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Figure 1: Given a single image, our method generates a texture map by synthesizing textural patterns in the invisible regions of the source
image as well as aligning the texture to the surface of the geometry. The top row shows the source human images and the bottom row shows
the rendered images of the 3D human avatars with generated texture maps. The 3D human mesh was obtained using Tex2Shape [APTM19]
and the images were sampled from SHHQ[FLJ*22a] dataset.

Abstract
There has been significant progress in generating an animatable 3D human avatar from a single image. However, recovering
texture for the 3D human avatar from a single image has been relatively less addressed. Because the generated 3D human
avatar reveals the occluded texture of the given image as it moves, it is critical to synthesize the occluded texture pattern that is
unseen from the source image. To generate a plausible texture map for 3D human avatars, the occluded texture pattern needs
to be synthesized with respect to the visible texture from the given image. Moreover, the generated texture should align with the
surface of the target 3D mesh. In this paper, we propose a texture synthesis method for a 3D human avatar that incorporates
geometry information. The proposed method consists of two convolutional networks for the sampling and refining process. The
sampler network fills in the occluded regions of the source image and aligns the texture with the surface of the target 3D mesh
using the geometry information. The sampled texture is further refined and adjusted by the refiner network. To maintain the
clear details in the given image, both sampled and refined texture is blended to produce the final texture map. To effectively
guide the sampler network to achieve its goal, we designed a curriculum learning scheme that starts from a simple sampling
task and gradually progresses to the task where the alignment needs to be considered. We conducted experiments to show that
our method outperforms previous methods qualitatively and quantitatively.
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1. Introduction

The demand for animatable 3D human avatars is increasing in var-
ious VR/AR applications such as virtual try-on, metaverse, and
games. To create an animatable 3D human avatar, it is essential to
produce a 3D model that resembles the shape and appearance of the
source human appearance. Furthermore, the 3D model should be
rigged for animation. These processes often require manual work
from artists or rely on a special capture system such as multi-
view camera sets or 3D scanners. To alleviate these conditions, nu-
merous methods have been proposed to reconstruct a 3D human
avatar [KPD19; APTM19; LCL*19; LIP19; XCM*21; NSH*19;
SHN*19; SSSJ20; HCJS20; HXL*20; HXS*21; AZS22] from a
single image. In contrast to the reported successes in reconstruct-
ing body shapes and poses, restoring the occluded texture for 3D
human avatars has been relatively less studied.

Generating a texture map for a 3D human avatar from a single
image is challenging due to the following two reasons. First, only
portions of the texture information are available from the source
image. This is caused by various poses and shapes of the human
body and the diverse camera positions. Second, the generated hu-
man texture map needs to be semantically aligned with the surface
of the target 3D human mesh. As the texture coordinates corre-
spond to the surface geometry of a 3D human mesh, misalignment
of the texture can produce a distorted human appearance in a ren-
dered image.

Due to these challenges, generating a 3D human texture map
cannot be simply posed as an image inpainting task [LRS*18]. Un-
like image painting, where inputs and outputs are spatially aligned,
the alignment of inputs and outputs is not guaranteed for 3D hu-
man texture generation tasks. Because UV alignment is essential,
a process of correcting the spatial structure of the input during the
3D human texture generation task is required. The difference be-
tween the image inpainting and 3D human texture generation is
highlighted in Figure 2. Therefore, direct application of image in-
painting methods to 3D human texture generation tends to result in
a misaligned texture map. On the other hand, methods that utilize
image-to-image translation [IZZE17] may successfully produce a
texture map that is semantically aligned with the UV space of the
target mesh [LIP19; WZL*19]. Unfortunately, these CNN-based
models tend to learn an average texture from the training data, lead-
ing to a blurry result.

In this paper, we propose a method that generates a complete
human texture map from a single image while synthesizing the oc-
cluded texture with relevance to the given visible appearance. Us-
ing a neural network based on sampling and refinement strategies,
our method preserves the details given in the source image in the
generated texture while retaining the structural alignment with the
surface of the target mesh. Similar to previous methods [APTM19;
LIP19], we convert the source image to a partial texture map and
use it as input to our method. We also predict a 3D human mesh
based on the SMPL model [LMR*15] from the source image us-
ing off-the-shelf method [APTM19] and utilize the surface normal
information of the 3D human mesh in the sampling process. Given
the partial texture map and a normal map, SamplerNet completes
the missing details by sampling the visible region of the texture and
re-arranging them.

Figure 2: Generated textures using (c) coordinate-based inpaint-
ing [GSVL19], (d) color-based inpainting [YLY*19], and (e) our
method from (b) partial texture map. The results from inpainting
methods show the preservation of the given details and structure
of the partial texture map which is created from (a) source image.
However, the results failed to align with the surface of the target
mesh, which leads to artifacts in rendered images.

The proposed sampler network overcomes the limitation of im-
age inpainting methods [GSVL19; YLY*19], such as the genera-
tion of misaligned textures, by learning to align the texture to the
corresponding surface of the target 3D human mesh. To guide the
SamplerNet for effective sampling, we adopt a curriculum learning
scheme. Given the sampled texture map produced by SamplerNet,
Re f inerNet generates a refined texture and a blending mask. The
mask is used for blending the refined texture with the sampled tex-
ture to produce the final result. The blending mask helps to preserve
the appearance detail presented in the source image and therefore
allows to generate the final texture map with improved quality by
removing artifacts from the sampled texture. Example results of the
generated texture map and rendered images are shown in Figure 1.
We conducted a set of experiments to show that our approach out-
performs the various baseline methods [IZZE17; WLZ*18; LIP19;
XL21; ALY*21] in reproducing the details present in the source
image and aligning textures to the surface of the target 3D human
mesh.

2. Related Work

2.1. 3D Human Texture Generation with Multi-View Images

There have been many studies that allow to generate 3D hu-
man avatars with texture from multi-view images [AMX*18a;
AMX*18b; BTTP19; ZLT*20; MAP20; BTTP19]. These methods
project the given multi-view images or video frames back to the
predicted mesh to create the partial texture maps and combine them
with blending techniques to produce the final texture map. How-
ever, with only a single view, it is not clear how to extend the meth-
ods to capture all the detailed information and fill in the invisible
regions.
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2.2. 3D Human Texture Generation from a Single Image

Progress in generating 3D human avatars from a single image has
shown a big leap in reconstructing body shapes and poses as much
as that interest. However, synthesizing a texture that maintains
given appearance details and restoring the occluded region with
the relevance of the visible region is still challenging. Similar to
3D human texture generation with multi-view images, some meth-
ods [NSH*19; SHN*19; HXL*20; HXS*21] acquire the texture by
predicting the back view from the given frontal view image fol-
lowed by projecting the both front and back view images back to
the predicted 3D human mesh. While these methods are effective
in utilizing the visible textures in the source image, the results are
often blurry and poorly reconstructed in the occluded area.

Some studies [GSVL19; LIP19] employ a predefined map-
ping process that converts the visible human appearance in the
source image to the UV space of the SMPL model using Dense-
Pose [GNK18]. Lazova et al. [LIP19] utilized the partial texture
map produced by a predefined mapping and takes an image-to-
image translation approach to generate a full texture map. Because
this method learns to generate the missing information based on
training data, the generated results can often be blurry and detailed
texture patterns are not recovered well when the given garment tex-
ture is unseen from the training data.

Instead of using a texture explicitly for supervision, some meth-
ods learn the human texture generation in an unsupervised manner,
directly producing a texture map from the given image [WZL*19;
XL21; CCO22]. These methods can generate a texture map directly
from the source image by eliminating the pose variant features and
minimizing the identity difference. Xu et al. [XL21] maps the given
image to the texture space by predicting flow field and blends it
with the generated texture map to eliminate the artifacts and main-
tain detailed appearance. Inspired from this approach, our method
also incorporates blending process with sampled texture and re-
fined texture.

2.3. Pose-guided Image and Video Synthesis

The goal of pose-guided image synthesis is to transfer the per-
son’s appearance from a source image to the desired pose. Some
approaches [SMX*20; SLGT21; SGLT21] utilize the UV space of
the SMPL model as an intermediate representation to achieve the
task. These methods generate the latent features, which lie in the
SMPL’s UV space, and use them to synthesize the image with the
given target pose. Other methods [NGK18; LXH*20; YLG*21] di-
rectly predict the texture in the UV space to transfer the pose of the
source image to the target pose. However, the predicted texture map
is used as a reference and undergoes a post-processing step in the
image space, which does not consider the alignment with the 3D
human mesh. Therefore, the predicted texture may not align with
the surface of the target 3D mesh.

Instead of using color pixels from the source image, some meth-
ods [GSVL19; ALY*21] map the pixel coordinates of the visi-
ble region in the image to the UV space of the SMPL model.
The mapped coordinates are then inpainted and used for sampling
the source image to create a full texture map. These methods re-
ported better outcomes in retaining the local details presented in

the source image compared to the methods [NGK18] that directly
utilize the color pixels of the source image. Similar to these ap-
proaches [GSVL19; ALY*21], we use a sampler network to sam-
ple the visible regions in the source image to create the texture
map. Because the texture map is used for intermediate represen-
tation, it is prone to artifacts such as stretching-out or distortion
when directly used for rendering as shown in Figure 5. To over-
come this and improve quality, we use a texture refinement network
that adjusts and refines the produced texture. Detailed illustration
and evaluation with previous methods are presented in Section 4.

2.4. Curriculum Learning

After the introduction of curriculum learning by Bengio et
al. [BLCW09], the strategy has been adapted to various tasks, such
as language modeling [GBM*17], object detection [WWL18], and
person re-identification [MMX*17]. We adapt the strategy of cur-
riculum learning by progressively increasing the level of difficulty
of the texture sampling task. We train SamplerNet from the sim-
plest case of the mapping process and gradually apply geometric
augmentation. Through this process, the model learns to complete
the texture that is aligned with the surface of the target 3D human
mesh while reproducing the detailed appearance presented in the
source image.

3. Methods

In this section, we describe the proposed networks and training pro-
cess. We first preprocess the human appearance in the source image
to be mapped into the UV space of a 3D human mesh [LMR*15]
and produce a partial texture map and a corresponding visibility
mask. From the partial texture map, we obtain the geometry infor-
mation using Tex2shape [APTM19], which generates the 3D hu-
man mesh from a single image by predicting the surface normal
and vertex displacements in the UV space of the SMPL model.
Given the partial texture map, visibility mask, and normal map,
SamplerNet samples the missing appearance details from the visi-
ble regions of the source image and completes the texture map. In
the following process, Re f inerNet generates a blending mask and
a refined texture. Insufficient details and distortion artifacts in the
sampled texture produced by SamplerNet are adjusted in the re-
fined texture. The final texture is then generated by blending the
sampled texture with the refined texture using the blending mask.
An overview of the proposed method is shown in Figure 3.

3.1. Preprocessing

Similar to previous methods [LIP19; APTM19; GSVL19;
ALY*21], we map the source image into the UV space of the SMPL
model. We denote the mapped partial texture as Tsource. Following
Albahar et al. [ALY*21], we combine Tsource and T mirror

source , a seman-
tically mirrored texture map of Tsource, to produce a symmetric tex-
ture map Tinput . Tinput is expressed as follows:

Tinput = Tsource +(T mirror
source ⊙ (1−Msource)), (1)

where ⊙ is the Hadamard product. Msource is a binary mask in
which 1 indicates a valid pixel in Tsource and 0 indicates an invalid
pixel.
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Figure 3: Overview of the proposed method. The source image is processed to create partial texture, visibility mask, and normal map which
are given as an input to SamplerNet. SamplerNet predicts a sampling grid that is used for producing the sampled texture. Re f inerNet
receives the sampled texture and occlusion mask as input, and generates a refined texture and blending mask. The final output is produced
by alpha blending the sampled texture with the refined texture using the blending mask.

For the mapping, we use the indexed UV coordinates (IUV) pre-
dicted by DensePose [GNK18] to map the source image to the UV
space of the SMPL model. The IUV establishes the correspondence
between the human appearance in the image and the surface of the
SMPL model. The surface is labeled with an index which indicates
a predefined body part. Using the IUV and a lookup table provided
by DensePose, the visible human appearance in the source image
can map to the UV space. Because DensePose divides the surface
of the SMPL model to exploit the left-right symmetry, the mirrored
texture map T mirror

source can be created by switching the index for the
IUV of the symmetrical body parts during the mapping process.

3.2. Sampler Network

Given Tinput , visibility mask, and normal map as input, SamplerNet
predicts a sampling grid to produce a complete texture map,
Tsample. The visibility mask is a binary mask that indicates the valid
pixel in Tinput . Using the predicted sampling grid, the visible region
of Tinput is sampled to synthesize the occluded region in Tinput . Fur-
thermore, the texture in the visible region is re-sampled to be struc-
turally aligned to match the semantic meaning of the UV space.
SamplerNet consists of two encoders and a single decoder which
is similar to the network proposed in Yoon et al. [YLG*21]. The ge-
ometry and appearance features are extracted from each dedicated
encoder and are fed to the decoder. The appearance features ex-
tracted from Tinput and visibility mask at each layer of the encoder
are skip-connected to the corresponding layer in the decoder.

Both encoders used for SamplerNet consist of one convolutional
layer followed by five layers of residual blocks. The decoder uses
the same number of residual block layers with upsampling and one
convolutional layer at the end. All activations are LeakyReLU with
instance normalization. The residual blocks consist of two convo-
lutional layer with gated convolutions [YLY*19].

When training SamplerNet, we observed that SamplerNet often

fails to preserve the given appearance detail in Tinput . To overcome
this, we apply the curriculum learning strategy. Before describing
the details of the proposed curriculum learning scheme, we will
first address the data preparation process for the training.

3.2.1. Training Data Preparation

SamplerNet is trained with a curriculum learning scheme, which
begins from the simplest case where the given input texture is per-
fectly aligned with the UV space, to the hard case where the input
texture is misaligned with the UV space. For the simplest case, if
the predicted IUV perfectly aligns with the surface coordinates of
the SMPL model, partial texture Tsource can be acquired by masking
out the ground truth texture map TGT with Msource:

Tsource = TGT ⊙Msource. (2)

We now denote Tsource obtained by Equation 2 as T M
GT .

Due to imperfect prediction, however, DensePose often fails to
locate the exact pixel position that corresponds to the geometric
position. This prevents the partial texture from being semantically
aligned with TGT . We approximate this misalignment using a ge-
ometric transformation function f (·), and thus Tsource can be ex-
pressed as augmentation as follows:

Tsource ≈ TAugment = f (T M
GT ,α), (3)

where α is a control parameter for f (·). By changing α, interpola-
tion from T M

GT to Tsource is approximated which enables the curricu-
lum learning scheme.

3.2.2. Region-wise Augmentation

For the augmentation f (·), we use the thin-plate-spline (TPS) trans-
formation in a region-wise manner (Figure 4). There are two rea-
sons why naive augmentation techniques are inadequate for tex-
ture generation. First, unlike general images, texture maps have a
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Figure 4: Illustration of the region-wise augmentation.

unique structure that corresponds to a 3D geometry. Second, al-
though Tsource is non-linearly deformed from TGT , the deformation
is limited to the UV structure of the SMPL model. Therefore, aug-
mentation should be performed in consideration of this structure.

We divide the UV space into six different regions which corre-
spond to the head, body, legs, arms, feet, and hands. We crop each
region with the bounding box and apply the TPS transform individ-
ually. To prevent unintentional cropping, each body part is masked
before the process. Then, we merge all of the transformed regions
back to form a single texture followed by multiplying it by the UV
mask, Muv, to produce the final deformed texture for training. Muv
is a binary mask, which represents valid UV coordinates in the UV
space. For the transformation, we assign control points to each re-
gion and shift these points with a random value determined from a
uniform distribution U(0,α). α is expressed as follows:

α =

{
0, step = 0,
0.1+(step∗δ), step > 0.

(4)

step indicates the current curriculum step and δ is a hyper-
parameter.

3.2.3. Curriculum Learning

The goal of curriculum learning is to guide SamplerNet to maintain
the given appearance detail in Tinput while enforcing the semantic
alignment. To this end, we divide the training into two curriculum
steps: sampling the occluded texture from the visible region and re-
arranging the given visible region. First we will describe the data
preparation for the curriculum learning.

In the initial step, step = 0, the objective is to complete the given
partial texture map without considering the alignment in the visible
region. Hence, α in Equation 3 is set to 0, which makes f (·) an
identity mapping function, resulting in TAugment identical to T M

GT .
As T M

GT is semantically aligned with the UV space, SamplerNet is
encouraged to sample for the missing regions only. A single step is
set to 4,000 iterations, which is sufficient for the model to see the
whole training data set twice.

After the initial step, α is set to 0.1 and increased by δ after every
single step. Here, the goal is to encourage the model to begin re-
sampling the visible region to enforce the structural alignment. For
the steps equal to or greater than 3, we additionally use the partial
texture produced by DensePose to reduce the domain gap between
training data and inference data.

The data used in the curriculum learning can be expressed as
follows:

Tsource =

{
TAugment , step < 3,
TAugment or TDensePose, step ≥ 3.

(5)

where TDensePose is a partial texture produced by DensePose. The
variation of the partial texture is visualized in the supplementary
material.

The effect of using this augmentation is verified in Section 4.2.
With the curriculum learning and the region-wise augmentation,
SamplerNet effectively samples a partial texture map to synthesize
all the occluded region while retaining the given visible part and
aligning texture to the surface of the target 3D mesh.

3.2.4. Loss Functions

To enforce the alignment and proper sampling, we train
SamplerNet by minimizing a reconstruction loss and a perceptual
loss between Tsample and TGT . The reconstruction loss is expressed
as follows:

LRecon =
N

∑
i=1

||wi ·Mi
body ⊙ (Tsample −TGT )||1, (6)

where Mi
body is a set of binary masks for the six body parts in

the UV space and wi is its corresponding weights. wi is set to
6,1,1,1,1,and 1 for each face, body, leg, arm, foot, and hand.

For the perceptual distance, we use LPIPS [ZIE*18], which can
be expressed as follows:

LLPIPS = LPIPS(Tsample,TGT ), (7)

where LPIPS(·) extracts features from the two inputs using
AlexNet [Kri14] and calculates the cosine distance between the ex-
tracted features.

The total loss function for SamplerNet is expressed as follows:

LSampler = λReconLRecon +λLPIPSLLPIPS, (8)

where λRecon and λLPIPS are set to 1 and 1, respectively.

3.3. Refiner Network

After SamplerNet completes the partial texture, the resulting tex-
ture map is refined. SamplerNet implicitly learns to sample the
missing texture information from the visible region by following
the guidance of given geometry information and minimizing the
loss in the training process. During the process of sampling the
given information according to the geometry information, some ar-
tifacts are accompanied as shown in Figure 5.

Re f inerNet alleviates this problem by refining the details in
Tsample. Re f inerNet employs a U-Net-like architecture with three
down and up sampling layers, and 9 residual blocks for the bottle-
neck. Re f inerNet receives Tsample and occlusion mask as input and
produces a refined texture map Tre f ine and a blending mask Mblend .
The occlusion mask is a binary mask, which is acquired by sub-
tracting Msrc from Muv.

As described in Section 2.2, Xu et al. [XL21] proposed a mask-
fusion strategy that blends the two texture outputs using a predicted
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Figure 5: Artifact due to the SamplerNet’s prediction error

mask to preserve the fine texture details. Inspired by this, we adapt a
texture blending process that exploits details in Tsample. The blend-
ing mask helps to preserve the given appearance detail by replacing
the artifacts in the sampled texture with the refined texture. The fi-
nal output is computed as follows:

Tf inal = Tsample ⊙Mblend +Tre f ine ⊙ (1−Mblend). (9)

Despite the well reconstructed human appearance features, the
fine details observed in Tsample can sometimes be lost and become
blurry in Tre f ine. The blending of Tre f ine and Tsample using Mblend
leverages the advantages of each generated texture. The effect of
texture blending is demonstrated in Figure 11.

3.3.1. Loss Functions

To produce a texture map of perceptually plausible quality with
minimal artifacts, we minimize the following objective terms when
training Re f inerNet:

LRe f iner = λReconLRecon +λV GGLV GG

+λGANLGAN +λFMLFM ,
(10)

where LRecon, LV GG, LGAN , and LFM are the reconstruction loss,
perceptual loss, adversarial loss, and feature matching loss, respec-
tively.

For LRecon, instead of calculating the loss between Tf inal and
TGT , we calculate the loss between Tf inal and Tsample. Because
there can be multiple texture maps corresponding to one source
image, calculating the loss directly from the ground truth map is
restrictive. For example, in the source image, a person wearing a
T-shirt with a pattern on the front, may have the same pattern, dif-
ferent pattern, or even no pattern on the back. Thus, a pixel-wise
loss with TGT will lead to a texture with the averaged color output
(Figure 6). We used the loss between Tf inal and Tsample to guide
the model in a direction that more respects the estimated Tsample.
LRecon is expressed as follows:

LRecon = ||Tsample −Tf inal ||1. (11)

For LV GG, we use the pre-trained VGG-19 [SZ14] to calculate
the perceptual distance between Tf inal and TGT by extracting fea-
tures from each layer l as performed in Wang et al. [WLZ*18].
LV GG is expressed as follows:

LV GG =
N

∑
i=1

1
wi

||V GGi(TGT )−V GGi(Tf inal)||1. (12)

Here, V GGi denotes the layer of the VGG-19 network, where i ∈
{1,6,11,20,29}. wi is set to 32,16,8,4,and 1 for each layer.

Figure 6: Visual comparison of applying the reconstruction loss to
Tsample and the ground truth texture map.

We use an adversarial loss with the PatchGAN discrimina-
tor [IZZE17]. The objective function can be expressed as follows:

LGAN = ETGT [logD(TGT )]+ETsample [log(1−D(Tf inal)], (13)

where D denotes the discriminator. We additionally use a feature
matching loss LFM [WLZ*18], which minimizes the feature dis-
tance between Tf inal and TGT of the discriminator to stabilize the
training. LFM is expressed as follows:

LFM =
N

∑
i=1

||Dli(TGT )−Dli(Tf inal)||1, (14)

where li represents a set of layers after the activation function and
i∈{1,2,3}. The weights used in the total loss function are λRecon =
10, λV GG = 10, λGAN = 1, and λFM = 10.

3.4. Training Details

We used the Adam optimizer [KB14] with a learning rate of
0.0002 and beta parameters set to 0.9 and 0.999 for both networks,
SamplerNet and Re f inerNet. The region-wise augmentation for
training SamplerNet is applied with the probability of 0.8 and δ is
set to 0.025. We used color augmentation for training Re f inerNet
with the probability of 0.5. The batch size is set to 8, and each
model is trained separately for 30,000 iterations on an NVIDIA
GTX 1080 Ti GPU.

4. Experiments

In this section, we compare our method with previous approaches.
Furthermore, several experiments were carried out to evaluate the
effect of region-wise augmentation, curriculum learning, and tex-
ture blending. A total of 1,441 texture maps were used for train-
ing the networks: 929 from SURREAL [VRM*17] dataset, 512
from our newly gathered dataset. The textures were rendered with
SMPL [LMR*15] in various human poses to generate partial tex-
ture maps for training. To obtain various poses, we randomly sam-
pled 100 poses in the collected animations from Mixamo [Ado].
The textures and poses were randomly paired and rendered in the
range of [−90◦,90◦] with an interval of 10◦. The texture maps were
resized to 256× 256 for both training and testing. For the evalua-
tion, we used Digital Wardrobe [BTTP19] dataset, which contains
96 textures that are different from the training set. Additionally, we
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Figure 7: Visual comparison with previous methods using Digital Wardrobe [BTTP19] dataset. The texture maps are generated for the
person viewed from randomly rotated perspectives in the horizontal direction.

Figure 8: Visual comparison with previous methods using Digital Wardrobe [BTTP19] dataset. The images are rendered with texture maps
that are generated using the person viewed from the randomly rotated perspectives in the horizontal direction. We used Tex2Shape [APTM19]
to estimate the target mesh from the source image.

generated texture using samples from SHHQ [FLJ*22b] dataset to
assess the generalizability of our method to real human images. The
results are shown in Figure 9.

4.1. Comparisons

We compared our method with previous methods in both gener-
ated texture map and rendered image to quantitatively measure the
quality of the generated texture map. To evaluate the quality of
the generated texture map, we used the following metrics: Struc-
tural Similarity (SSIM) [WBSS04], Peak Signal-to-Noise Ratio

(PSNR), and Learned Perceptual Image Patch Similarity (LPIPS)
[ZIE*18]. SSIM and PSNR measure the reconstruction quality and
LPIPS measures the perceptual quality using VGG-16 [SZ14] as a
backbone. We further evaluated the results after applying the tex-
tures to the 3D human mesh. For this, we employed LPIPS, and
cosine similarity (CosSim) of features extracted from PCB net-
work [SZY*18]. PCB network [SZY*18] is used for a person re-
identification task, which aims to find an identical person from the
different cameras. The similarity between the source image and the
rendered image using the generated texture is high when the Cos-
Sim is close to one. To evaluate the quality of the synthesized tex-
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Table 1: Quantitative evaluation of the generated texture map. The texture maps were generated using the input images with various views.
For the *Avg, we used all the images in the range of [−90◦,90◦] with 10◦ interval as input and averaged the calculated scores from the
generated texture maps.

Angle 0◦ (front view) 90◦ (side view) *Avg
Method LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑
Isola et al. [IZZE17] 0.3142 18.49 0.5305 0.3163 18.48 0.5309 0.3127 18.60 0.5314
Wang et al. [WLZ*18] 0.3085 18.21 0.5323 0.3115 18.40 0.5356 0.3078 18.34 0.5334
Lazova et al. [LIP19] 0.3047 18.91 0.5604 0.3180 18.73 0.5522 0.3075 18.97 0.5561
Xu et al. [XL21] 0.3713 15.70 0.4941 0.3777 15.35 0.4948 0.3755 15.54 0.4929
Albahar et al. [ALY*21] (CCM) 0.2884 16.57 0.5144 0.2700 17.40 0.5336 0.2804 17.15 0.5182
Ours (SamplerNet) 0.2435 17.53 0.5501 0.2445 17.84 0.5620 0.2448 17.78 0.5509
Ours (SamplerNet +Re f inerNet) 0.2230 18.04 0.5853 0.2227 18.62 0.5988 0.2236 18.26 0.5837

Table 2: Quantitative evaluation of the rendered image. We compared the methods using the input images with various views and rendered
the generated texture maps on the target 3D mesh. We used Tex2Shape [APTM19] to estimate the target mesh from the input image and
applied it for rendering in all methods. For the *Avg, we used all the rendered images in the range of [−90◦,90◦] with 10◦ interval as input
and averaged the calculated scores.

Angle 0◦ (front view) 90◦ (side view) *Avg
Method CosSim-A↑ CosSim-I↑ LPIPS↓ CosSim-A↑ CosSim-I↑ LPIPS↓ CosSim-A↑ CosSim-I↑ LPIPS↓
Isola et al. [IZZE17] 0.7421 0.7685 0.2017 0.7088 0.7405 0.2026 0.7294 0.7577 0.1999
Wang et al. [WLZ*18] 0.7266 0.7542 0.2058 0.6978 0.7279 0.2063 0.7155 0.7430 0.2035
Lazova et al. [LIP19] 0.7510 0.7786 0.1965 0.7199 0.7452 0.2024 0.7384 0.7642 0.1967
Xu et al. [XL21] 0.7480 0.7711 0.1923 0.7338 0.7401 0.1980 0.7421 0.7578 0.1952
Albahar et al. [ALY*21] (CCM) 0.7638 0.7881 0.1944 0.7468 0.7532 0.2007 0.7592 0.7751 0.1952
Ours (SamplerNet) 0.7673 0.7944 0.1931 0.7500 0.7555 0.2007 0.7609 0.7779 0.1954
Ours (SamplerNet +Re f inerNet) 0.7678 0.7938 0.1868 0.7504 0.7532 0.1990 0.7615 0.7759 0.1912

ture in the occluded region, CosSim was measured in two differ-
ent images: one rendered with a pose identical to that of the per-
son in the given image and the other rendered with A-pose in the
frontal view. We denote the cosine similarity to the image rendered
in the identical pose as CosSim-I and to the image rendered with
A-pose as CosSim-A. LPIPS was calculated with the image ren-
dered in the identical pose. To render the image using a generated
texture, we obtained a 3D human mesh from the given image using
Tex2Shape [APTM19]. We also used RSC-Net [XCM*21] to pre-
dict the 3D human pose and the camera parameters from the given
image.

We evaluate our method with previous approaches that can
generate texture maps using image-to-image translation: Isola et
al. [IZZE17], Wang et al. [WLZ*18], and Lazova et al. [LIP19].
Additionally, we also compared our method with approaches that
utilizes pixel coordinate information: Xu et al. [XL21] and Albahar
et al. [ALY*21]. For Albahar et al. [ALY*21], we exploited their
coordinate completion model (CCM) as this can be used for texture
generation. We used the available implementations provided by the
authors except for Lazova et al. [LIP19], in which we tried to repli-
cate the implementation following the descriptions in the paper. All
methods were trained with the same data as our methods except for
Xu et al. [XL21]. Because our data was not compatible to train
the method, we used the pretrained model released with their code.
The input for all baseline methods was the symmetric partial tex-
ture map which was produced using Equation 1 except for Xu et
al. [XL21] which can generate texture map directly from the given

image. To evaluate the robustness of each method against various
view angles, we generated texture maps using the images viewed
from different perspectives by horizontally rotating the 3D human
mesh in the range of [−90◦,90◦].

The quantitative results for texture map and rendered image
are shown in Table 1 and Table 2, respectively. The methods that
generate a texture map using image-to-image translation [IZZE17;
WLZ*18; LIP19] achieved high scores in PSNR. Nonetheless, the
produced texture lacked the detailed patterns present in the source
image and failed to align with the surface of the target 3D mesh as
shown in Figure 7(b)-(d) and Figure 8(b)-(d).

The methods that utilize pixel coordinates [XL21; ALY*21] tend
to preserve visible texture pattern in the given image better com-
pared to image-to-image translation methods [IZZE17; WLZ*18;
LIP19] as shown in Figure 8(e)-(f). Xu et al. [XL21] directly gen-
erate a texture map from the given image by predicting the flow
field from the source image to the UV space of the SMPL model.
This allows the preservation of appearance detail. However, some
artifacts are apparent when the side view image is given as shown in
Figure 8(e). Albahar et al. [ALY*21] synthesized the texture pattern
that is relevant to the given details but often with severe artifacts
which defect the alignment with the surface of the target 3D mesh
as shown in Figure 8(f). SamplerNet was able to preserve the given
details and sample the occluded texture patterns while maintaining
the alignment with the surface of the target 3D mesh. This is re-
flected by higher values of both CosSim-A and CosSim-I reported
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in Table 2. Given the sampled texture with improved alignment,
our full method produced visually better results compared to those
produced by previous methods in terms of maintaining the appear-
ance details present in the source image and synthesizing missing
details exploiting the information from the visible region as shown
in Figure 8(h).

Figure 9: Rendered images of 3D human avatars produced us-
ing real human images. The images are from SHHQ [FLJ*22b]
dataset. The 3D human pose and the camera parameters were pre-
dicted from the images using RSC-Net [XCM*21].

4.2. Ablation study

4.2.1. Region-wise Augmentation

The goal of region-wise augmentation is to approximate the trans-
formation caused by DensePose [GNK18]. To evaluate the simi-
larity of the proposed augmentation with DensePose, we compared
the results from SamplerNet trained with several different augmen-
tation alternatives that are applied in a region-wise manner. The
curriculum learning was excluded in this experiment to examine
the effect of augmentation. α and the probability for the augmen-
tation is fixed to 0.25 and 0.999, respectively. We also compared
SamplerNet trained with and without region-wise augmentation
using TPS. For the case without it, the control points were set
at an equispaced 6× 6 grid followed by shifting them according
to a random value from a uniform distribution U(0,α). We used
same α value for both. As shown in Table 3, SamplerNet trained
with TPS in a region-wise manner resulted in the scores closest to
SamplerNet trained with DensePose data.

4.2.2. Curriculum Learning

We evaluated the effectiveness of the curriculum learning by com-
paring our networks trained with and without it. The comparison
results are shown in Table 4. The results from the networks trained
with curriculum learning achieved better scores for all of the evalu-
ation metrics. Moreover, the network trained with curriculum learn-
ing produced qualitatively superior results in terms of reproducing
the given appearance as shown in Figure 10.

Table 3: Comparison between various augmentation techniques.
The bold number represents the best score and the underlined num-
ber represents the score closest to that produced by the model
trained with DensePose.

Augmentation Region-wise LPIPS↓ PSNR↑ SSIM↑
Rotate ✓ 0.2348 17.99 0.5657
Translate ✓ 0.2468 18.01 0.5669
TPS x 0.2323 18.15 0.5758
TPS ✓ 0.2270 18.26 0.5817
DensePose - 0.2142 18.86 0.6071

Table 4: Ablation study for the method trained with and without
curriculum learning.

Method LPIPS↓ PSNR↑ SSIM↑
w/o curriculum learning 0.2238 18.09 0.5920
w/ curriculum learning 0.2220 18.18 0.5935

Figure 10: Visual comparison of the results produced with and
without curriculum learning.

4.2.3. Texture Blending

We evaluate the effect of blending the refined texture with the sam-
pled texture using a blending mask. We trained Re f inerNet with
two different settings: producing the final texture map using the
blending mask and directly generating the final texture map. The
results are shown in Table 5 and Figure 11. Although the scores of
PSNR and SSIM are similar, our qualitative evaluation (Figure 11)
shows improvements in maintaining texture details present in input
images, which is reflected in the LPIPS score (Table 5). The model
trained without blending fails to produce clear details of the logo or
patterns present in the source image as indicated in the orange box.

5. Discussion

5.1. Limitations

Even though our method achieves better results compared to pre-
vious methods, we have limitations that need to be addressed. Our
method generates textures based on the surface of the target 3D hu-
man mesh which is predicted by Tex2Shape [APTM19]. Because
Tex2Shape deforms the SMPL [LMR*15] model to obtain the 3D
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Figure 11: Visual comparison of the resulting texture maps from
the model trained with and without using the blending mask.

Table 5: Ablation study for the model trained with and without the
texture blending.

Method LPIPS↓ PSNR↑ SSIM↑
w/o texture blending 0.2276 18.11 0.6007
w/ texture blending 0.2144 18.06 0.5965

human mesh, our model cannot fully handle the textures with loose
clothes, such as skirts and long coats.

Similar to other approaches based on deep neural networks, the
capability of our method is limited to the training dataset. The size
of our training dataset is relatively small compared to previous stud-
ies. Thus, our method fails to generate a texture map with various
garments such as hats or eye glasses as shown in Figure 7(h) and
the last column in Figure 9. Another example is human identity.
The SURREAL dataset is limited to a single face-identity, and our
newly collected dataset consists of limited ethnicity. This hinders
the model from generating a texture map with the personal identity
because the same face appeared in the source image. With a bigger
and more diverse dataset, this problem will be alleviated.

5.2. Future work

Our method is based on a supervised setting, which requires ground
truth data for training. An interesting future research direction is
to utilize high-quality image or video datasets, which are relatively
easier to acquire, for unsupervised or self-supervised training as ex-
emplified by Grigorev et al. [GII*21]. Another interesting direction
is to exploit the high-capability of GAN models [KLA19; FLJ*22b]
to generate different views of the source image to achieve bet-
ter initialization as attempted in video-based methods [AMX*18a;
AMX*18b; BTTP19; ZLT*20; MAP20; BTTP19].

6. Conclusion

In this work, we proposed a method for generating a 3D human
texture map from a single image. The key idea of our approach is
to complete the incomplete partial texture map by using a sampling
network followed by adjusting the resulting texture with a refiner
network. Compared to previous approaches, our method generates
a texture map with improved quality by successfully retaining the

textural patterns presented in the visible regions of the source image
while maintaining spatial alignment with the surface of the target
3D human mesh. In addition, our method produces a plausible tex-
ture map from a non-frontal view image. We verified the effective-
ness of curriculum learning and other design choices we made by
ablation studies and showed significant quality improvement in the
resulting texture by comparing our approach with previous meth-
ods.
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