan, Duygu
Chen, Bin
Chentanez, Nuttapon
Chitalu, Floyd
Chu, Mengyu
Coeurjolly, David
Cosmo, Luca
da Silva, Vinicius
dalstein, Boris
Daviet, Gilles
Delanoy, Johanna
Demir, Ilke
Deng, Bailin
Doggett, Michael
Donati, Nicolas
Dong, Yue
Dong, Zhao
Dragicevic, Pierre

Du, Tao
Duchowsk, Andrew
Dyrby, Tim Bjørn
Ebner, Christoph
Ecornier-Nocca, Pierre
Eilertsen, Gabriel
Eismann, Elmar
Erleben, Kenny
Farshidian, Farbod
Fei, Raymond Yun
Feng, Tian
Filip, Jiri
Fish, Noa
Frisken, Sarah
Frisvad, Jeppe Revall
Froehlich, Bernd
Fu, Hongbo
Fu, Xiao-Ming
Gafni, Guy
Galerne, Bruno
Galin, Eric
Gao, Duan
Gao, Jun
Gao, Lin
Gao, Xifeng
Ghosh, Abhijeet
Gingold, Yotam
Ginosar, Shirly
Giorgi, Daniela
Golbabaee, Mohammad
Gong, Dong
Gröller, Eduard
Guay, Martin
Gumhold, Stefan
Günther, Tobias
Guo, Chuan
Guo, Jie
Gupta, Agrim
Ha, Sehoon
Habibie, Ikhsanul
Hadjwiger, Markus
He, Xiaowei
Heitz, Eric
Henzler, Philipp
Herholz, Sebastian
Hertz, Amir
Hofmann, Nikolai
Hua, Binh-Son
Huang, Weizhen
Huang, Yinghao

Iglesias-Guitian, Jose A.
Jaeger, Marc
James, Stuart
Jebe, Lars
Jiang, Caigui
Jiang, Chenfanfu
Jiang, Huaiyu
Jiang, Zhongshi
Jin, Xiaogang
Jindal, Akshay
Jing, Yongcheng
Ju, Tao
Kaloujanov, Javor
Kanamori, Yoshihiro
Kang, Dongho
Kazhdan, Misha
Kerbl, Bernhard
Kim, Jeeun
Kim, Min H.
Kim, Nam Hee
Kim, Vladimir
Kips, Robin
Klein, Reinhard
Klein, Vanessa
Koepke, Almut Sophia
Komura, Taku
Kozlikova, Barbora
Krone, Michael
Kucherenko, Taras
Kurt, Murat
Lee, Hsin-Ying
Li, Changjian
Li, Chenfeng
Li, Guohao
Li, Kun
Li, Peizhuo
Li, RuiLong
Li, Tzu-Mao
Li, Xiangtai
Li, Zhengqin
Lian, Zhouhui
Liao, Jing
Liktor, Gabor
Lin, Chieh Hubert
Lipp, Lukas
Liu, Chenxi
Liu, Hsueh-Ti Derek
Liu, Libin
Liu, Ligang
Liu, Tiantian
Liu, Yang	Qi, Xiaojuan	Vázquez, Pere-Pau
Livesu, Marco	Rasmuson, Sverker	Velinov, Zdravko
Lu, Fujun	Ren, Jing	Vining, Nicholas
Luvizon, Diogo	Romero, Cristian	Viola, Ivan
Macklin, Miles	Rushmeier, Holly	Vouga, Etienne
Mahdavi Amiri, Ali	Sahillioglu, Yusuf	Wald, Ingo
Mahmoud, Ahmed	Saito, Jun	Wan, Ziyu
Malomo, Luigi	Saito, Shansuke	Wang, Bolun
Mancinelli, Claudio	Sandor, Pedro	Wang, Can
Mantuik, Ralal	Schaub-Meyer, Simone	Wang, Miao
Manzi, Marco	Schmidt, Tanner	Weimin, Wang
Martin-Brualia, Ricardo	Schneider, Teseo	Weimann, Michael
Martínez, Jonás	Schroeder, Craig	Weller, Rene
Marton, Fabio	Schulz, Adriana	Westermann, Rüdiger
Meister, Daniel	Sellán, Silva	Wieschollek, Patrick
Metzler, Christopher	Sengupta, Soumyadip	Witkowski, Olaf
Meyer, Mark	Serrano, Ana	Wolper, Joshua
Meyer, Quirin	Sharp, Nicholas	Won, Jungdam
Michaeli, Tomer	Shen, I-Chao	Wu, Kui
Mironica, Ionut	Shih, YiChang	Xia, Mengqi
Mo, Zhipeng	Shinar, Tamar	Xie, Zhaoming
Morgenroth, Dieter	Shum, Hubert P. H.	Xu, Kun
Müller, Thomas	Sintorn, Erik	Xu, Xiangyu
Nader, Georges	Soler, Cyril	Xu, Zhan
Narain, Rahul	Song, Steven	Yan, Ling-Qi
Nauata, Nelson	Sorgente, Tommaso	Yang, Jiaolong
Nguyen, Cindy	Spielberg, Andrew	Yang, Lei
Nguyen, Duc Thanh	Starke, Sebastian	Yang, Yongliang
Nimier-David, Merlin	Stein, Oded	Ye, Yuting
Noh, Seung-Tak	Steinberger, Markus	Yi, Hongwei
Ohrhallinger, Stefan	Stückler, Jörg	Yi, Ran
Olivier, Pauline	Su, Wanchao	Yin, KangKang
Ornek, Evin Pinar	Sun, Qi	Yu, Wenhao
Otaduy, Miguel A.	Sykora, Daniel	Yuan, Ye
Öztireli, Cengiz	Takayama, Kensi	Yuchi, Hu
Pandey, Karran	Tang, Min	Yue, Yonghao
Panetta, Julian	Tang, Siyu	Zhang, Cecilia
Papaioannou, Georgios	Tarini, Marco	Zhang, Congyi
Paquette, Eric	Tewari, Ayush	Zhang, He
Paulsen, Rasmus	Thomaszewski, Bernhard	Zhang, Juyong
Peng, Sida	Thormählen, Thorsten	Zhang, Paul
Peters, Christoph	Thuerey, Nils	Zhang, Xiuming
Peytavie, Adrien	Tu, Peihan	Zhang, Yan
Pietroni, Nico	Uchida, Seiichi	Zhao, Danyong
Pirk, Sören	Umetani, Nobuyuki	Zhao, Shuang
Poulin, Pierre	Uy, Mikaela Angelina	Zheng, Zerong
Preim, Bernhard	van Kaick, Oliver	Zhou, Qingnan
Prusinkiewicz, Przemyslaw	Vanderhaeghe, David	Zhu, Yufeng
Puppo, Enrico	Vangorp, Peter	Zoss, Gaspard
Author Index

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliaga, Daniel</td>
<td>213</td>
</tr>
<tr>
<td>Aliari, Mohammad Amin</td>
<td>269</td>
</tr>
<tr>
<td>Ashtari, Amirsaman</td>
<td>385</td>
</tr>
<tr>
<td>Averbuch-Elor, Hadar</td>
<td>281</td>
</tr>
<tr>
<td>Azevedo, Vinicius C.</td>
<td>161</td>
</tr>
<tr>
<td>Barla, Pascal</td>
<td>411</td>
</tr>
<tr>
<td>Beauchamp, Andre</td>
<td>269</td>
</tr>
<tr>
<td>Beemana, Mojtaba</td>
<td>119</td>
</tr>
<tr>
<td>Benthin, Carsten</td>
<td>255</td>
</tr>
<tr>
<td>Bickel, Bernd</td>
<td>397</td>
</tr>
<tr>
<td>Bousseau, Adrien</td>
<td>427</td>
</tr>
<tr>
<td>Bénard, Pierre</td>
<td>411</td>
</tr>
<tr>
<td>Carr, Nathan</td>
<td>61</td>
</tr>
<tr>
<td>Casas, Dan</td>
<td>149</td>
</tr>
<tr>
<td>Cha, Sihun</td>
<td>385</td>
</tr>
<tr>
<td>Charrondière, Raphael</td>
<td>397</td>
</tr>
<tr>
<td>Chen, Eric Ming</td>
<td>281</td>
</tr>
<tr>
<td>Chen, Jiong</td>
<td>175</td>
</tr>
<tr>
<td>Chhatkuli, Ajad</td>
<td>77</td>
</tr>
<tr>
<td>Chiu, Yung-Chih</td>
<td>37</td>
</tr>
<tr>
<td>Cho, Kyungmin</td>
<td>13</td>
</tr>
<tr>
<td>Choi, Soojin</td>
<td>13</td>
</tr>
<tr>
<td>Chu, Hung-Kuo</td>
<td>37</td>
</tr>
<tr>
<td>Clegg, Alexander</td>
<td>25</td>
</tr>
<tr>
<td>Ço˘galan, Ugur</td>
<td>119</td>
</tr>
<tr>
<td>Cordonnier, Guillaume</td>
<td>427</td>
</tr>
<tr>
<td>Csébfalvi, Balázs</td>
<td>191</td>
</tr>
<tr>
<td>Dabral, Rishab</td>
<td>1</td>
</tr>
<tr>
<td>Desbrun, Mathieu</td>
<td>175</td>
</tr>
<tr>
<td>Dischler, Jean-Michel</td>
<td>347</td>
</tr>
<tr>
<td>Dittebrandt, Addis</td>
<td>255</td>
</tr>
<tr>
<td>Doyle, Michael J.</td>
<td>255</td>
</tr>
<tr>
<td>Duivigneau, Régis</td>
<td>427</td>
</tr>
<tr>
<td>Eisenmann, Elmar</td>
<td>51, 235</td>
</tr>
<tr>
<td>Evangelou, Iordanis</td>
<td>245</td>
</tr>
<tr>
<td>Even, Melvin</td>
<td>411</td>
</tr>
<tr>
<td>Fischer, Michael</td>
<td>201</td>
</tr>
<tr>
<td>Garces, Elena</td>
<td>149</td>
</tr>
<tr>
<td>Ghosh, Anindita</td>
<td>1</td>
</tr>
<tr>
<td>Gkaravelis, Anastasios</td>
<td>245</td>
</tr>
<tr>
<td>Golyanik, Vladislav</td>
<td>1, 371</td>
</tr>
<tr>
<td>Gool, Luc Van</td>
<td>77</td>
</tr>
<tr>
<td>Ha, Schoon</td>
<td>25</td>
</tr>
<tr>
<td>Habermann, Marc</td>
<td>371</td>
</tr>
<tr>
<td>Hafner, Christian</td>
<td>397</td>
</tr>
<tr>
<td>Han, JungHyun</td>
<td>225</td>
</tr>
<tr>
<td>Henderson, Paul</td>
<td>133</td>
</tr>
<tr>
<td>Hong, Seokpyo</td>
<td>13</td>
</tr>
<tr>
<td>Hsiao, Kai-Wen</td>
<td>37</td>
</tr>
<tr>
<td>Hu, Min-Chun</td>
<td>37</td>
</tr>
<tr>
<td>Ivanova, Daniela</td>
<td>133</td>
</tr>
<tr>
<td>Kalantari, Nima Khademi</td>
<td>359</td>
</tr>
<tr>
<td>Kanamori, Yoshihiro</td>
<td>293</td>
</tr>
<tr>
<td>Kang, HyunMo</td>
<td>225</td>
</tr>
<tr>
<td>Karčiauskas, Kestutis</td>
<td>321</td>
</tr>
<tr>
<td>Kee, Min Hyung</td>
<td>225</td>
</tr>
<tr>
<td>Khandelwal, Apoorv</td>
<td>281</td>
</tr>
<tr>
<td>Kheradmand, Shakiba</td>
<td>61</td>
</tr>
<tr>
<td>Kim, Byungsoo</td>
<td>161</td>
</tr>
<tr>
<td>Li, Chen</td>
<td>201</td>
</tr>
<tr>
<td>Liu, Mengya</td>
<td>77</td>
</tr>
<tr>
<td>Lutz, Nicolas</td>
<td>347</td>
</tr>
<tr>
<td>Lagunas, Manuel</td>
<td>333</td>
</tr>
<tr>
<td>Lischinski, Dani</td>
<td>281</td>
</tr>
<tr>
<td>Magnet, Robin</td>
<td>89</td>
</tr>
<tr>
<td>Matusovic, Marko</td>
<td>51</td>
</tr>
<tr>
<td>May, Christopher</td>
<td>213</td>
</tr>
<tr>
<td>Memari, Pooran</td>
<td>175</td>
</tr>
<tr>
<td>Milef, Nicholas</td>
<td>359</td>
</tr>
<tr>
<td>Mlakar, Daniel</td>
<td>309</td>
</tr>
<tr>
<td>Molenaar, Mathijs</td>
<td>235</td>
</tr>
<tr>
<td>Myszkowski, Karol</td>
<td>119</td>
</tr>
<tr>
<td>Noh, Junyong</td>
<td>13, 385</td>
</tr>
<tr>
<td>Ovsjanikov, Maks</td>
<td>89</td>
</tr>
<tr>
<td>Papaoianou, Georgios</td>
<td>245</td>
</tr>
<tr>
<td>Paquette, Eric</td>
<td>269</td>
</tr>
<tr>
<td>Parakkat, Amal Dev</td>
<td>51</td>
</tr>
<tr>
<td>Peters, Jorg</td>
<td>321</td>
</tr>
<tr>
<td>Piovarčí, Michal</td>
<td>397</td>
</tr>
<tr>
<td>Popa, Tiberiu</td>
<td>269</td>
</tr>
<tr>
<td>Postels, Janis</td>
<td>77</td>
</tr>
<tr>
<td>Prieto-Martín, Melani</td>
<td>149</td>
</tr>
<tr>
<td>Ritschel, Tobias</td>
<td>201</td>
</tr>
<tr>
<td>Rodríguez-Pardo, Carlos</td>
<td>149</td>
</tr>
<tr>
<td>Rohmer, Damien</td>
<td>175</td>
</tr>
<tr>
<td>Rosset, Nicolas</td>
<td>427</td>
</tr>
<tr>
<td>Sauvage, Basile</td>
<td>347</td>
</tr>
<tr>
<td>Schmidt, Patrick</td>
<td>103</td>
</tr>
<tr>
<td>Seidel, Hans-Peter</td>
<td>119, 309</td>
</tr>
<tr>
<td>Seo, Kwanggyoon</td>
<td>385</td>
</tr>
<tr>
<td>Sheffer, Alla</td>
<td>61</td>
</tr>
<tr>
<td>Sigal, Leonid</td>
<td>61</td>
</tr>
<tr>
<td>Slusallek, Philipp</td>
<td>1</td>
</tr>
<tr>
<td>Snively, Noah</td>
<td>281</td>
</tr>
<tr>
<td>Solenthaler, Barbara</td>
<td>161</td>
</tr>
<tr>
<td>Steinberger, Markus</td>
<td>309</td>
</tr>
<tr>
<td>Subías, José Daniel</td>
<td>333</td>
</tr>
<tr>
<td>Sueda, Shinjiro</td>
<td>359</td>
</tr>
<tr>
<td>Sun, Jin</td>
<td>281</td>
</tr>
<tr>
<td>Taketomi, Takafulmi</td>
<td>293</td>
</tr>
<tr>
<td>Tang, Jingwei</td>
<td>161</td>
</tr>
<tr>
<td>Tessari, Lorenzo</td>
<td>255</td>
</tr>
<tr>
<td>Theobalt, Christian</td>
<td>1, 371</td>
</tr>
<tr>
<td>Tombari, Federico</td>
<td>77</td>
</tr>
<tr>
<td>Türk, Greg</td>
<td>25</td>
</tr>
<tr>
<td>Um, Kiwon</td>
<td>225</td>
</tr>
<tr>
<td>Vining, Nicholas</td>
<td>61</td>
</tr>
<tr>
<td>Vitas, Nick</td>
<td>245</td>
</tr>
<tr>
<td>Wei, Jiayi</td>
<td>175</td>
</tr>
<tr>
<td>Weinrauch, Alexander</td>
<td>309</td>
</tr>
<tr>
<td>Williamson, John</td>
<td>133</td>
</tr>
<tr>
<td>Yang, Jinfan</td>
<td>61</td>
</tr>
<tr>
<td>Yang, Xingchao</td>
<td>293</td>
</tr>
<tr>
<td>Yang, Yong-Liang</td>
<td>37</td>
</tr>
<tr>
<td>Yao, Chih-Yuan</td>
<td>37</td>
</tr>
<tr>
<td>Ye, Yuting</td>
<td>25</td>
</tr>
<tr>
<td>Zayer, Rhalet</td>
<td>309</td>
</tr>
<tr>
<td>Zhang, Yunbo</td>
<td>25</td>
</tr>
<tr>
<td>Zhenyuan, Liu</td>
<td>397</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Award Winners

Eurographics Outstanding Technical Contributions Award 2023
Michael Wimmer

Eurographics Young Researcher Award 2023
Simone Melzi

Eurographics Young Researcher Award 2023
Ana Serrano

Keynotes

Zooming into the Details
Elmar Eisemann (TU Delft)

A Trip Down the Generative Neural Graphics Pipeline
Gordon Wetzstein (Stanford University)

Capturing, Compressing, and Creating Neural Radiance Fields
Ben Mildenhall (Google)

From Curved to Flat and Back Again: Mesh Processing for Fabrication
Mirela Ben-Chen (Technion)

Human Object Interaction

IMoS: Intent-Driven Full-Body Motion Synthesis for Human-Object Interactions
Anindita Ghosh, Rishabh Dabral, Vladislav Golyanik, Christian Theobalt, and Philipp Slusallek

Online Avatar Motion Adaptation to Morphologically-similar Spaces
Soojin Choi, Seokpyo Hong, Kyungmin Cho, Chaelin Kim, and Junyong Noh

Learning to Transfer In-Hand Manipulations Using a Greedy Shape Curriculum
Yunbo Zhang, Alexander Clegg, Sehoon Ha, Greg Turk, and Yuting Ye

Logos and Clip-Art

Img2Logo: Generating Golden Ratio Logos from Images
Kai-Wen Hsiao, Yong-Liang Yang, Yung-Chih Chiu, Min-Chun Hu, Chih-Yuan Yao, and Hung-Kuo Chu

Interactive Depixelization of Pixel Art through Spring Simulation
Marko Matusovic, Amal Dev Parakkat, and Elmar Eisemann

Subpixel Deblurring of Anti-Aliased Raster Clip-Art
Jinfan Yang, Nicholas Vining, Shakiba Kheradmand, Nathan Carr, Leonid Sigal, and Alla Sheffer
TABLE OF CONTENTS

Shape Correspondence

Unsupervised Template Warp Consistency for Implicit Surface Correspondences
Mengya Liu, Ajad Chhatkuli, Janis Postels, Luc Van Gool, and Federico Tombari
77

Scalable and Efficient Functional Map Computations on Dense Meshes
Robin Magnet and Maks Ovsjanikov
89

Surface Maps via Adaptive Triangulations
Patrick Schmidt, Dörte Pieper, and Leif Kobbelt
103

Image and Video Processing

Video Frame Interpolation for High Dynamic Range Sequences Captured with Dual-exposure Sensors
Ugur Çoğalal, Mojtaba Bemana, Hans-Peter Seidel, and Karol Myszkowski
119

Simulating Analogue Film Damage to Analyse and Improve Artefact Restoration on High-resolution Scans
Daniela Ivanova, John Williamson, and Paul Henderson
133

Learning Deformations and Fluids

How Will It Drape Like? Capturing Fabric Mechanics from Depth Images
Carlos Rodriguez-Pardo, Melania Prieto-Martín, Dan Casas, and Elena Garces
149

Physics-Informed Neural Corrector for Deformation-based Fluid Control
Jingwei Tang, Byungsoo Kim, Vinicius C. Azevedo, and Barbara Solenthaler
161

Reconstruction and Remeshing

Robust Pointset Denoising of Piecewise-Smooth Surfaces through Line Processes
Jiayi Wei, Jiong Chen, Damien Rohmer, Pooran Memari, and Mathieu Desbrun
175

One Step Further Beyond Trilinear Interpolation and Central Differences: Triquadratic Reconstruction and its Analytic Derivatives at the Cost of One Additional Texture Fetch
Balázs Csébfalvi
191

BRDFs and Environment Maps

Learning to Learn and Sample BRDFs
Chen Liu, Michael Fischer, and Tobias Ritschel
201

CubeGAN: Omnidirectional Image Synthesis Using Generative Adversarial Networks
Christopher May and Daniel Aliaga
213
TABLE OF CONTENTS

Simulation: Material Interactions

An Optimization-based SPH Solver for Simulation of Hyperelastic Solids
Min Hyung Kee, Kiwon Um, HyunMo Kang, and JungHyun Han

3D Representation and Acceleration Structures

Editing Compressed High-resolution Voxel Scenes with Attributes
Mathijs Molenaar and Elmar Eisemann

Parallel Transformation of Bounding Volume Hierarchies into Oriented Bounding Box Trees
Nick Vitsas, Iordanis Evangelou, Georgios Papaioannou, and Anastasios Gkaravelis

Stochastic Subsets for BVH Construction
Lorenzo Tessari, Addis Dittebrandt, Michael J. Doyle, and Carsten Benthin

Faces

Face Editing Using Part-Based Optimization of the Latent Space
Mohammad Amin Aliari, Andre Beauchamp, Tiberiu Popa, and Eric Paquette

What’s in a Decade? Transforming Faces Through Time
Eric Ming Chen, Jin Sun, Apoorv Khandelwal, Dani Lischinski, Noah Snavely, and Hadar Averbuch-Elor

Makeup Extraction of 3D Representation via Illumination-Aware Image Decomposition
Xingchao Yang, Takafumi Taketomi, and Yoshihiro Kanamori

Topological and Geometric Shape Understanding

A Variational Loop Shrinking Analogy for Handle and Tunnel Detection and Reeb Graph Construction on Surfaces
Alexander Weinrauch, Daniel Mlakar, Hans-Peter Seidel, Markus Steinberger, and Rhaleb Zayer

Evolving Guide Subdivision
Kestutis Karčiauskas and Jorg Peters

Materials and Textures

In-the-wild Material Appearance Editing using Perceptual Attributes
José Daniel Subías and Manuel Lagunas

Preserving the Autocovariance of Texture Tilings Using Importance Sampling
Nicolas Lutz, Basile Sauvage, and Jean-Michel Dischler
TABLE OF CONTENTS

Capturing Human Pose and Appearance

Variational Pose Prediction with Dynamic Sample Selection from Sparse Tracking Signals
Nicholas Milef, Shinjiro Sueda, and Nima Khademi Kalantari

Scene-Aware 3D Multi-Human Motion Capture from a Single Camera
Diogo C. Luvizon, Marc Habermann, Vladislav Golyanik, Adam Kortylewski, and Christian Theobalt

Generating Texture for 3D Human Avatar from a Single Image using Sampling and Refinement Networks
Sihun Cha, Kwanggyoon Seo, Amirsaman Ashtari, and Junyong Noh

Garment Design

Directionality-Aware Design of Embroidery Patterns
Liu Zhenyuan, Michal Piovarčí, Christian Hafner, Raphaël Charrondière, and Bernd Bickel

2D Animation and Interaction

Non-linear Rough 2D Animation using Transient Embeddings
Melvin Even, Pierre Bénard, and Pascal Barla

Interactive Design of 2D Car Profiles with Aerodynamic Feedback
Nicolas Rosset, Guillaume Cordonnier, Régis Duvigneau, and Adrien Bousseau
Eurographics Outstanding Technical Contribution Award 2023: Michael Wimmer

Prof. Michael Wimmer heads the Rendering and Modeling Group at the Technical University of Vienna and leads the Center for Geometry and Computational Design. He is also the Special Research Program “Advanced Computational Design” coordinator. He received his Ph.D. in Computer Science from TU Wien in 2001. He was elected a Fellow of the EUROGRAPHICS Association in 2018.

Michael Wimmer has made several pioneering contributions in advancing the field of computer graphics through his research in real-time rendering, physically based rendering, computer games, point-based graphics, procedural modeling, shape modeling, and computational fabrication. He is one of the early pioneers in point-based graphics and procedural modeling of cities. He received the Eurographics Best Paper award for the “Instant Visibility” work in 2001. He is well known for his seminal “Instant Architecture” paper, which eventually established the subarea of procedural modeling.

Beyond procedural and shape modeling, Michael is widely recognized for his contributions to real-time shadow rendering, where he co-authored the standard textbook on this topic. His work on visibility computation, point-based rendering, and fast algorithms for computer games have paved the way for significant advancements in the field.

Michael has recently heavily contributed to computational fabrication, combining concepts from shape modeling, form finding, and function-aware geometric optimization. His work has resulted in the development of the Center for Geometry and Computational Design.

Michael Wimmer is a prolific researcher and has published 200+ papers. He is regularly serving on major program committees and the editorial boards of many leading journals. He co-chaired the Eurographics conference in 2015 and is part of the papers advisory board for Eurographics and SIGGRAPH, and Assistant Chair of SIGGRAPH 2023.

In addition to his groundbreaking research, Michael is also an exceptional leader, heading one of Europe’s most noted computer graphics groups. His leadership and guidance have enabled his team to achieve sustained and remarkable results, profoundly influencing the European research landscape. This has been foundational for both computer games and rendering-related industries.

Michael is known for his tireless and extensive community service and dedication to sharing his knowledge and ability with others. He has been a mentor and advisor to many students and young researchers, has significantly contributed to improving the organization of Eurographics at various levels, and his contributions to the community continue to have a lasting impact on the field of computer graphics.

Eurographics is pleased to recognize Michael Wimmer with the 2023 Outstanding Technical Contributions Award.
Eurographics Young Researcher Award 2023:
Simone Melzi

Simone Melzi receives the EUROGRAPHICS Young Researcher Award 2023 for his outstanding and multi-faceted contribution to geometry processing and 3D shape analysis.

Simone is a tenure track Assistant Professor at the University of Milano-Bicocca, Dept. on Informatics, Systems and Communication (DISCo). He did his Ph.D. at the University of Verona in 2018 and spent time as a postdoc at La Sapienza University, Ecole Polytechnique, and the University of Verona.

Simone has done outstanding and impactful research in the broader area of geometry processing and 3D shape analysis, at the intersection with artificial intelligence. Here, Simone contributed several highly innovative and widely cited works on spectral shape processing, functional maps, shape correspondence, and general shape processing. In particular, in his later work, he contributed state-of-the-art machine learning-based solutions to the aforementioned highly challenging research problems. In his very early work, he also made widely cited contributions to hard computer vision problems, e.g. visual object tracking.

Simone received several prestigious awards for his work, such as a Marie-Curie Individual Fellowship in 2020 and the EUROGRAPHICS Italy Ph.D. Award. His work was published in a high number of top-tier conferences and journal papers in computer graphics, computer vision, and machine learning. He has already contributed to the scientific management of many scientific events, under the role of IPC member and chair.

EUROGRAPHICS is pleased to recognize Simone Melzi with the 2023 Young Researcher Award.
Eurographics Young Researcher Award 2023: Ana Serrano

Ana Serrano receives the EUROGRAPHICS Young Researcher Award 2023 for her outstanding and multi-faceted contributions to virtual reality, computational imaging and material appearance perception.

Ana is a tenure track Assistant Professor at the University of Zaragoza, Spain. She obtained her Ph.D. from the University of Zaragoza in 2019 and spent time as a postdoc at the Max-Planck Institute for Informatics.

Ana has greatly impacted the research in virtual reality, especially on perceptually-related issues and users’ interaction with VR. She has a widely cited paper on this topic that investigates saliency in VR. Ana has also introduced a generative model for realistic scan paths of 360 images, that model how users explore a VR environment. This paper has received the best journal paper award at IEEE VR 2022. Another impactful topic that Ana has worked on is movie editing in VR and its effects on the perception of continuity. Ana additionally has influential papers on perception-based material modeling, including gloss management, and the effects of shape and illumination on the perception of material appearance.

Ana has received several prestigious awards for her work, including an Nvidia graduate fellowship, the Ph.D. award by the University of Zaragoza, the Eurographics Ph.D. award, and some best paper awards. Her work was published in a high number of top tier conferences and journal papers in computer graphics, computer vision and virtual reality. She has served as a technical paper committee member in the main computer graphics venues.

EUROGRAPHICS is pleased to recognize Ana Serrano with the 2023 Young Researcher Award.
Zooming into the Details

Elmar Eisemann
TU Delft

Abstract
For realistic image synthesis, simulating complex environments in all detail can lead to prohibitive rendering costs. In visual analytics, large-scale datasets pose significant challenges for analysis, and a simple subsampling can result in missing structures. While seemingly different contexts, both scenarios require scalable solutions. In this talk, we will discuss several principles to handle complexity and will show examples for how data representations, algorithms, but also perception can be key in overcoming such computationally intensive challenges.

Biography
Elmar Eisemann is a professor at TU Delft, heading the Computer Graphics and Visualization Group. Before he was an associated professor at Telecom ParisTech (until 2012) and a senior scientist heading a research group in the Cluster of Excellence (Saarland University / MPI Informatik) (until 2009). He studied at the Ecole Normale Superieure in Paris (2001-2005) and received his PhD from the University of Grenoble at INRIA Rhone-Alpes (2005-2008). He spent several research visits abroad; at the Massachusetts Institute of Technology (2003), University of Illinois Urbana-Champaign (2006), Adobe Systems Inc. (2007,2008).

His interests include real-time and perceptual rendering, visualization, alternative representations, shadow algorithms, global illumination, and GPU acceleration techniques.

He coauthored the book “Real-time shadows” and participated in various committees and editorial boards. He was local organizer of EGSR 2010, 2012, HPG 2012, and paper chair of HPG 2015, EGSR 2016, GI 2017, and general chair of Eurographics 2018 in Delft. His work received several distinction awards and he was honored with the Eurographics Young Researcher Award 2011 and the Netherlands Prize for ICT Research 2019.
A Trip Down the Generative Neural Graphics Pipeline

Gordon Wetzstein
Stanford University

Abstract
Generative neural radiance fields offer unprecedented capabilities for photorealistic scene representation, generation, novel-view synthesis, among other tasks. In this talk, we discuss expressive scene representation network architectures, efficient neural rendering approaches, and generative AI strategies that allow us to create photorealistic multi-view-consistent digital humans.

Biography
Gordon Wetzstein is an Associate Professor of Electrical Engineering and, by courtesy, of Computer Science at Stanford University. He is the leader of the Stanford Computational Imaging Lab and a faculty co-director of the Stanford Center for Image Systems Engineering. At the intersection of computer graphics and vision, artificial intelligence, computational optics, and applied vision science, Prof. Wetzstein’s research has a wide range of applications in next-generation imaging, wearable computing, and neural rendering systems.

Prof. Wetzstein is a Fellow of Optica and the recipient of numerous awards, including an NSF CAREER Award, an Alfred P. Sloan Fellowship, an ACM SIGGRAPH Significant New Researcher Award, a Presidential Early Career Award for Scientists and Engineers (PECASE), an SPIE Early Career Achievement Award, an Electronic Imaging Scientist of the Year Award, an Alain Fournier Ph.D. Dissertation Award as well as several Best Paper and Demo Awards.
Capturing, Compressing, and Creating Neural Radiance Fields

Ben Mildenhall

Google

Abstract

Over the past few years, neural volumetric rendering has proven to be a flexible and useful framework for a wide variety of 3D reconstruction and inverse rendering scenarios. In this talk, I will discuss our work toward creating and engaging with high-quality digital 3D content. To start, we extend NeRF’s ability to capture larger and richer spaces, allowing for the realistic recreation of full immersive environments. Given that these high-fidelity models can be slow to render, we also investigate methods for real-time rendering on consumer hardware. Finally, we explore how it is possible to harness the power of 2D generative models to create new 3D content from only a text prompt.

Biography

Ben Mildenhall is a research scientist at Google, where he works on problems at the intersection of graphics and computer vision, specializing in view synthesis and inverse rendering. He completed his PhD in computer science from UC Berkeley in 2020, advised by Ren Ng and supported by a Hertz Fellowship, and received the ACM Doctoral Dissertation Award Honorable Mention and David J. Sakrison Memorial Prize for his thesis work on neural radiance fields. He has received Best Paper Honorable Mentions at ECCV 2020, ICCV 2021, and CVPR 2022.
From Curved to Flat and Back Again: Mesh Processing for Fabrication

Mirela Ben-Chen
Technion

Abstract
Assume that for a craft project you were given a task: create a (doubly) curved surface. What are your options? With applications varying from art and space exploration to health care and architecture, making shapes is a fundamental problem. In this talk we will explore the challenges of creating curved shapes from different materials, and describe the math and practice of a few solutions. We will additionally consider the limitations of existing approaches, and conclude with a few open problems.

Biography
Prof. Ben-Chen is an Associate Professor at the Center for Graphics and Geometric Computing of the CS Department at the Technion. She received her Ph.D. from the Technion in 2009, was a Fulbright postdoc at Stanford from 2009-2012, and then started as an Assistant Prof. at the Technion in 2012.

Prof. Ben Chen is interested in modeling and understanding the geometry of shapes. She uses mathematical tools, such as discrete differential geometry, numerical optimization and harmonic analysis, for applications such as animation, shape analysis, fluid simulation on surfaces and computational fabrication. She has won an ERC Starting grant, the Henry Taub Prize for Academic Excellence, the Science Prize of the German Technion Society and multiple best paper awards.