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Figure 1: Our approach enables intuitive appearance editing of high-level perceptual attributes. Our framework takes as an input a single
image of an object (top) and produces high-quality edits of material attributes such as glossy or metallic, while preserving the geometrical
structure and details (bottom). The“+” and “-” indicate whether the target high-level perceptual attribute is increased or decreased.

Abstract
Intuitively editing the appearance of materials from a single image is a challenging task given the complexity of the interactions
between light and matter, and the ambivalence of human perception. This problem has been traditionally addressed by esti-
mating additional factors of the scene like geometry or illumination, thus solving an inverse rendering problem and subduing
the final quality of the results to the quality of these estimations. We present a single-image appearance editing framework
that allows us to intuitively modify the material appearance of an object by increasing or decreasing high-level perceptual
attributes describing such appearance (e.g., glossy or metallic). Our framework takes as input an in-the-wild image of a single
object, where geometry, material, and illumination are not controlled, and inverse rendering is not required. We rely on gener-
ative models and devise a novel architecture with Selective Transfer Unit (STU) cells that allow to preserve the high-frequency
details from the input image in the edited one. To train our framework we leverage a dataset with pairs of synthetic images ren-
dered with physically-based algorithms, and the corresponding crowd-sourced ratings of high-level perceptual attributes. We
show that our material editing framework outperforms the state of the art, and showcase its applicability on synthetic images,
in-the-wild real-world photographs, and video sequences.

CCS Concepts
• Computing methodologies → Machine learning; Computer graphics; Image manipulation;

1. Introduction

Humans are visual creatures, visual data play a key role in the way
we perceive and understand the world around us. We are able of
recognizing materials, understanding their appearance, and reason-
ing about other physical properties effortlessly, just briefly looking

at them. The visual appearance of a material — whether it appears
glossy, metallic, or rough — is one of the key properties that deter-
mine how we manipulate and interact with objects. However, such
visual appearance is formed by a complex multidimensional inter-
action involving the material properties themselves, but also other
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confounding factors like geometry or illumination, that can affect
our perception. Unfortunately, such underlying perceptual process
is not yet completely understood [And11, Fle14, MB10].

Given the large amount of dimensions that our perception in-
volves, many works have focused on editing material appearance
by estimating the known parameters of the scene (material, ge-
ometry, and illumination), thus solving an inverse rendering prob-
lem where the material is later modified [BBP21, YX16]. How-
ever, this approach faces several problems: noise in the estima-
tion of scene parameters can yield uncanny editing results. More-
over, the user should understand the intricacies of the material
formulation to be able to edit. Techniques and hardware to ac-
quire material appearance are gaining accuracy, speed, and ef-
ficiency [NJR15, AWL15, DJ18]; creating a data-driven shift for
appearance editing techniques [SGM∗16, ZZW∗21, ZFWW20] .
These methods still present similar problems as using inverse ren-
dering. There exists a disconnection between the mathematical for-
mulation of material appearance and human-friendly parameters.
The captured data is machine friendly but not human friendly. Edit-
ing material appearance given a single in-the-wild photograph, and
using intuitive perceptual attributes is therefore a challenging task
that remains to be solved.

In this work, we present an image-based framework that does not
rely on any physically-based rendering but instead modifies directly
the material appearance in the image space. It takes a certain image
of an object as input and modifies the appearance based on varying
the value of the desired high-level perceptual attribute describing
appearance (see Figure 1). Recently, the popularization of genera-
tive deep learning models had allow us to design data-driven frame-
works for image editing [LDX∗19, HZK∗19, LZU∗17]. Since the
image cues that drive the perception of such attributes can not be
captured in a few image statistics, we rely on such generative neu-
ral networks to learn their relationship with material appearance
and generate novel edited images [SAF21, LSGM21].

We devise a generative architecture that allows to intuitively
edit material appearance just from a single, in-the-wild, image and
given the value of the target perceptual attribute that we want to
manipulate. To train our framework, a first approach might be col-
lecting pairs of images the originals and the edited ones, where
the edited examples were produced given a target high-level per-
ceptual attribute value. This approach is not only tedious but also
hinders the training process. We follow the work from Delanoy et
al. [DLC∗22], which is based on training a two-step generative
framework using a wide dataset composed of a large variety of
images, paired with high-level perceptual ratings obtained through
user studies. However, this method needs additional geometry in-
formation (as a normal map) of the target object. We thus devise
an encoder-decoder architecture that allows us to send the relevant
high-frequency information of the object’s shape from the encoder
to the decoder thanks to the STU cell [LDX∗19] and a novel loss
function. Thus, removing the need for the normal map as the input
and not subduing our results in in-the-wild photographs to having
good estimations of the normal map.

We trained two version of our framework focusing on two high-
level perceptual attributes that are both common and easy to un-
derstand: metallic and glossy. We evaluate the consistency of our

edits on a wide variety of scenes with different illuminations, ma-
terials, and geometries; and compare our results with the work from
Delanoy et al. [DLC∗22]. We observe that our method, despite re-
sorting to simpler input and having a simpler architecture, obtains
more realistic material appearance edits of the input image. We also
assess the temporal consistency by editing video sequences com-
posed of frames rendered using unseen illumination, geometry, and
materials. We observe that our framework is capable of producing
coherent outputs even when the additional temporal dimension is
included.

2. Related Work

2.1. Visual Perception

Understanding how our visual system interprets our world
is a longstanding goal in fields like computer graphics
or applied optics [NOGRR21], that is yet to be under-
stood [FDA01, FDA03]. Our visual perception of an ob-
ject is guided by its material properties; but, also involves
factors such as geometry [VLD07, HFM16], light condi-
tions [HLM06, KFB10, CK15] or motion [DFY∗11, MLMG19].
To reduce the dimensionality of the problem, previous work
have focused on understanding single, high-level appear-
ance properties like glossiness [PFG00, WAKB09, CK15],
translucency [GXZ∗13, XZG∗20, GWA∗15] and soft-
ness [SFV20, CDD21]; or draw inspiration from artists’ implicit
understanding of the key visual cues that guide visual percep-
tion [DCWP19, DSMG21]. Recent works suggest that material
perception may be driven by complex non-linear statistics better
approximated by highly non-linear models such as neural net-
works [FS19, SAF21, DLG∗20, LMS∗19]. Inspired by this, we
propose a deep-learning-based framework for material appearance
editing that relies on images paired with human judgments about
high-level perceptual attributes to be trained.

2.2. BRDF-based Material Editing

Editing material appearance is a complex task since there is a dis-
connection between our perception and materials’ physical proper-
ties [FWG13, TFCRS11, CK15]. Non-parametric models such as
SVBRDFs are hard to edit. Different approaches have been pro-
posed, such as inverse shading trees [LBAD∗06], procedural mod-
els [HHD∗22], or using deep-learning techniques [DDB20]. Sev-
eral perceptually-based frameworks have been proposed to pro-
vide intuitive controls over parametric [FPG01, PFG00] and non-
parametric appearance models [SGM∗16, MGZ∗17, HGC∗20].
Unfortunately, these models only capture material properties, while
leaving out other scene parameters that also drive our percep-
tion of material appearances, such as geometry and illumina-
tion [LSGM21]. Another line of work proposes an intrinsic de-
composition of the scene to manipulate materials [BM15, YS19].
More recently, NeRF [MST∗20] based approaches for such
decomposition are allowing for unprecedented levels of real-
ism [BBJ∗21, ZSD∗21, SDZ∗21]. However, these methods only
provide a new material definition that can later be used in a specific
3D scene but do not allow to edit it. Our work presents an intuitive
framework that directly uses in-the-wild images and is capable of
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editing the appearance of materials using high-level attributes such
as glossiness.

2.3. Image-based Material Editing

Image-based material editing attempts to manipulate the pixel
values directly into the image space. Several interactive frame-
works have been proposed to provide users more intuitive con-
trols over the target editing regions of the image, selecting them
just from a few strokes [PL07, AP08, DTPG11]. The work from
Khan et al. [KRFB06] proposes a single-image editing frame-
work exploiting our tolerance to certain physical inaccuracies.
Such approach was extended later to relight paintings [LMJH∗10],
consider global illumination and caustics [GSLM∗08], or weath-
ering effects [XWT∗08]. More recent work, supported by the
success of deep-learning-based methods, introduces editing ap-
proaches by factoring the image into shape, material, and re-
flectance [LCY∗17, RRF∗16, MLTFR19]. Splitting an image into
separate components like frequency bands [BBPA15] or shad-
ing and reflectance [GMLMG12] has been a standard prac-
tice for image manipulation. Instead, we propose a generative-
based editing framework without the need to decompose the in-
put image, learning to edit directly the visual cues that drive
our perception of high-level attributes. Generative Adversar-
ial Networks (GANs) [GPAM∗14] have been proposed to edit
face attributes (i.e., hair color or gender) through the latent
space [LZU∗17, HZK∗19, LDX∗19]. Our framework works in-
stead in the complex problem of material appearance, where con-
founding factors like geometry or illumination have a direct im-
pact in our perception. Closer to ours, Delanoy et al. [DLC∗22]
introduce a generative framework for intuitive appearance editing
using high-level perceptual attributes. However, their method re-
quires two inputs: the image, and its normal map which yields non-
photorealistic results for in in-the-wild images where the normal
map is estimated. We devise a novel generative architecture that al-
lows to keep the high-frequency information from the geometry of
the input images, thus removing the need for the normal map as the
input while obtaining superior performance.

3. Our Framework

This section describes our proposed framework for single-image
appearance editing. We introduce our goal (Section 3.1), describe
the mathematical model of the Selective Transfer Units (STU) cells
(Section 3.2), and, explain the different modules that make our
model architecture is built upon (Section 3.3).

3.1. Goal and Overview

Our goal is to generate an image y whose material appearance we
want to edit from an input image x and a value attt ∈ [0,1] of the tar-
get high-level perceptual attribute to edit (e.g., glossy or metallic).
The target edited image y depicts the same object as x and elicits a
visual appearance according to the value of the high-level percep-
tual attribute attt . For instance, more glossy if attt is closer to 1 and
less if closer to 0. To achieve it, we introduce a novel framework
that relies on an encoder-decoder architecture G that encodes the
image x, and manipulates the latent space z together with the target

attribute attt to generate the edited image y. A high-level overview
of our framework is shown in Figure 2.

3.2. Selective Transfer Units

When using encoder-decoder architectures, it is common prac-
tice to send information between the encoder and decoder by
using skip-connections [RFB15]. This allows us to keep high-
frequency details in the generated image that are lost other-
wise [KW13, HMP∗17]. However, in image editing tasks that ma-
nipulate the latent space, adding skip connections hampers the
editability of the model, where only the input image can be re-
constructed [CCK∗18, HZK∗19, DLC∗22]. To bridge this gap, we
send information from the encoder to the decoder by selectively
removing unnecessary data using Selective Transfer Units (STU)
memory cells [LDX∗19].

The STU architecture, illustrated in Figure 2, is a variant of the
GRU [CvMG∗14, CGCB14] and allows encoder-decoder architec-
tures to keep the relevant information of the input image in the
edited output when manipulating the latent space z. Given the fea-
ture map of the lth encoder layer denoted by fl

enc, the STU cell out-
puts an edited feature map fl

t , as is shown in Figure 2. Each STU
cell receives information from the previous cell via a feature map
ŝl+1 (also called hidden state), which also contains information of
the target attribute attt . The STU updates its internal hidden state
denoted as sl and sends this to the next STU cell. For further infor-
mation about the mathematical formulation of STU cells refer to
Appendix A.

3.3. Network Architecture

Our framework is a GAN-like model composed of a generator G
and a discriminator D that is only used during training. Our goal is
to leverage G to edit an in-the-wild input image x according to a
target high-level perceptual attribute describing appearance attt to
generate an edited image y where

y = G(x,attt). (1)

The generator G is composed of an encoder module Genc that en-
codes the input image to a latent vector z and a decoder module
Gdec that generates the edited image, both with the same number n
of layers.

The encoder Genc compresses the image x in a latent code z,
while storing the set of features maps f = {f1

enc, f2
enc, ..., fn−1

enc }, gen-
erated by its convolutional layers. The latent code z corresponds to
the feature map generated by the last convolutional layer such that
z = fn

enc. The decoder Gdec reconstructs the edited image y from
the latent code z concatenated with the target high-level perceptual
attribute attt . To keep the high frequencies from the input in the
edited image y, we send the feature maps f via skip-connections.
However, performing this process without additionally processing
the information in the features affects the editing ability of the gen-
erator G. Thus, we introduce an STU cell in each skip-connection
where Gst denotes the set of STU cells of the framework, and Gl

st
corresponds to the STU cell of the lth layer. The STU cells edit the
set of feature maps f from the input, generating a set of edited ones
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ft = {f1
t , f2

t , ..., fn−1
t }. Since the STU cell of the deepest skip con-

nection Gn−1
st does not receive a hidden state ŝ from another STU

cell, Gn−1
st takes as input the latent code z concatenated with the

target attribute attt to edit the feature map fn−1
enc , as is shown in Fig-

ure 2. For further details of our architecture refer to Appendix B.

4. Learning to Edit Material Appearance

Training GAN-like models is a complex task that requires careful
tuning of the hyperparameters. We first describe the dataset of im-
ages, with paired crowd-sourced ratings of high-level perceptual
attributes, that we used to train our framework (Section 4.1). Then
we introduce the loss function that allows us to faithfully edit ma-
terial appearance according to the target perceptual attribute (e.g.,
glossy) (Section 4.2), and last, we describe the technical details of
the training process (Section 4.3).

4.1. Training Dataset

Generating ground-truth data from analytical BRDF models is not
a robust approach to training our framework, since their parame-
ters are not aligned with our perception [NDM06, WAKB09]. In
addition, our framework would learn to edit based on variations
in a physical parameter (e.g., roughness) and not on variations
in our perception. Thus, we leverage the dataset of Delanoy et.
al [DLC∗22], designed for material appearance perception tasks.
This dataset based on the Lagunas et al. dataset [LMS∗19] con-
tains renderings of 13 different geometries, illuminated by 7 cap-
tured real-world illuminations [Deb]. Renders have been made with
the physically-based renderer Mitsuba [Jak10] using 100 differ-
ent BRDFs from the Merl dataset [MPBM03]. For each combina-
tion of material × shape × illumination, 5 different images with
slight variations in the viewpoint (randomly sampled within a 45
degrees cone around the original viewpoint) have been rendered, as
is shown in Figure 3. The dataset has 45,500 images (13 geometries
× 100 materials × 7 illuminations × 5 views).

Each scene is described by a set of high-level perceptual at-
tributes (i.e., plastic, rubber, metallic, glossy, bright, rough, and the
strength and sharpness of reflections) rated on a normalized Likert
scale, from 0 to 1. A total of 2,600 paid subjects participated in
the study, each of them rating 15 different random images. The
final dataset gathers a perceptual rating per viewpoint. To reduce
the presence of noise and outliers, we use the median value pooled
over the 5 viewpoints and the shape. Then the attribute values are
different for each material and illumination.

Data Augmentation To have more diversity in the images and
help our model generalize better, we add a data augmentation
pipeline. First, we resize the images to 512× 512 px; then we flip
and rotate them 90 degrees randomly, and we finally crop them to
480× 480 px. In addition, to reduce the bias on the colors BRDF
we represent images on the HSV color space and make a shift in
the Hue and Saturation channels. Finally, the input is resized to a
size of 256×256 px. to remove the background. Within each input
image, the background is removed by applying a mask of the ob-
ject’s silhouette. Each image in the training dataset is paired with
a high-level perceptual attribute atts ∈ [0,1]; however, with our

framework, we want to edit the input images with a different tar-
get attribute attt . During training, we sample attt randomly using a
uniform distribution U([0,1]) allowing the generator G to produce
edited images different from the input to trick the discriminator D.

4.2. Loss Functions

We adopt the adversarial training proposed by He et al. [HZK∗19]
and introduce a GAN model where the discriminator D has two
branches Dadv and Datt . Dadv consists of five convolution layers
to predict whether an image is fake (edited) or real. Datt shares
the convolution layers with Dadv and, instead, predicts the high-
level attribute value attt . Figure 4 shows a high-level scheme of
our framework during training.

Adversarial Losses Since we do not know what are the ground-
truth edited results, we use an adversarial loss [GPAM∗14] aiming
to generate edited results indistinguishable from real images. GANs
are complex to train, partially due to the instability of the loss func-
tion proposed in the original formulation [ACB17]. Thus, we rely
on the WGAN-GP [GAA∗17] loss to alleviate such a problem. The
discriminator D is trained to give a high score to real images and
a low score to generated ones, aiming to disambiguate them, and
tries to minimize the adversarial loss defined as:

LDadv = Ex [Dadv(x)]−Ey [Dadv(y)]+LGP. (2)

Formally, D should be a 1-Lipschitz continuous function. To
keep this constraint, WGANs [ACB17] introduces a gradient
penalty term defined as follows:

LGP = λ1Ex̂

[
(||∇x̂Dadv(x̂)||2 −1)2

]
. (3)

Where λ1 is the gradient penalty weight. The generator G is
trained such that the discriminator D believes that generated im-
ages are real, giving them a high score. Therefore the generator’s
adversarial loss is given by:

LGadv = Ey [Dadv(y)] . (4)

Attribute Manipulation Losses Even though the ground truth is
missing, the editing result has to elicit a visual impression accord-
ing to the target perceptual attribute attt . Therefore, we introduce
an attribute classifier Datt which learns to predict the attribute val-
ues atts from the images that belong to the training dataset. Since
we have to compare the distance from the predicted attributes by
Datt to atts, the following attribute manipulation loss is computed
and optimized by Datt during training:

LDatt = ||atts −Datt(x)||1. (5)

The generator G should produce images with similar looks to
real ones to trick D, so its edits must be consistent with the target
perceptual attributes attt , minimizing the following distance:
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Figure 2: (a) High-level overview of our framework. Our generator G is composed of an encoder Genc and a decoder Gdec. It is capable of
editing the input image x according to the target attribute attt to generate the edited image y. (b) The architecture of a single STU cell. As
an input, it takes the feature map of the current layer fl

enc and the hidden state of the previous cell ŝl+1. It outputs the updated hidden state sl

and feature map fl
t .
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Figure 3: Seven illuminations present in the training dataset and
corresponding rendered spheres with the brass material (top). Thir-
teen scenes of the geometries present in the training dataset, and
five viewpoints of the bunny geometry rendered using the nylon ma-
terial and Ennis illumination (bottom).

LGatt = ||attt −Datt(y)||1. (6)

Reconstruction Loss Each image in the training set has crowd-
sourced ratings of high-level perceptual attributes atts, describing
their appearance. Thus, if we ask our generator G to edit x accord-
ing to the attribute atts, it should generate an edited image x̂ similar
to the input. We minimize the following L1-norm during training:

Lrec = ||x− x̂||1. (7)

Figure 4: Training scheme of our framework. The gray block rep-
resents our generator G, and the discriminator branches Dadv and
Datt are illustrated by the purple and yellow blocks, respectively.
Pointed arrows denote the parameters used as input for the train-
ing losses (Section 4.2).

Final Loss Taking the above losses into account, the objectives to
train the discriminator D and generator G can be formulated as:

min
D

L = −LDadv +λ2LDatt , (8)

min
G

L = −LGadv +λ3LGatt +λ4Lrec. (9)

Where λ2, λ3, and λ4 are the model trade-off parameters, that
are tunned to yield values of the individual losses in a similar order
of magnitude. Both G and D will try to minimize their objective
function, however, once G has learned to trick D, the loss function
of the latter will tend to increase until both models reach a stable
equilibrium.
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4.3. Training Details

We train the model using the ADAM optimizer [KB14] with β1 =
0.5 and β2 = 0.999. The learning rate η is 2×10−4 for both G and
D. The trade-off parameters are λ2 = 50, λ3 = 100 and λ4 = 1000
for the Equations 8 and 9, and λ1 = 10 for Equation 3 (see Ap-
pendix B for further details). At each training step, the discrimina-
tor iterates 7 times while the generator updates its parameters once.
The memory module Gst is composed of 4 skip connections with
STU cells between the encoder and decoder. All the experiments
are computed using the PyTorch [PGM∗19] library with cuDNN
7.1, running on an Nvidia GeForce RTX 3090 GPU. In total, train-
ing the whole framework takes two days.

5. Evaluation and Results

We evaluate our framework on a set of synthetic images and real
photographs that have not been seen by the model during train-
ing. We start by describing the evaluation dataset(Section 5.1); val-
idate the design choices of our framework with a series of ablation
studies (Section 5.2); demonstrate the robustness of the proposed
method by comparing the obtained results with varying geome-
try, illumination, or material (Section 5.3); and finally compare our
method to the state of the art, obtaining better performance (Sec-
tion 5.4).

5.1. Evaluation Dataset

To evaluate our framework we leverage the synthetic dataset used
by Delanoy et al. [DLC∗22], containing scenes with shapes and
materials never seen during training. They have been rendered us-
ing eight shapes collected from online sources, four illuminations
obtained from HDRI-Haven [Hdr], and eight materials coming
from Dupuy and Jakob’s database [DJ18]. Figure 5 shows a rep-
resentative subset of the synthetic scenes. We also test our frame-
work’s performance with real-world photographs downloaded from
online catalogs of decorative items and with in-the-wild mobile
photos taken by us. We masked the object of interest using the on-
line API Kalideo [Kal]. Figure 6 shows material appearance editing
results using our framework sampling different values for the tar-
get attribute attt. We can see the consistency of our edits when the
attribute varies for in-the-wild photographs.

5.2. Ablation Studies

We evaluate our design choices via a series of ablation studies. Our
framework is based on a generative architecture that uses a discrim-
inator D during training and STU cells [LDX∗19] to obtain more
realistic edited images while keeping the relevant high-frequency
details of the input image. The model without the discriminator D
or without STU cells are capable of learning to better reconstruct
the input image. However, without D (w/o D) we are not able to
properly edit the material appearance since no feedback about such
edits exists. On the other hand, concatenating skip-connections di-
rectly, without including information from the attribute, hampers
the decoder’s ability to generate the edited image from the latent
code z (w/o STUs). Figure 7, depicts how not using a discrimina-
tor D generates an image almost equal to the input, not allowing

Figure 5: Synthetic dataset used to evaluate our framework. The
images show eight geometries rendered with illumination and ma-
terials never seen in the training process.
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Figure 6: Editing results by varying the metallic or glossy at-
tributes. The “+” and “-” indicate whether the target high-level
perceptual attribute is increased or decreased.

for editing. Besides, not including the STU cell does not convey
the desired appearance according to the target high-level attribute
in the final image.

5.3. Consistency of the Edits

We test the robustness of our framework exploring its editing abil-
ity through samples from the evaluation dataset. Since we have a
wide collection of rendered images with diverse materials, illumi-
nations, and geometries; we can fix a scene parameter (i.e., illumi-
nation, geometry, or material) and vary the other two. When work-
ing with in-the-wild photographs, scene parameters are unknown.
We can not modify the material or geometry of the objects but we
are able to change their illumination conditions by placing them
elsewhere. Figure 8 (a), (b), (c) shows images edited by our frame-
work for the metallic attribute while varying scene parameters for
synthetic images. On the other hand, in (d) we vary the illumination
conditions for in-the-wild photographs of the same object (for fur-
ther results see the Supplementary Material). We can see how our
framework produces consistent results in the different conditions,
and with synthetic and in-the-wild photographs.

We also test the temporal consistency of our framework by edit-
ing two video sequences frame by frame for both metallic and
glossy attributes.
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Figure 7: Ablation studies where we analyze the impact of the
different components of our framework. From left to right: input
image, edited image without the discriminator D during training,
edited image without using the STU cell, and our framework. We
can see how by not using the discriminator D the framework is not
able to edit and only reconstructs the input image, and using only
skip connections, without the STU, hampers the ability to edit. The
“+” indicates an increase of the target attribute.

Table 1: Average PSNR, SSIM, MSE and MAE reconstruct-
ing the input image on the synthetic dataset. We can see how
our framework outperforms the method proposed by Delanoy et
al. [DLC∗22].

Method PSNR ↑ SSIM ↑ MSE ↓ MAE ↓
DLC*22 15.989 0.761 0.095 0.031

Ours 27.388 0.967 0.002 0.023

5.4. Comparison with the State of the Art

We compare our results against the method of Delanoy et
al. [DLC∗22]. We show results reconstructing the input image us-
ing the crowd-sourced perceptual attribute as the input, and edit-
ing the input using a different target perceptual attribute. Since the
method of Delanoy et al. also needs the normal map as the input, we
evaluate in-the-wild photographs with their estimated normal map
(using Delanoy et al. estimator), and synthetic images with a per-
fectly normal map. Our method does not need the normal map as
the input. We rely on qualitative and quantitative comparisons em-
ploying four metrics: Pixel-to-Signal Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM), Mean Squared Error (MSE), and
Mean Absolute Error (MAE).

Quantitative Evaluation To evaluate the reconstruction ability we
rely on the synthetic images with their crowd-sourced perceptual
attributes. Table 1 shows we outperform the state of the art as a
result of introducing STU cells in each skip-connection. As illus-
trated in Figure 9, our method keeps high-frequency details from
the input image without the need of a normal map of the object’s
surface as the input. We can see that specular reflections are present
on the reconstructed image while the previous method blurs them,
keeping only low frequencies.

Image Editing In Figure 10 we can see a comparison between
the edited images by our method and the one by Delanoy et
al. [DLC∗22] (for further comparisons see the Supplementary Ma-
terial). Our approach learns to edit perceptual cues properly while
objects’ shape remains unchanged. The material appearance edits
from Delanoy et al. [DLC∗22] strongly depend on the shape of their
estimated normal map [LAD∗21]. This causes geometry details that

are not present in the normal map not to be present in the edited im-
age. Also, an inaccurate estimation of the normal map may deform
the original shape, especially in in-the-wild photographs where ge-
ometries are usually highly complex (see Figure 11).

5.5. Comparison with Physically-based Rendering

We compare our results with physically-based rendering by vary-
ing the roughness parameter of the Principled BSDF [BS12, Bur15]
in the interval [0,1] and rendering different versions of the same
scene (using geometry and illumination not present in our train-
ing dataset). The other parameters and the albedo constant and we
rely on the physically-based renderer Mitsuba 3 [JSR∗22] to gen-
erate the images. Then, with our method, we increase and decrease
the gloss attribute using the rendered scene with a roughness value
of 0.5 as the input. As we can see in Figure 12, our edits convey
the overall appearance of the rendered images. However, we are
less accurate when the gloss attribute is increased. This may be ex-
plained since removing existing information (highlights) is easier
than introducing missing information without providing the envi-
ronment map.

6. Limitations and Future Work

We have presented and validated a framework for intuitive material
appearance editing using single, in-the-wild images. We relied on a
large set of images paired with crowd-sourced ratings of high-level
perceptual attributes to train our framework. We use a generative
neural network and devise a loss function that allows us to learn
how to edit material appearance based on such high-level attributes,
without any pairs of original and edited images. Our results show
that the presented method can achieve realistic results, almost on
par with real photographs, on a wide variety of different inputs.
However, our method is not free of limitations. As we can see in
Figure 13, when using input photographs that feature highly spec-
ular highlights, while able to convey the appearance of the target
high-level perceptual attribute, our framework may struggle to edit
them. Instead of considering the original albedo to perform edit the
highlights when glossiness is decreased, the resulting edits feature
a dimmed region.

Material appearance perception and editing pose many chal-
lenges that are not fully investigated in this work. We pro-
pose a data-driven approach for intuitive material editing where
we have relied on an existing dataset that was rendered using
MERL [MPBM03] material measurements. MERL just contains
100 real-world isotropic BRDFs, we have tried to increase the
variety of such data using different data augmentation strate-
gies during training time. This has allowed us to obtain plausi-
ble results, nevertheless, exploring more complex material repre-
sentations, or including other newly measured material datasets
[DJ18, FV14, SCW∗21] could help obtain more universal models
for material editing. Also, the high-level perceptual ratings in the
dataset come from online surveys. While we may identify metallic
and glossy as different properties, there is a certain degree of cor-
relation in user answers between those attributes. In Figure 14 we
show a real photograph edited by our framework. There, we ob-
serve that while yielding different results, the increased glossy and
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Figure 8: Examples of edited images by our framework. (a) Renders of the Among Us geometry under three different illuminations, and
two constant materials. (b) Renders of Mario, Boomerang Flower, and Buddha geometries with the same material and light conditions. (c)
Renders of the Boomerang Flower geometry with the same illumination but different materials. (d) Photographs of a rubber duck taken in
different places under three light conditions. Our framework is capable of producing compelling and consistent edits in all cases. The “+”
corresponds to an increase in the target metallic attribute value attt , while the “-” corresponds to a decrease.

PSNR/SSIM
MSE/MAE  

13.20/0.654

0.048/0.142
27.39/0.967

0.002/0.023

Input DLC∗22 Ours

Figure 9: A demonstration of the reconstruction quality for Bud-
dha geometry. Yellow insets show regions of the object’s surface
with specular reflections.

metallic edits share a certain resemblance. Investigating other at-
tributes, or different perceptual data collection strategies may yield
improved performance and more intuitive tools. We also observe
that the collected perceptual ratings are not distributed uniformly.
This result may come from both, a bias in the dataset, and hu-
mans’ perceptual behavior. As a result, our framework may not
learn to uniformly edit material appearance when varying the tar-
get attribute (see Supplementary Material). Another potential ap-
proach to generate the dataset would be to rely on a BRDF model
to generate images, and input a parameter of this material model
(e.g., roughness) as the target attribute. However, while the frame-
work may be trained using this data, in this work we are addressing
the more complex problem of editing appearance from high-level
perceptual attributes where the users have factored in all potential
confounding factors of perception (including the material model) in
their ratings [LSGM21]. Last, the generative neural network used
in this work has been trained on the limit of our hardware. To use
higher-resolution images, one could use the proposed method (and
its weights) as a backbone, add additional layers, and fine-tune the
model while increasing the resolution size of the input. This could
be repeated in an iterative process until we get the desired resolu-
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Figure 10: Comparison editing the glossy attribute using the
method of Delanoy et al. [DLC∗22] and our framework for two in-
the-wild photographs. Our framework only requires the photograph
as the input while the work of Delanoy et al. needs to estimate the
normal map. We can see how our method better recovers the glossy
appearance of the object when edited. Besides, it is able to recover
better high-frequency details. The “+” and “-” indicate whether
the target high-level perceptual attribute increased or decreased.

tion size [KALL17]. However, although this is a possible approach,
its effectiveness requires further investigation. We have created a
framework that is trained for each attribute. Developing a novel
methodology that would allow to manipulate an appearance vector
can help to have a more comprehensive description of material ap-
pearance, and more intuitive edits. In addition to the results we have
shown, we hope that our work can inspire additional research and
different applications around material appearance. We will make
our code available for further experimentation, to facilitate the ex-
ploration of these possibilities.
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Figure 11: Delanoy et al. [DLC∗22] output is highly dependent to
the estimated normal map of the input image. A low-frequency esti-
mation of the normal map yields dull edits of material appearance.
The “+” indicates an increase of the target attribute.
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Figure 12: Results varying the roughness parameter of the Prin-
cipled BSDF [BS12, Bur15] (top row) and using our framework
(bottom row) to edit the gloss high-level perceptual attribute. The
“+” and “-” indicate whether the roughness parameter and the
target high-level perceptual attribute increased or decreased.
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Figure 13: Example of two failure cases of our framework for the
glossy attribute on photographs. The “-” indicates a value of the
target attribute set to 0.
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Appendix A: STU Details

The STU cells are a variant of the GRU [CvMG∗14, CGCB14]
model and allow encoder-decoder Convolutional Neural Networks
(CNNs) to retain the relevant information over a long period. Let’s
say we want to send the feature map of the lth encoder layer de-
noted by fl

enc to the lth layer of the decoder. Given a single STU,
as is shown in Figure 2, the hidden state ŝl+1 holds the information
from the previous STU cell of the layer l +1. This input is used to
remove information from fl

enc an generate the output feature map
fl
t as is shown in Figure 2. The hidden state sl of the cell is calcu-

lated and sent to the next layer l−1. The hidden state ŝl+1 also has
information of the target attribute value:

ŝl+1 = Wt ∗U

[
sl+1,attt

]
. (10)

Where ∗U and [·, ·] denote the upsampling operation followed
by a convolution operation, and the concatenation operator respec-
tively. The update gate u helps the cell to determine how much of
the past information (from the previous cell) needs to be passed
along to the future, while reset gate r is used to decide how much
of the past information to forget. These tensors are computed as:

ul = σ

(
Wu ∗

[
fenc, ŝl+1

])
, (11)

rl = σ

(
Wr ∗

[
fenc, ŝl+1

])
. (12)

The sigmoid activation function σ(·) is applied to normalize the
result between 0 and 1. Wu and Wr are the weights matrices up-
dated during training. The hidden state sl uses rl to store the rele-
vant information from the past and is calculated as follows:

sl = rl ◦ ŝl+1. (13)

Where ◦ expresses the Hadamard product. This operation be-
tween rl and ŝl+1, determines what to remove from the previous
cell. To compute fl

t ; first, nonlinearity is introduced in the form of
tanh to ensure that the values in the candidate feature map f̂l

t remain
in the interval [−1,1]:

Figure 15: Architecture of our generator G and discriminator D.
BN, IN and FC denote Batch Normalization, Instance Normaliza-
tion and Fully Connected layer respectively.

f̂l
t = tanh

(
Wh ∗

[
fenc,sl

])
. (14)

Finally, the update gate u is needed to determine what to col-
lect from the candidate feature map f̂l

t and ŝl+1, so we compute the
Hadamard product as with Equations 11 and 12, last, the result is
convolved by the weights Wh:

fl
t =

(
1−ul

)
◦ ŝl+1 +ul ◦ f̂l

t . (15)

Appendix B: Additional Details of Our Architecture

Our framework is composed of an encoder-decoder network G and
the auxiliary attribute predictor and image discriminator D only
used during training. The generator G is composed of an encoder
Genc made of 5 convolutional layers that reduce the spatial dimen-
sions of the input image by a factor of two, and a decoder Gdec
composed of 5 convolutional layers, scaling the input feature of
each layer by an upsampling operation. The architecture of the dis-
criminator D is similar to Genc (5 convolutional layers), but both
Dadv and Datt apply full connected layers to output their predic-
tions, as is shown in Figure 15.

Trade-off Parameters Generative models are highly unstable dur-
ing training, selecting the correct trade-off parameters is crucial.
We have observed that the decoder’s attribute manipulation loss
LDatt decreases rapidly compared to its adversarial loss function
LDadv . As we see in Figure 16 increasing λ2 improves the editing
ability of our framework. On the other hand, the decoder applies
several transpose convolutions operations to reconstruct the target
image. Unfortunately, this architecture may introduce some arti-
facts in the edited image. We avoid using transpose convolutions in
our framework since they produce artifacts on the final image as is
shown in Figure 16.

Comparison with the State of the Art The number of trainable
parameters is an important factor when a deep learning model is be-
ing designed because a large number of parameters involves using
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Figure 16: Ablation studies where we train four versions of our
framework. Arrow (pointing up) indicates we set the target at-
tribute glossy attt to 1. From left to right: edited synthetic image
by our framework using transposed convolutions and training with
λ2 = 10, upsampling followed by a convolutional layer training
with λ2 = 10, transposed convolutions, and training with λ2 = 50
and upsampling followed by a convolutional layer training with
λ2 = 50.

a lot of memory to train the models and, often, resources are scarce.
The work from Delanoy et al. [DLC∗22] propose a framework
composed of two generators Gi with i ∈ {1,2} based on a Fader
Network [LZU∗17] architecture. G1 compress the low-resolution
input image of the single object in a latent code z1. G2 replicates
this behavior but takes high-resolution images as input to generate
its latent code z2. Since both latent codes, zi must not contain per-
ceptual information of the high-level perceptual attribute a, during
training both generators Gi play an adversarial game with a latent
discriminator LDi. Also, the authors introduce an image discrim-
inator D that plays an adversarial game with G2 to enhance the
quality of edited images. Table 2 shows the trainable parameters of
the whole framework.

Our framework is composed of one generator G and one dis-
criminator D, while the previous approach needs two generators Gi
helped by other two latent discriminators LDi and one image dis-
criminator C/D to improve the editing ability. In Table 3 we give
the number of total trainable parameters of our framework. Since
our framework is simpler than the previous one, it has fewer train-
able parameters, so we reduce notably memory usage by reducing
the trainable parameters from 58 920 489 parameters to 33 326 314
and thus saving 43% of memory.

Table 2: Number of trainable parameters per module for the pre-
vious method.

Module Trainable Parameters
G1 20 356 515

LD1 4 326 401
G2 4 610 179

LD2 14 813 697
C/D 14 813 697

Total Parameters 58 920 489

Table 3: Number of trainable parameters per module for our
framework.

Module Trainable Parameters
G (Genc +Gdec +Gst ) 13 758 280
D (both Datt and Dadv) 19 568 034

Total Parameters 33 326 314

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

345


