
EUROGRAPHICS 2023 / K. Myszkowski and M. Nießner
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 42 (2023), Number 2

Stochastic Subsets for BVH Construction

L. Tessari1 and A. Dittebrand†1,2 M. J. Doyle1 C. Benthin1

1Intel Corporation
2Karlsruhe Institute of Technology

(a) Input (b) Subset Sampling (c) Subset BVH build (d) Primitives Insertion (e) Cluster BVHs build

Figure 1: Overview of our proposed method. From the (a) input primitives, we (b) generate a subset, over which we (c) construct an initial
BVH topology using an existing BVH constructor (a top-down builder for example). This step benefits from the smaller primitive count. The
remaining primitives are (d) inserted into the leaves. We then (e) continue the construction process for each leaf.

Abstract
BVH construction is a critical component of real-time and interactive ray-tracing systems. However, BVH construction can
be both compute and bandwidth intensive, especially when a large degree of dynamic geometry is present. Different build
algorithms vary substantially in the traversal performance that they produce, making high quality construction algorithms
desirable. However, high quality algorithms, such as top-down construction, are typically more expensive, limiting their benefit
in real-time and interactive contexts. One particular challenge of high quality top-down construction algorithms is that the large
working set at the top of the tree can make constructing these levels bandwidth-intensive, due to O(n log(n)) complexity, limited
cache locality, and less dense compute at these levels. To address this limitation, we propose a novel stochastic approach to
GPU BVH construction that selects a representative subset to build the upper levels of the tree. As a second pass, the remaining
primitives are clustered around the BVH leaves and further processed into a complete BVH. We show that our novel approach
significantly reduces the construction time of top-down GPU BVH builders by a factor up to 1.8×, while achieving competitive
rendering performance in most cases, and exceeding the performance in others.

1. Introduction

Bounding Volume Hierarchy (BVH) construction can easily be-
come a bottleneck for real-time and interactive applications, espe-
cially where large quantities of dynamic geometry are involved. To
offset the build cost, which can represent a substantial fraction of

† Joint first authors

the frame time, the tree is often refitted for many animation frames
before being periodically rebuilt [LYMT06]. However, for highly
dynamic geometry, the use of refitting can significantly compro-
mise rendering performance due to lower BVH quality, until the
BVH can once again be rebuilt.

The great variety of existing BVH construction algorithms either
provide high traversal efficiency but slower construction speed, or
fast construction speed and slower traversal efficiency. Some algo-

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14759

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-7628-9985
https://orcid.org/0000-0003-1393-7997
https://orcid.org/0000-0001-6746-6794
https://orcid.org/0000-0003-3337-1636
https://doi.org/10.1111/cgf.14759

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

rithms make a compromise somewhere in between. An ideal al-
gorithm would possess both properties, and would allow higher
quality BVHs to be maintained under real-time dynamic conditions
while minimizing the need for refitting. This would benefit both
build and traversal.

One of the highest quality BVH build algorithms currently avail-
able is the top-down construction method [Wal07]. However, the
drawback of this technique is that it currently cannot compete with
the construction speed of lower quality algorithms. In this paper,
we propose a new approach to top-down construction on the GPU
which greatly accelerates its construction speed while preserving
the same rendering performance in most cases, and exceeding it
in others. We achieve this acceleration by reducing the number of
primitives to be processed at key stages of the build. We leverage
the fact that a carefully selected subset of the data gives a good
approximation of the final BVH, especially concerning the upper
topology which can exhibit a large working set in algorithms such
as top-down construction. This strategy is motivated by a theoreti-
cal analysis, where we show how the split complexity can signifi-
cantly speed up the construction. Our method proceeds in a number
of stages, which are visualized in Figure 1. We first order the input
primitives via a space-filling curve (a), and then maintain this or-
dering while building a Cumulative Distribution Function (CDF)
to sample the dataset (b). Using stratified importance sampling al-
lows us to select representative geometry that describes spatially
and cost-wise the data distribution. After the approximated tree is
built from this subset (c), we insert the remainder of the geometry
by carefully selecting the optimal leaf where to insert each primi-
tive (d). We then further process these leaves to produce the final
complete BVH (e).

2. Related Work

Given the hitherto discussed importance of BVH construction
speed and tree quality, a considerable variety of construction tech-
niques have appeared in the literature. Some of the earliest high
quality construction algorithms relied on a top-down approach to
divisively cluster primitives [Wal07]. To the present day, these
builders are still recognized as delivering among the best traver-
sal performance [AKL13]. Later variants of top-down construc-
tion aim to improve and accelerate this general approach while
retaining tree quality [GBDA15; GD16; HMB17]. Bottom-up ap-
proaches operate in the opposite manner and construct from the
leaves to the root [WBKP08; GHFB13; MB18a; BDTD22]. Lin-
ear Bounding Volume Hierarchy (LBVH) techniques differ from
both categories in that the BVH construction is transformed into
a sorting process, and an implicit hierarchy is extracted [LGS*09;
PL10; GPM11; Kar12; VBH17]. Insertion-based builders, while
receiving little attention for many years [GS87], have re-emerged
and work by incrementally inserting each primitive into an un-
finished hierarchy [BHH13; MB18b]. Finally, treelet restructur-
ing methods draw upon LBVH methods to an extent, while in-
troducing a second step where independent subtrees in an initial
LBVH are restructured or optimized to refine the hierarchy towards
a globally more efficient hierarchy [KA13; DP15]. Other interest-
ing approaches to BVH construction include incremental construc-
tion [BHH15] and construction via k-means clustering [MB16]. Fi-

nally, for a full overview of BVHs for ray tracing, we refer to the
STAR report [MOB*21].

Our method builds on some of these existing algorithms, but in-
troduces stochastic techniques as a main feature. Concerning pre-
vious work on stochastic methods applied to BVH construction,
the only approaches known to us are a randomized plane splitting
decision [NT03], and a metropolis-hasting chain to select which
nodes to reinsert for animation-optimized T-SAH cost[BM15]. In
contrast, we base all of our construction on estimates and stochas-
tic processes.

3. Background

In this section, we give an overview of two topics of particular rel-
evance to our novel BVH construction method. We first outline rel-
evant techniques from the Monte Carlo and Quasi-Monte Carlo lit-
erature. For a more general view on stratification and importance
sampling, we refer to [AP16]. Second, we provide an overview of
binned SAH BVH construction [Wal07], as this is a major build-
ing block of our BVH construction method, and also represents our
primary baseline for comparison.

3.1. Stratified Importance Sampling

Since our objective is to select a small and relevant part of the ge-
ometry representative of the whole scene, we can remap our prob-
lem into the sampling field and take advantage of its instruments. In
this context, we can view our set of primitives as a 1D piece-wise
function where we are interested in the single samples individually
instead of the estimated value of its integrand. If each sample fol-
lows a meaningful distribution (i.e. according to area measure), we
can obtain a representative subset of the data. To this end, we can
leverage some known methods used in numerical integration. Stan-
dard Monte Carlo integration converges at a rate of O(

√
n) in any

dimension, without any restriction on the integrand smoothness.
While this is a very desirable property, it is also apparent that it
requires n2 samples to halve the estimator error at any given point.
In our case, we can see the variance as how well we can select our
subset. Stratification and importance sampling are two variance re-
duction techniques that aim at improving this bound and that can be
combined. Intuitively, if we can divide our integration domain into
m different strata (each with a size of s = 1/m) and sample from
each of those, we will have a better coverage of our function. In
practice, it is often preferred to increase the number of strata pro-
gressively and take one sample in each. Low discrepancy sequences
in Quasi-Monte Carlo, such as Sobol or Halton, can drastically in-
crease the rate of convergence close to O(1/n) in many scenarios
thanks to their sampling guarantees. For a more extensive discus-
sion on random number generators, particularly regarding stratifi-
cation and low discrepancy, we refer to [KGA*19; AP16]. Among
each stratum, importance sampling can stir the evaluation to areas
that are more relevant for our estimation. Given that random se-
quences are generated from a [0,1]s distribution, importance sam-
pling allows us to map them to our domain and reduce the overall
variance. It is important to note that a bad fit could lead to infinite
variance, so the mapping function must be chosen carefully.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

256

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

3.2. Binned SAH BVH Construction

High quality BVH construction algorithms often follow a top-down
approach. We begin with the root node containing the bounding box
of the scene and divide it into two new child nodes, with each child
node containing a disjoint subset of the primitives referenced by
the parent node (this condition is relaxed in circumstances such as
spatial splitting, but it is otherwise generally true). The AABBs of
the child nodes are made to tightly bound the geometry contained
inside them. The procedure can be repeated top-down for each new
node created, until we reach the leaf nodes. Common criteria for
when to create a leaf include the total primitive count, or a heuristic
prediction of ray tracing efficiency.

Given this general flow of top-down construction, a critical ques-
tion is how primitives should be distributed to the left and right
child nodes. BVH traversal performance can vary greatly depend-
ing on how this decision is made. Simple methods, such as choos-
ing the spatial median to allocate the primitives to the left and right
child nodes, are inexpensive but do not achieve good BVH quality.
By far, the most widely used approach when high quality trees are
desired is the Surface Area Heuristic (SAH) [GS87; MB90]. The
SAH can evaluate any valid node partition and return a cost that
can be compared to choose the most advantageous candidate. The
SAH cost C for partitioning a node representing a region (volume)
in 3D space V into two child nodes L and R covering volumes VL
and VR respectively can be expressed as:

C(V →{L,R}) =CT +CI

(
SA(VL)

SA(V)
NL +

SA(VR)

SA(V)
NR

)

where CT and CI are constants defining the cost of a traversal
step and a primitive intersection respectively, SA is the surface area
of a 3D volume, and NL and NR are the number of primitives con-
tained in the left and right child nodes, respectively.

The SAH provides a way to compare different candidate parti-
tions when dividing a node, but it does not tell us which candidates
to evaluate. Any permutation which divides the primitives into two
disjoint subsets with at least one primitive each constitutes a valid
partition. For a large number of primitives, the number of such per-
mutations will be astronomical, and many of these partitions will
not be advantageous. We therefore need a way to select a manage-
able set of good partition candidates for comparison. A common
way to achieve this is with the binned SAH approach. First, an axis
of the node’s AABB is chosen and a small number of axis-aligned
planes (usually 16-32) are distributed along the node’s extent (or,
alternatively, the extent of the AABB which contains the centroids
of the node’s primitives). The regions between each splitting plane
are referred to as “bins” and are used to define a histogram, with
each bin tracking an AABB and a counter representing the extent
and number of primitives in that bin. Primitives are allocated to
each bin based on the position of their centroids. By sweeping over
this histogram, we can evaluate the SAH cost for the child nodes
that will be created by splitting the node with each candidate plane.
We evaluate all planes and select the one with the lowest SAH cost.

4. Method

In this section we propose a new way to improve the construction
speed of BVHs when using the top-down construction method, mo-
tivated by a theoretical analysis of its algorithmic complexity. Our
approach to the problem is to avoid repeated access over all the
primitives for each of the initial levels, achieved by reducing the
starting size of the data that needs to be processed: by first building
only over a subset of the primitives we can gain substantial perfor-
mance improvements.

Our proposed method can be divided into four sequential steps:

• Subset sampling
• Subset BVH construction
• Primitives insertion
• Cluster BVHs construction

First, we generate a small representative subset of the primitives
through stochastic importance sampling (Subset Sampling, Sec-
tion 4.1). Then, from this subset, we construct an initial BVH
(Subset BVH construction). For this, we can use a pre-existing
BVH construction algorithm which we will refer to as the interior
builder.

In the Primitives insertion step (Section 4.2), the remaining
primitives are now inserted into the leaves of the subset BVH that
effectively operate as clusters. Finally, we continue the BVH con-
struction in parallel from each of these clusters (cluster BVHs con-
struction) It is important to note that while in principle any builder
can be used in this framework, O(n logn) top-down builders like
binned SAH will benefit the most. This is due to the higher band-
width and compute demand from the upper part of the tree con-
struction, which is mitigated by a smaller subset use. During the
first step, we will also include a spatial reordering for the primi-
tives according to a space-filling curve (i.e. Morton).

4.1. Subset Sampling

The selection of the subset has a large impact on the final topol-
ogy. For example, naïvely picking the first m primitives will likely
only cover a small part of the scene, and randomly would end up
with an uneven distribution. Instead, we need to perform a mean-
ingful choice across all primitives to obtain a representative selec-
tion. To this end, we leverage spatial ordering as well as stratified
and weighted sampling. Stratification and spatial ordering ensure
that we get a stratified selection of the primitives in space. Weighted
sampling allows us to also steer the selection towards more impor-
tant (larger) primitives, since it is beneficial to have them higher up
in the tree to allow for more efficient early ray termination. If those
were inserted only later in the insertion phase, they would end up
in a lower level leaf of the tree, resulting in bigger bounding box
overlaps and increased intersection costs.

The Subset Sampling step can be divided in four phases:
primitives sorting (Section 4.1.1), primitives importance sampling
(Section 4.1.2), weights clamping (Section 4.1.3) and some re-
weighting to a more uniform distribution (Section 4.1.4). The two
latter phases happen before the sampling and are meant as an algo-
rithmic optimization rather than a theoretical improvement.

We use the primitives’ bounding box diagonal as our sampling

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

257

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

weight to construct a CDF, from which we then sample m unique
primitives. Some primitives might have a very large weight relative
to the others, resulting in a very inefficient sampling by being se-
lected multiple times. We consequently clamp weights to improve
the process and ensure that important primitives will still be se-
lected only once.

The unknown spatial distribution of the primitives can result in
densely tessellated tiny regions that are under-sampled and thus
create highly skewed primitives’ distribution in the leaves of the
Subset BVH. To alleviate this issue, we re-introduce some unifor-
mity in the weights’ distribution before sampling.

4.1.1. Primitives Sorting

Reordering the primitives following a space-filling curve has two
main advantages: first, we can embed this form of spatial stratifi-
cation inside our importance sampling procedure and second, we
can exploit the data locality for access coherency and algorithmic
optimizations. Since it naturally expresses a form of hierarchy in
an ordered list, a contiguous subset of it forms a strata in space that
we can exploit. We decided to use Morton sorting due to its im-
plicit embedding of an octree structure in space[LGS*09], but in
principle, a Hilbert, Moore or Peano curve could be used as well.

4.1.2. Primitives Importance Sampling

When selecting which primitives we want to use to create our ap-
proximate (Subset) BVH, we need to importance sample the ones
that have a greater influence on its topology and SAH cost. In this
context we aim to select large primitives whose bounding boxes
would span considerably over space, instead of just sampling uni-
formly over the data. To this end, we can use a Cumulative Density
Function (CDF) over a properly chosen measure and sample our
primitives from it: appropriate measures would be the primitive’s
area or the space diagonal’s length of the bounding box enclosing
it. This approach guarantees that large bounding boxes stay at the
top of the tree, where they can be evaluated early on. By means
of stratified sampling, we can guarantee that a representative and
well-distributed subset of the data will be selected. In many cases
this can be enough, but we can offer even stronger properties: by
keeping the same ordering on the CDF as the sorted primitives, we
implicitly embed a spatial stratification of the geometry and reduce
a 4D problem (3D space + measure) to 1D. This way we do not
only follow the appointed distribution, but also reach out evenly
over the whole geometry space, obtaining a Subset BVH that can
better approximate the full one. We can see an example of our ap-
proach against unsorted uniform random sampling in Figure 2.

Generating Samples There are different ways to generate m strat-
ified samples: one can be to naïvely divide the set into m strata and
pick a sample inside each, and another could be using low discrep-
ancy random sequences like Sobol. In the first case, if the weight of
a single primitive (its value over the chosen measure) spans more
than a single strata and thus can be selected multiple times, then
the final subset can be arbitrarily smaller than m depending on the
relative weight in the total CDF. In the second, the computation can
be exceptionally long due to the amount of extra samples needed to
reach m unique primitives. Note that this is true if the sequence is
progressive, otherwise the fail case is similar to the naïve approach.

Figure 2: Naïve random sampling (left) vs our method (right),
equal number of primitives: our importance sampling concentrates
both spatially and on the larger triangles.

To overcome this issue, we will introduce a simple clamping
technique in the next section.

4.1.3. Weight Clamping

Primitives with sampling probabilities larger than the normalized
stratum size s (e.g. s = 1/M) are guaranteed to be sampled. How-
ever, large primitives can also cover numerous strata, resulting in
many duplicate samples and a reduced efficiency of our sampling
procedure. Prior to sampling the primitives, we clamp their weights
such that the sampling probabilities of clamped primitives are equal
to the stratum size. We define the clamped sampling probability of
a primitive as

pi =
min(wi,c)

∑ j min
(
w j,c

) , (1)

where i, j are primitives’ indices, w is the sampling weight of
a primitive and c is the clamping weight. To guarantee sampling
of large primitives without duplicates, we only need to ensure that
the sampling probability derived from the clamping weight itself is
equal to the stratum size:

c
∑ j min

(
w j,c

) = s (2)

Note that depending on the stratified random number genera-
tor, random points can be placed arbitrarily inside their strata. This
means that consecutive points can have distances ranging from 0 to
2s. In that case, a greater stratum size of 2s must be used for the
clamping to still guarantee the sampling of large primitives. This
also means that duplicates are inevitable even when using weight
clamping - However, they are still limited to up to 3 duplicates per
large primitive in the worst case.

Efficient Computation of the Clamping Weight We can see in
Equation 2 that the sum changes depending on c, complicating a
direct computation of c. The naïve approach would be to order the
primitives by weights and to evaluate each weight as a possible
clamping weight. In the following section, we present an efficient
algorithm (Algorithm 1) requiring only one pass over the weights
to compute an approximate clamping weight that is slightly larger
than the optimal one. Equation 2 then turns into an inequality, i.e.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

258

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

Algorithm 1: Histogram weight clamping
input : Array W filled with weights to clamp

Stratum size s and bin base b, count bc and offset o
output: Clamping weight

1 hist← [0|i ∈ [0,bc)]; // histogram
2 for w ∈W do // binning of weights
3 bin←min(max(o+ blogb wc,0),bc−1);
4 hist[bin]← hist[bin]+1;

5 uSum← 0; // unclamped sum
6 cSum← |W |; // clamped sum
7 for i← 0 to bc−1 do // bin search

8 clamp← bi−o+1;
9 if clamp/(uSum+ clamp · cSum)≥ s then

10 return clamp;

11 uSum← uSum+hist[i] · clamp;
12 cSum← cSum−hist[i];

13 return∞;

we only require the probability to be larger than s. We then find the
lowest c that satisfies this constraint.

Our approach is to first build a distribution of weights through a
histogram with bc exponentially increasing bin ranges with base b
(line 2). Mapping to the bin can be offset by the parameter o. We
can then evaluate all boundaries between bins as potential clamping
weights (line 7). The sum is approximated based on the collected
distribution of weights before and after the boundary. We only
track the number of weights that fall into a bin. While the clamped
sum can be computed exactly, the unclamped sum is approximated
through the upper bound of each preceding bin (line 11). In our
implementation, we chose b =

√
2, bc = 128 and o = 64.

This approach introduces two approximation errors: First, since
we evaluate clamping weights only at bin boundaries, the resulting
clamping weight can be off from the optimal one by up to a factor
of b. Second, the overestimation of the unclamped sum can make
the entire sum up to b times larger as well, therefore increasing
the clamping weight by the same factor. The combined error bound
is b2. We found a bin base of

√
2 to already be sufficient for our

use case, resulting in an error bound of 2. For more details on the
impact of using the clamping, we refer to the supplemental.

4.1.4. Uniformity

To ensure that densely tessellated regions are not underrepresented,
we mix the clamped sampling probabilities with uniform probabili-
ties through defensive importance sampling[Hes95]. Uniform sam-
pling effectively increases the chance of sampling dense regions,
and we can see its effect in Figure 3. To retain the sampling guar-
antee of large primitives, we need to perform a minor change to our
weight clamping procedure.

We define our mixture probability p∗i as

p∗i = u · 1
N

+(1−u) · min(wi,c)
∑ j min

(
w j,c

) , (3)

where u ∈ [0,1] is the uniform fraction. Using this mixture di-

0% uniformity 20% uniformity

Figure 3: Impact of uniformity on sampling of tiny dense regions
in scene San Miguel. Uniformity ensures that tiny dense regions
remain well-represented in the subset.

rectly with the clamped probabilities would destroy the guarantee
of sampling large primitives. Accordingly, we require the proba-
bility derived from the clamping weight to be equal to the stratum
size:

u · 1
N

+(1−u) · c
∑ j min

(
w j,c

) = s (4)

After rearranging, we are left with:

c
∑ j min

(
w j,c

) = s−u/N
1−u

(5)

This equation differs from equation 2 only in the right side. We
can extract it as an updated stratum size s′:

s′ =
s−u/N

1−u
(6)

s′ can be used in place of s in the previous section when a uni-
form mixture is used when sampling. Intuitively, we increase the
stratum size such that the resulting clamping weight reserves addi-
tional weight for large primitives. After applying the uniform mix-
ture, this additional weight is then redistributed among all prim-
itives, leaving large primitives with just enough weight to fully
cover the actual stratum size s (therefore still being guaranteed to be
sampled). The trade-off of increasingly adding uniformity is that,
while densely tessellated regions are represented better, some large
primitives start to lose the guarantee of being sampled, namely
the ones whose weight is between the previous and new clamping
weight. As such, the uniformity should not be set too high. We gen-
erally recommend a uniformity between 10% and 20%. For more
details on the effect of adding uniformity we refer to the supple-
mental.

4.2. Primitives Insertion

After the subset BVH has been built using the interior builder, the
remaining primitives need to be inserted into its leaves to continue
the construction process. We will refer to these leaves as clus-
ters. The problem definition of this phase is to associate each of
the remaining primitives with a cluster. The insertion decisions are

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

259

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

guided by a cost model as detailed in Section 4.2.1. We minimize
this cost model by evaluating multiple candidate leaves for inser-
tion and selecting the one with the lowest cost. The algorithm is
detailed in Section 4.2.2.

4.2.1. Cost Model

Our cost model is inspired by [BHH13]. They minimize the SAH
cost of an existing BVH by performing topological rearrangements.
Instead of computing the SAH directly for a possible rearrange-
ment, they only compute its absolute change by subtracting the
previous bounding box surface areas from the updated ones. Min-
imizing the change gives the same result as minimizing the SAH
directly. However, it has the added advantage that only the affected
nodes have to be considered (the change is zero for all other nodes).
We apply this approach to our insertion decision in the same way,
but we are not performing rearrangements to the topology. Instead,
we only need to insert new primitives into the leaves of the current
topology.

The flattened SAH metric [MB90] expresses the cost of a
(sub)tree with root node N as

C(N) =
1

SA(N)

[
CT ∑

Ni

SA(Ni)+CI ∑
Nl

SA(Nl)|Nl |

]
(7)

where SA is the surface area of internal (Ni) or leaf (Nl) nodes,
and CT ,CI the traversal and primitive intersection costs respec-
tively.

The cost increase of inserting a new primitive p in the tree can
be formulated by the individual increases at a leaf (Il) and internal
node (Ii) level:

I(p,N) = ∑
Np

Ii(p,Np)+ Il(p,N) (8)

with

Il(p,N) =CI SA(N′l)|Nl +1|−CI SA(Nl)|Nl |

=CI((SA(N′l)−SA(Nl))|Nl |+SA(N′l)) (9)

N′l is the union of the leaf Nl and the primitive’s bounding box.
Similarly, each node in the trail of parent nodes Np arriving at the
root from the leaf Nl , would increase their cost accordingly as

Ii(p,Np) =CT (SA(N′p)−SA(Np)), (10)

where N′p is the union of the inner node Np and the primitive’s
bounding box.

4.2.2. Pruning Morton Window Search

Evaluating the cost function for each primitive in every cluster
would be too expensive in practice. Similar to [MB18a], we lever-
age the already computed spatial ordering of primitives from the
subset sampling phase (Section 4.1) in order to perform a localized
search, in our case of insertion candidates (Figure 4). The algo-
rithm considers a fixed number of subset primitives and their clus-
ters around a primitive. Since subset primitives are sparsely repre-
sented in the original array, we store the cluster pointers in a sepa-
rate compacted array (leafForSubsetPrimitive). We use a prefix sum

leafForSubsetPrimitive

Leaf nodes

84 84 84 84 85 85 85 8583838383

subsetPrimitivePrefix

84 858382 8679 8078 81 898887

Figure 4: Window construction of the pruning Morton window
search. Each primitive possesses a reference (subsetPrimtivePrefix)
into a compacted array of subset primitives (leafForSubsetPrimi-
tive). This array contains references to the leaf node (cluster) each
subset primitive belongs to. For each primitive we take its reference
(i.e. green) and then generate a window around its previous subset
primitive in the compacted array (red). Each leaf node pointed to
in the window is considered for insertion (yellow).

Algorithm 2: Pruning Morton window search
input : Primitive p with index i and window size w
output: Leaf node to insert primitive into

1 m← subsetPrimitivePrefix[i];
2 minCost←∞, minLeaf←⊥;
3 for j ∈ [m−w,m+w] do
4 leaf← leafForSubsetPrimitive[j];
5 if leaf = minLeaf then continue;
6 cost← Il(p, leaf); // Eq. 9
7 node← getParent(leaf);
8 while node 6=⊥∧ cost < minCost do
9 diffCost← Ii(p,node); // Eq. 10

10 if diffCost = 0 then break;
11 cost← cost+diffCost;
12 node← getParent(node);

13 if cost < minCost then
14 minCost← cost;
15 minLeaf← leaf;

16 return minLeaf;

to perform this compaction (subsetPrimitivePrefix), which we also
use to later index into this compacted array. Due to the sparsity of
subset primitives, the search will cover a large spatial region even
with small windows.

The actual search is detailed in Algorithm 2. We track the clus-
ter with the smallest cost and iterate over the window. For each

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

260

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

candidate, we compute the cost by traversing the tree upwards to-
wards the root. Our cost is simply the sum of surface area changes
of the traversed inner nodes (Eq. 8). We exploit the fact that all cost
terms are positive, i. e. while we traverse towards the parent, the
cost increases monotonically. When the cost estimate of the cur-
rent candidate exceeds the previous minimum, we can abort the
traversal early. We additionally avoid revisiting the minimum node
found so far (Line 5) and abort the traversal if the cost increase is
zero (Line 10).

4.3. Algorithmic Complexity

Different approaches to BVH construction give specific trade-offs
between algorithmic complexity and final tree quality. Fast Morton
builders usually come with a O(nk) complexity from their radix
sort, where k is the key length and n the number of primitives, but
suffer from lower SAH quality. Top-down builders, instead, have a
more expensiveO(n logn) complexity, but give better SAH quality
and thus faster intersection tests. In this section we will focus on
the latter case.

We can break up our algorithmic complexity in three main com-
ponents: the subset BVH creation (1), the cluster BVHs construc-
tion (2) and the extra steps required for the full build process,
namely sorting, sampling and insertion that we will refer as over-
head (3). In (1) we use only a subset M of the data, bringing the
complexity to m logm, with m = |M|; after the upper part is built,
the cluster BVHs construction (2) needs to iterate over n primitives
and each tree has on average n/m elements: this can be expressed
as n log(n/m). Finally the overhead (3) of our method touches n
primitives if the spatial sorting is enabled, m during the sampling
and n−m in the insertion step; in this case we utilize α ∈ [0,1]
as a factor relative to the construction time for our overhead and
conservatively bound (3) to αn logn.

By considering the construction time alone, we can evaluate an
upper bound on the speedup increase by the ratio between a stan-
dard top-down builder and the sum of our two construction steps
(1,2) as n log n

m log m+n log(n/m)
. As shown in Figure 5a, depending on the

amount of primitives used for the subset M, there is a wide theoret-
ical speedup ranging from 1× to 5×: while the trend is similar, al-
most plateauing after a few hundreds of thousand primitives, there
is a slow but steady increase inversely proportional to the subset
size. Since this amount also affects the final quality of the BVH,
in the next experiment we will consider a reasonable size of 20%
primitives, which already gives a theoretical 3.5× speedup.

When also adding the overhead (3) for bounding our theoret-
ical gain, we need to consider the relative cost introduced com-
pared to the pure building time: this results in the speedup ratio

n log n
m log m+n log(n/m)+αn log n . To this end, we can see how α ∈ [0,1]
behaves with different numbers of primitives ranging from tens of
thousands to tens of millions (Figure 5b). As it is apparent, the over-
head with 20% data needs to be at most 60% of the build time of
a standard top-down builder; after that, any theoretical gain is lost.
Another insight from this experiment suggests that our method is
mostly independent of the number of primitives involved.

To summarize, with a baseline of 20% data for M (m = 0.2 · n)
and 10% overhead cost (alpha), we have seen a theoretical gain

0 20 40 60 80 100
Mio. Primitives

2

4

sp
ee

du
p

5%

15%
20%
25%
30%

40%
50%
70%

100%

theoretical construction speedup

(a)

0.2 0.4 0.6 0.8 1.0
relative cost alpha

1

2

3

4

sp
ee

du
p

theoretical overhead evaluation

100K Prims

500K Prims

1M Prims

5M Prims

10M Prims

50M Prims

100M Prims

(b)

Figure 5: Theoretical analysis of construction time speed-up rela-
tive to a top-down builder: the upper bound gain by different sized
subsets in the construction time without overhead (a) is readily
reached after a few hundreds of thousand primitives, and increases
very slowly afterwards. With overhead and a 20% subset size (b),
the theoretical upper bound gain decreases and breaks even when
the extra compute reaches 60% of the construction time, without
much variation with an increasing number of primitives (colored
lines, from 105 to 108).

of up to 3× by using our approach against a standard top-down
builder. This result holds true as long as the builders have similar
performances. Given different hardware and software implementa-
tions, however, this assumption might not hold and there could be
other factors to consider. We will analyze how this upper bound
relates to our tests in our evaluation section 6.4.

5. Implementation

Terminology In the following, we will use the terminology from
OpenCL to refer to the GPU programming model. A work group
(CUDA: Thread block) is a set of threads that can directly syn-
chronize with each other and also exchange data through fast but
limited shared memory. Work groups are further subdivided into
sub groups (CUDA: Warp). Threads inside a sub group are exe-
cuted in lockstep and can directly exchange data through register
permutations.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

261

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

Framework We implemented our algorithm both as a GPU-
builder based on oneAPI DPC++ (https://www.oneapi.
io/) and a CPU-builder in PBRT [PJH16]. The GPU-builder im-
plements the presented method from Section 4, while the CPU
builder was used to test various approaches that led to the final
design (We refer to the supplemental for the analysis of various pa-
rameters of our builder on the CPU). In this section we focus on the
implementation details of the GPU-builder.

Interior Builder We use a binned SAH builder in the style of
Wald [Wal07] as the interior top-down BVH builder. Each axis is
considered for splitting using 16 bins each. We employ their hori-
zontal and vertical parallelization technique with an additional mid-
dle phase to efficiently exploit the massive parallelism of the GPU
at each BVH level. Since nodes are initially few, the horizontal
phase is parallelized over primitives. For each iteration (seven in to-
tal), three kernels are launched for (1) initializing and (2) accumu-
lating bins and (3) computing the splits and partitioning primitives.
Only nodes with primitive counts larger than the average over all
active nodes are considered, leading to a more even primitive dis-
tribution for the following phases. After the horizontal phase, we
transition to the middle phase where active nodes with more than
1024 primitives are processed. For each iteration (twelve in total), a
single kernel is launched where each work group processes a single
node. The vertical phase then proceeds to compute the remaining
subtrees of all nodes. This is performed with a single kernel launch.
Each sub group in the kernel processes a single node.

For building cluster BVHs, we directly use vertical paralleliza-
tion, since the number of clusters typically already far exceeds the
number of concurrently executing sub groups. This is also the rea-
son why uniformity (Section 4.1.4) must be added to the subset
sampling. Otherwise, large clusters of highly tessellated geometry
will introduce a strong load imbalance, hindering individual sub
group processing capabilities and arbitrarily increasing the overall
build time.

Subset Sampling We use single-precision floating point numbers
for the CDF for performance reasons. While the available precision
in large scenes is not enough to faithfully represent regions with
low probability, we found that it did not affect the results much.
However, rounding errors in the CDF do have an effect. The prefix
scan routine which we employ performs the scan across an implicit
hierarchy with three levels. First, a scan per sub group is performed,
then a scan per work group, and finally a scan over all work groups.
This approach exhibits good error properties, since it is comparable
to a pairwise summation (but wider).

The random numbers used during the sampling stem from
equidistant points with a distance of the stratum size s in [0,1]
with a random initial offset. The sampling quality was not affected
much compared to Sobol points. However, the highly coherent ac-
cess during the bisection of the CDF led to a 5× performance in-
crease in the sampling dispatch. Additionally, the equidistant spac-
ing decreases the chances of duplicates (caused by the approximate
weight clamping) with the trade-off in a potentially smaller subset
size.

Primitives Insertion We performed slight modifications to the
pruning Morton window search (Algorithm 2) to better exploit the
parallelism of the hardware. Instead of having each thread traverse
its own window, we unify the windows of all threads in a sub group.
All threads then proceed to step through this larger shared window
in lockstep, which results in perfectly coherent memory access. Ad-
ditionally, it seems beneficial to first evaluate the center of the win-
dow for each thread independently. While the memory access is
relatively inefficient in that case, the found node is oftentimes al-
ready the optimum. As such, pruning may be triggered early when
the window is traversed. With both optimizations, the performance
of the search dispatch improved by 15%.

Memory Requirements Compared to the binned SAH builder,
our stochastic builder additionally needs 32 bytes of memory for
each of the N primitives (Morton codes, CDF, subset mask & prefix
sum and insertion selection) and 44 bytes for each subset primitive
(Compacted primitive bounding boxes, back-references to nodes as
well as atomic counters for the insertion step). None of this mem-
ory is used when the cluster BVH build phase starts, so parts or
even all of the memory can be aliased with memory required by the
binned SAH builder. For example, the preallocated node memory
can be used, since only the smaller subset BVH occupies it by that
point. In the scene Crown (Fig. 6), we measured a memory con-
sumption (binary BVH construction only) of 411 MiB, compared
to 131 MiB of the binned SAH builder. Other builders detailed in
Section 6.1 require 177 MiB (LBVH), 242 MiB (PLOC++) and
196 MiB (ATRBVH). Note that all memory is allocated upfront in
our implementation.

6. Evaluation

In this section, we analyze our results from multiple perspectives.
First, we compare our method’s build performance with other GPU
builders (Section 6.1). Second, we examine the variance of our ap-
proach due to stochastic sampling (Section 6.2). Third, we pro-
vide a break-down of our performance compared with a top-down
binned BVH builder (Section 6.3). Finally, we examine how our
theoretical complexity analysis matches our results (Section 6.4).

We evaluate our GPU builder on Intel Alchemist A770
GPU [Cor22] (32 Xe cores). The remaining system consists of an
Intel Core i5 9600K CPU clocked at 3.70GHz with 16GB of DDR4
RAM running Ubuntu 20.04 LTS Linux OS on an NVMe SSD.

We render all images at a resolution of 1024× 1024 using pri-
mary rays at 1spp and ambient occlusion with 64 indirect rays using
the six scenes presented in Figure 6. The scenes vary in primitive
count from 279K (Crytek Sponza) to 7.9M (San Miguel).

Our builder is, unless otherwise stated, parameterized by a uni-
form fraction of 10%. We parameterize the subset size as a fraction
of the total primitive count in a scene (Subset Fraction) and is set
by default to 20%.

6.1. Build Performance

We compare our method against existing build algorithms targeted
at GPUs, namely LBVH [LYMT06], PLOC++ [BDTD22], ATR-
BVH [DP15] and binned SAH construction [Wal07]. We base

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

262

https://www.oneapi.io/
https://www.oneapi.io/

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

Crytek Sponza (279K) Bistro (2.8M) Hairball (2.9M) Crown (4.9M) Rungholt (6.7M) San Miguel (7.9M)

Figure 6: Overview of scenes and camera views we tested with. All scenes were taken from [McG17]. The primitive count is given in the
parentheses.

L
B

V
H

PL
O

C
++

A
T

R
B

V
H

St
oc

ha
st

ic
(o

ur
s)

B
in

ne
d

SA
H

L
B

V
H

PL
O

C
++

A
T

R
B

V
H

St
oc

ha
st

ic
(o

ur
s)

B
in

ne
d

SA
H

Crytek Sponza Bistro
Host build time (ms) 2.25 6.14 4.97 10.47 9.71 9.61 14.22 20.63 20.0 23.24

Device build time (ms) 1.49 2.28 3.79 7.14 7.69 6.11 7.45 19.25 16.34 20.78
SAH cost 61.32 47.47 51.47 42.7 50.01 74.53 53.75 62.2 38.43 39.75

Primitive throughput (MPrim/s) 63.21 23.19 56.16 13.6 14.66 151.76 102.54 137.01 72.91 62.76
Primary (GRay/s) 2.745 3.479 3.314 3.124 2.83 1.276 1.349 1.302 1.38 1.367

Ambient occlusion (GRay/s) 2.844 3.187 2.987 3.09 2.846 0.814 0.882 0.813 0.883 0.849
Hairball Crown

Host build time (ms) 7.0 12.24 19.45 18.03 23.75 10.58 18.18 30.9 25.37 34.78
Device build time (ms) 5.96 6.51 18.19 14.44 21.61 9.45 11.03 29.61 21.3 32.16

SAH cost 320.11 283.82 301.96 184.52 182.3 22.15 19.64 19.69 14.82 15.39
Primitive throughput (MPrim/s) 205.83 117.66 148.04 79.85 60.63 231.0 134.42 157.56 96.35 70.27

Primary (GRay/s) 1.255 1.312 1.305 1.362 1.365 2.38 2.509 2.522 2.635 2.651
Ambient occlusion (GRay/s) 1.089 1.096 1.11 1.184 1.194 1.928 2.01 2.001 2.102 2.113

Rungholt San Miguel
Host build time (ms) 13.41 15.35 42.08 30.08 42.69 18.08 26.74 56.23 40.28 73.47

Device build time (ms) 12.33 10.58 40.77 25.84 40.26 16.92 17.97 54.81 36.26 70.93
SAH cost 130.12 90.4 84.95 69.97 62.74 64.35 41.44 47.17 38.81 40.25

Primitive throughput (MPrim/s) 250.01 218.44 159.34 111.45 78.52 250.19 169.13 140.14 112.29 61.56
Primary (GRay/s) 2.423 2.739 2.939 2.86 2.967 1.789 2.401 2.299 2.369 2.302

Ambient occlusion (GRay/s) 3.218 3.489 3.813 3.652 3.964 1.106 1.559 1.395 1.466 1.459

Table 1: Comparison of our stochastic builder with existing GPU build algorithms on Intel Alchemist A770 GPU (32 Xe cores) using Ubuntu
20.04 Linux.

our LBVH and PLOC++ implementation on the work of Kar-
ras [Kar12] and Benthin [BDTD22] respectively, while we ported
the publicly available code for ATRBVH (https://github.
com/leonardo-domingues/atrbvh) into oneAPI DPC++.
The implementation of the binned SAH builder is identical to the
interior builder we use for the subset BVH (Section 5).

We measure ray tracing performance using hardware traversal.
For the binned SAH and our stochastic builder, we stop the con-
struction process of the BVH as soon as there are eight or fewer
primitives in a node. LBVH, PLOC++ and ATRBVH construct hi-
erarchies with one primitive per leaf. All implementations build bi-
nary BVHs, that are then converted to the hardware format on GPU.

As the expected input format is quads, primitives are converted
prior to construction, thus roughly halving the effective number.
Host time includes time spent on device, dispatches and synchro-
nizations on CPU. Conversion times from binary BVH (BVH2) to
hardware specific BVH format (HW BVH) are not included. For
a recent study on the traversal performance and SAH cost impact
of different BVH formats after conversion from BVH2, we refer to
[MB22].

We summarize our findings in Table 1. Compared to the binned
SAH builder, we improved build times by 1.33× on average (1.47×
on device time). We generally observe that for large scenes the
build time reduction is more significant. With San Miguel (7.9M

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

263

https://github.com/leonardo-domingues/atrbvh
https://github.com/leonardo-domingues/atrbvh

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

0.2 0.4 0.6 0.8
Subset Fraction

38.0

38.5

39.0

39.5

40.0

S
A

H
co

st

Figure 7: SAH variance on the San Miguel scene at different subset
fractions (5% to 95%) using 50 random seeds each. We can see
how it stays stable and slowly converges to the higher SAH of the
reference binned SAH value when increasing the subset fraction.

primitives), we reach an improvement of 1.82× (1.96× on device),
while only on Crytek Sponza (279K primitives) we see a small in-
crease in the host build time (7%). The additional dispatches and
synchronization time we introduce are not amortized in that case.
The stochastic builder is competitive with ATRBVH in all cases in-
volving more than a few hundred thousand primitives. At the same
time, while not reaching similar build time competitiveness, it con-
siderably reduces the well-known gap from top-down builders to
faster ones like LBVH or PLOC++. In terms of SAH quality, our
stochastic builder is able to maintain a comparable or even lower
cost than the binned SAH builder. As a result, both builders are
consistently the lowest in our tests. Although this consistency does
not translate linearly to the final rendering performance due to the
hardware format conversion, our stochastic builder still remains the
best or second-to-best and within ±1% from the more expensive
binned SAH in all the scenes, with the exception of Rungholt.

6.2. Variance Analysis

An essential question for our approach is: how robust and reliable
is it against a simple change in the subset due to different ran-
dom numbers? This can happen for many reasons, such as different
rng implementations, different initialization seeds, different float-
ing point precision and so on. Another important implication is
how this relates to the subset size: does some subset have higher
variance at a specific threshold, or does it remain stable overall? To
answer this question, we can look at Figure 7. This test was run on
the San Miguel scene, with 50 different seeds in each step. Over-
all the SAH cost stays very stable, with an occasional spike of less
than 1%, and tends to decrease when lowering the subset fraction.
In other scenes, we observe the contrary trend, although the devi-
ations remain in a similar range. During our tests, we noticed that
sizes of around 15-20% primitives for the subset give good trade-
offs between host time build and SAH quality/performance. For a
more detailed analysis over multiple scenes, we refer to the supple-
mental.

1

2

3

4

(a
)P

ro
ce

ss
ed

P
rim

iti
ve

s
(M

io
.)

Binned SAH

1

2

(b
)P

ro
ce

ss
ed

P
rim

iti
ve

s
(M

io
.)

Stochastic (ours)

Horizontal Middle Vertical Cluster

0

1

2
(c

)T
hr

ou
gh

pu
t(

G
P

rim
/s

)

Binned SAH Stochastic (ours)

0 10 20 30 40
BVH Level

0

2

4

(d
)E

ffe
ct

iv
e

S
pe

ed
up

Weighted Average

+ Overhead

Figure 8: Per-level comparison of our stochastic builder (20%
data) with the binned SAH builder in scene San Miguel. For the
first few levels, our builder accesses fewer primitives (a, b). Al-
though the effective throughput in the first levels is considerably
lower (c), the effective speedup (d) due to the reduced primitive set
is still 2-4× in the stochastic BVH construction (first ~20 levels).
On average, the speedup is around 2.7×, or 1.9× when including
our additional overhead. Note that the topologies are not identical,
hence the additional levels of our builder.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

264

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

Binned SAH

Stochastic 50% (ours)

Stochastic 20% (ours)

Binned SAH

Stochastic 50% (ours)

Stochastic 20% (ours)

San Miguel (7.9M)

Rungholt (6.7M)

Preprocessing Radix Sort Subset Horizontal Middle Vertical Insertion Cluster Refit

Figure 9: Relative timing breakdown of our stochastic builder and the binned SAH builder in the San Miguel and Rungholt scenes. Our
additional overhead at a subset fraction of 20% amounts to 27% and 32%, respectively, while we observe a total build time reduction of 57%
and 70%. With increasing subset size the middle phase shows the highest increase in time. For a description of the horizontal, middle and
vertical pass we refer to Section 5.

6.3. Build Time Breakdown

Our stochastic build consists of many passes contributing to the
total running time. Figure 9 shows a breakdown of the individual
passes at a subset fraction of 20% and 50% in the San Miguel and
Rungholt scenes. We also show a breakdown of the Binned SAH
builder. While the added overhead is non-negligible, it is more than
amortized by the time reduction of the horizontal, middle and verti-
cal phases that exist in both algorithms at 20% subset fraction (for
a description of these passes, see Section 5, Interior Builder). At
50%, we can see a significant increase in the middle phase exe-
cution time. In general, the efficiency of subset BVH construction
does not scale linearly with a reduction in the other phases or with
the SAH cost, suggesting that a carefully chosen small subset of
geometry is able to achieve good performance compared to a more
sizeable one at a fraction of the cost.

We additionally present a primitive throughput analysis on the
individual levels of the BVH for our stochastic builder and the
binned SAH builder in the scene San Miguel (Figure 8). We col-
lect histograms per dispatch on how many primitives are processed
for each level of the BVH and then proportionally distribute the
execution time of the dispatch to each level. The timings are more
fine-grained for the first levels, since those are processed by multi-
ple dispatches. We found that the primitive throughput in the first
levels, where construction occurs exclusively based on the subset,
differs by a factor of 0.4× compared to the binned SAH builder.

This discrepancy is explained by the scaling behaviour of the
horizontally-parallelized build phases. We suspect that the constant
overhead due to bin accumulation and evaluation becomes a ma-
jor factor with lower primitive counts. Reducing this overhead is
therefore an interesting area for future work.

6.4. Algorithmic Evaluation

As seen in the algorithmic complexity section 4.3, when the inte-
rior builders have similar performance the theoretical speedup can
be up to 3-4×, depending on the costs introduced by the primi-
tives reordering, subset sampling and primitives insertion passes,
which we will reference as overhead. In Figure 8 we can asses how

well the model predicts the final outcome by taking the San Miguel
scene as an example. The first two plots compare the performance
per level of each building stage: our stochastic builder operates on
20% of the binned SAH data, thus showing a lower amount of pro-
cessed primitives, until the Stochastic BVH construction is done
((b), red, green and orange). The cluster BVHs build (blue) shows
instead a higher count in a short burst due to the final construction
phase involving all the primitives. What becomes apparent in the
throughput plot is that our assumption over similar performances in
BVH construction does not hold in this case. Our stochastic BVH
is, in fact, utilizing a bit more than half of the bandwidth while pro-
cessing a fifth of the data. The cluster BVHs build step instead is
showing 1.5× the throughput of the binned BVH. Note how our
initial approximation of the final BVH creates a few more levels.
This brings down our initial projections to a 2.71× speedup over
the construction time alone ((d), weighted average bar), and conse-
quently influence the final outcome to a 1.89× ((d), overhead bar).
By setting α to 0.19 (our measured relative overhead), the expected
gain given by our model evaluates at 2.1×. The reason behind this
behaviour resides in the ability of the chosen builder to saturate the
GPU: we can see its effect in (c), where the binned SAH dominates
the first half of the construction, only to switch places when the
cluster BVHs phase takes place. This highlights how important it is
to increase the efficiency of the Stochastic BVH construction and
the direct speedup gain that can be obtained, without counting the
obvious benefit of a lower overhead.

6.5. Comparison with a Deterministic Clustering

Another approach to reducing top-down BVH build cost is through
the use of deterministic clustering of primitives, where a BVH is
built inside each cluster, and a top-level BVH is built over the clus-
ters to complete the tree, thus reducing the cost of building the up-
per levels. Given the simplicity of this clustering-type approach, we
seek to compare our stochastic build method to such techniques.
For this purpose, we take inspiration from how HLBVH[PL10]
forms clusters for constructing an upper level HLBVH hierarchy,
but adapt it for our purposes. First, we group all primitives inside
the same Morton-coded cell as a cluster BVH, and consider these

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

265

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

6 8
Morton Bits

200

400

C
ro

w
n

sc
en

e

Host build time

6 8
Morton Bits

15.0

15.5

16.0

16.5

SAH BVH2 Cost

6 8
Morton Bits

2425

2450

2475

2500

Direct Ray Fps

6 8
Morton Bits

30.00

30.25

30.50

30.75

AO Fps

Deterministic clustering Stochastic clustering

Figure 10: Comparison between different Morton bit count for de-
terministic clustering and the proposed stochastic approach: low
amount of bits results in few clusters fitting the whole geometry,
thus paying a huge cost in the bottom phase. High amount instead
degenerate in higher SAH cost and overall lower performance.

clusters as primitives to build the top of the tree. Intuitively, LBVH-
like approaches suffer from the fixed cell size when scenarios like
teapot in a stadium arise. This lack of adaptability can be only par-
tially mitigated by our method (see Figure 10): with a low number
of bits per axis, the top part of the tree is very small and the benefit
is paid by the bottom construction, that now has to build in parallel
huge fat leaves. On the other hand, with a higher amount of bits, the
method shows the drawback of its rigid structure, with high SAH
cost and lower performance. Given these results, an adaptive and
ad-hoc construction would be needed to make this approach viable,
ending outside our current scope. Nevertheless, we leave it as an
interesting venue for future work. For a more extensive analysis we
refer to the supplemental.

7. Discussion

Use Cases and Limitations As seen in the algorithmic analysis
(section 4.3), our method’s efficiency heavily depends on the ra-
tio between the added overhead and the time taken by the inte-
rior builder. Our experiments indicate that the scaling efficiency in-
creases with the primitive’s count, so we recommend using it with
large scenes. This limitation is due to the number of kernel dis-
patches that both our approach and the top-down builder we used
require, weighting in the total runtime. The configuration of 20%
data for the subset and 10% uniformity for the clamping has been
a reliable default in our test, as our technique transparently adapts
to different geometry sizes and distributions. Being a stochastic se-
lection, we can incur in under-sampling: small isolated geometry
might be missed, resulting in larger bounding boxes in the final
BVH. This is partially avoided by the use of stratification and uni-
formity, which increase sampling guarantees of sparse data.

Relation to Binning Binning [Wal07] distinguishes itself from our
approach in that reducing the bin count only accelerates computa-
tion of the split, but binning and partitioning still require access
to all primitives. Our approach accelerates all parts of construction
in the first levels, since the primitive set is smaller. Nevertheless,
both approaches are orthogonal and their combination retains their
respective strengths, which is why we use a binned builder as the
interior builder.

Applicability to other Builders Our algorithm is directly appli-
cable to top-down construction methods like the binned builder we
used, but also sweep SAH. Since the computational overhead per
level is roughly the same (O(n logn)), the use of subsets in the first
levels gives a noticeable performance improvement. Other build al-
gorithms like PLOC which are closer to O(n) do not posses this
property. Due to the decreasing set size in each iteration, the top of
the tree is already fast to compute. Thus applying our approach to
PLOC would give a negligible return if any at all.

Comparison with other Top-Down Build Algorithms In this pa-
per, we introduce the concept of stochastic subsets to the BVH
construction problem, and focus on GPU implementation of a top-
down BVH builder incorporating this idea. Alternative methods of
accelerating top-down construction have previously been demon-
strated in the literature [GBDA15; GD16; HMB17]. However, all of
these methods are CPU-based, and to our knowledge, none of these
methods have been demonstrated on the GPU to date. It would be
interesting to compare our GPU-based stochastic method to these
builders if an efficient GPU implementation of these algorithms is
demonstrated in the future.

8. Conclusion

We have presented a novel approach to BVH construction that
leverages the field of sampling, opening new exciting possibili-
ties for cross-pollination. Furthermore, our method transparently
selects a subset of the input geometry to improve top-down BVH
build performance up to 1.8×, while retaining BVH quality com-
petitive with more expensive methods in most cases. Based on our
results, we believe that Monte Carlo and Quasi-Monte Carlo tech-
niques introduce a fresh perspective to the problem of fast and high-
quality BVH construction.

We see compelling prospects in a number of directions. For ex-
ample, future work could see the integration of refitting techniques
into our subset BVH construction method, or shaping a better con-
structor that can take full advantage of the subset without loss of
performance and reach the full theoretical gain. In addition, using
weights and advanced sampling can lead to new optimizations in
tree construction that were not possible before. Regarding random
sequences, blue noise or random sequences with different proper-
ties could also represent an interesting future direction.

Acknowledgments

Model courtesy: Sponza (Crytek), Crown (Martin Lubich), San-
Miguel (Guillermo M. Leal Llaguno), Bistro (Amazon Lumber-
yard), Rungholt (kescha), Hairball (NVIDIA Research). We also
want to thank Sebastian Herholz for his feedback on an early draft
of this paper, and Anton Kaplanyan and Chuck Lingle for their sup-
port on this project.

References
[AKL13] AILA, TIMO, KARRAS, TERO, and LAINE, SAMULI. “On Qual-

ity Metrics of Bounding Volume Hierarchies”. Proceedings of the 5th
High-Performance Graphics Conference. HPG ’13. Anaheim, Cali-
fornia: Association for Computing Machinery, 2013, 101–107. ISBN:
9781450321358. DOI: 10.1145/2492045.2492056 2.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

266

https://doi.org/10.1145/2492045.2492056

L. Tessari & A. Dittebrandt & M.J. Doyle & C. Benthin / Stochastic Subsets for BVH Construction

[AP16] ART B., OWEN and PETER W., GLYNN. Monte Carlo and Quasi-
Monte Carlo Methods. 1st. Springer Proceedings in Mathematics &
Statistics. Springer, 2016. DOI: https://doi.org/10.1007/
978-3-319-91436-7 2.

[BDTD22] BENTHIN, CARSTEN, DRABINSKI, RADOSLAW, TESSARI,
LORENZO, and DITTEBRANDT, ADDIS. “PLOC++: Parallel Locally-
Ordered Clustering for Bounding Volume Hierarchy Construction Revis-
ited”. Proc. ACM Comput. Graph. Interact. Tech. 5.3 (July 2022). DOI:
10.1145/3543867 2, 8, 9.

[BHH13] BITTNER, JIŘI, HAPALA, MICHAL, and HAVRAN, VLASTIMIL.
“Fast insertion-based optimization of bounding volume hierarchies”.
Computer Graphics Forum. Vol. 32. Wiley Online Library. 2013, 85–
100 2, 6.

[BHH15] BITTNER, JIŘI, HAPALA, MICHAL, and HAVRAN, VLASTIMIL.
“Incremental BVH construction for ray tracing”. Computers & Graphics
47 (2015), 135–144 2.

[BM15] BITTNER, JIRÍ and MEISTER, DANIEL. “T-SAH: Animation Op-
timized Bounding Volume Hierarchies”. Computer Graphics Forum
(2015). DOI: 10.1111/cgf.12581 2.

[Cor22] CORPORATION, INTEL. Intel Arc A-Series Graphics. 2022. URL:
https://ark.intel.com/content/www/us/en/ark/
products / series / 227957 / intel - arc - a - series -
graphics.html 8.

[DP15] DOMINGUES, LEONARDO R. and PEDRINI, HELIO. “Bounding
Volume Hierarchy Optimization through Agglomerative Treelet Restruc-
turing”. High-Performance Graphics. Ed. by CLARBERG, PETRIK and
EISEMANN, ELMAR. ACM Siggraph, 2015. ISBN: 978-1-4503-3707-6.
DOI: 10.1145/2790060.2790065 2, 8.

[GBDA15] GANESTAM, P., BARRINGER, R., DOGGETT, M., and
AKENINE-MÖLLER, T. “Bonsai: Rapid Bounding Volume Hierarchy
Generation using Mini Trees”. Journal of Computer Graphics Tech-
niques (JCGT) 4.3 (Sept. 2015), 23–42. ISSN: 2331-7418. URL: http:
//jcgt.org/published/0004/03/02/ 2, 12.

[GD16] GANESTAM, PER and DOGGETT, MICHAEL. “SAH guided spa-
tial split partitioning for fast BVH construction”. Computer Graphics
Forum 35.2 (2016), 285–293. DOI: https://doi.org/10.1111/
cgf.12831 2, 12.

[GHFB13] GU, YAN, HE, YONG, FATAHALIAN, KAYVON, and BLEL-
LOCH, GUY. “Efficient BVH Construction via Approximate Agglom-
erative Clustering”. Proceedings of the 5th High-Performance Graphics
Conference. HPG ’13. Anaheim, California: Association for Comput-
ing Machinery, 2013, 81–88. ISBN: 9781450321358. DOI: 10.1145/
2492045.2492054 2.

[GPM11] GARANZHA, KIRILL, PANTALEONI, JACOPO, and MCALLIS-
TER, DAVID. “Simpler and Faster HLBVH with Work Queues”. Proc.
ACM Comput. Graph. Interact. Tech. HPG ’11 (2011), 59–64. DOI: 10.
1145/2018323.2018333 2.

[GS87] GOLDSMITH, JEFFREY and SALMON, JOHN. “Automatic creation
of object hierarchies for ray tracing”. IEEE Computer Graphics and Ap-
plications 7.5 (1987), 14–20 2, 3.

[Hes95] HESTERBERG, TIM. “Weighted Average Importance Sampling
and Defensive Mixture Distributions”. Technometrics 37.2 (1995), 185–
194. ISSN: 00401706. URL: http://www.jstor.org/stable/
1269620 5.

[HMB17] HENDRICH, JAKUB, MEISTER, DANIEL, and BITTNER, JIRI.
“Parallel BVH construction using progressive hierarchical refinement”.
Computer Graphics Forum. Vol. 36. Wiley Online Library. 2017, 487–
494 2, 12.

[KA13] KARRAS, TERO and AILA, TIMO. “Fast Parallel Construction
of High-Quality Bounding Volume Hierarchies”. Proceedings of the
5th High-Performance Graphics Conference. HPG ’13. Anaheim, Cal-
ifornia: Association for Computing Machinery, 2013, 89–99. ISBN:
9781450321358. DOI: 10.1145/2492045.2492055 2.

[Kar12] KARRAS, TERO. “Maximizing Parallelism in the Construction of
BVHs, Octrees, and k-d Trees”. Proceedings of the Fourth ACM SIG-
GRAPH / Eurographics Conference on High-Performance Graphics.
EGGH-HPG’12. Paris, France: Eurographics Association, 2012, 33–37.
ISBN: 9783905674415 2, 9.

[KGA*19] KELLER, ALEXANDER, GEORGIEV, ILIYAN, AHMED, AB-
DALLA, et al. “My Favorite Samples”. ACM SIGGRAPH 2019 Courses.
SIGGRAPH ’19. Los Angeles, California: Association for Computing
Machinery, 2019. ISBN: 9781450363075. DOI: 10.1145/3305366.
3329901 2.

[LGS*09] LAUTERBACH, C., GARLAND, M., SENGUPTA, S., et al.
“Fast BVH Construction on GPUs”. Computer Graphics Forum 28.2
(2009), 375–384. DOI: https://doi.org/10.1111/j.1467-
8659.2009.01377.x 2, 4.

[LYMT06] LAUTERBACH, CHRISTIAN, YOON, SUNG-EUI, MANOCHA,
DINESH, and TUFT, DAVID. “RT-DEFORM: Interactive Ray Tracing of
Dynamic Scenes using BVHs”. 2006 IEEE Symposium on Interactive
Ray Tracing. 2006, 39–46. DOI: 10.1109/RT.2006.280213 1, 8.

[MB16] MEISTER, DANIEL and BITTNER, JIŘI. “Parallel BVH construc-
tion using k-means clustering”. The Visual Computer 32.6 (2016), 977–
987 2.

[MB18a] MEISTER, D. and BITTNER, J. “Parallel Locally-Ordered Clus-
tering for Bounding Volume Hierarchy Construction”. IEEE Trans. Vis.
Comput. Graph. 24.3 (2018), 1345–1353. DOI: 10 . 1109 / TVCG .
2017.2669983 2, 6.

[MB18b] MEISTER, D. and BITTNER, J. “Parallel Reinsertion for Bound-
ing Volume Hierarchy Optimization”. Computer Graphics Forum 37.2
(2018), 463–473. DOI: https://doi.org/10.1111/cgf.
13376 2.

[MB22] MEISTER, DANIEL and BITTNER, JIŘÍ. “Performance Compari-
son of Bounding Volume Hierarchies for GPU Ray Tracing”. Journal of
Computer Graphics Techniques (JCGT) 11.4 (Oct. 2022), 1–19. ISSN:
2331-7418. URL: http://jcgt.org/published/0011/04/
01/ 9.

[MB90] MACDONALD, DAVID and BOOTH, KELLOGG. “Heuristics for
Ray Tracing Using Space Subdivision”. The Visual Computer 6.3
(1990), 153–65 3, 6.

[McG17] MCGUIRE, MORGAN. Computer Graphics Archive. July 2017.
URL: https://casual-effects.com/data 9.

[MOB*21] MEISTER, DANIEL, OGAKI, SHINJI, BENTHIN, CARSTEN, et
al. “A Survey on Bounding Volume Hierarchies for Ray Tracing”. Com-
puter Graphics Forum 40.2 (2021), 683–712. DOI: https://doi.
org/10.1111/cgf.142662 2.

[NT03] NG, KELVIN and TRIFONOV, BORISLAV. “Automatic bounding
volume hierarchy generation using stochastic search methods”. Mini-
workshop on stochastic search algorithms. 2003 2.

[PJH16] PHARR, MATT, JAKOB, WENZEL, and HUMPHREYS, GREG.
Physically Based Rendering: From Theory to Implementation (3rd ed.)
3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., Oct.
2016, 1266. ISBN: 9780128006450 8.

[PL10] PANTALEONI, J. and LUEBKE, D. “HLBVH: Hierarchical LBVH
Construction for Real-Time Ray Tracing of Dynamic Geometry”. Pro-
ceedings of the Conference on High Performance Graphics. Eurograph-
ics Association, 2010, 87–95 2, 11.

[VBH17] VINKLER, MAREK, BITTNER, JIRI, and HAVRAN, VLASTIMIL.
“Extended Morton codes for high performance bounding volume hierar-
chy construction”. Proceedings of high performance graphics. Associa-
tion for Computing Machinery, 2017, 1–8 2.

[Wal07] WALD, INGO. “On fast construction of SAH-based bounding vol-
ume hierarchies”. 2007 IEEE Symposium on Interactive Ray Tracing.
IEEE. 2007, 33–40 2, 8, 12.

[WBKP08] WALTER, BRUCE, BALA, KAVITA, KULKARNI, MILIND, and
PINGALI, KESHAV. “Fast agglomerative clustering for rendering”. 2008
IEEE Symposium on Interactive Ray Tracing. 2008, 81–86. DOI: 10.
1109/RT.2008.4634626 2.

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

267

https://doi.org/https://doi.org/10.1007/978-3-319-91436-7
https://doi.org/https://doi.org/10.1007/978-3-319-91436-7
https://doi.org/10.1145/3543867
https://doi.org/10.1111/cgf.12581
https://ark.intel.com/content/www/us/en/ark/products/series/227957/intel-arc-a-series-graphics.html
https://ark.intel.com/content/www/us/en/ark/products/series/227957/intel-arc-a-series-graphics.html
https://ark.intel.com/content/www/us/en/ark/products/series/227957/intel-arc-a-series-graphics.html
https://doi.org/10.1145/2790060.2790065
http://jcgt.org/published/0004/03/02/
http://jcgt.org/published/0004/03/02/
https://doi.org/https://doi.org/10.1111/cgf.12831
https://doi.org/https://doi.org/10.1111/cgf.12831
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1145/2018323.2018333
https://doi.org/10.1145/2018323.2018333
http://www.jstor.org/stable/1269620
http://www.jstor.org/stable/1269620
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1145/3305366.3329901
https://doi.org/10.1145/3305366.3329901
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1109/RT.2006.280213
https://doi.org/10.1109/TVCG.2017.2669983
https://doi.org/10.1109/TVCG.2017.2669983
https://doi.org/https://doi.org/10.1111/cgf.13376
https://doi.org/https://doi.org/10.1111/cgf.13376
http://jcgt.org/published/0011/04/01/
http://jcgt.org/published/0011/04/01/
https://casual-effects.com/data
https://doi.org/https://doi.org/10.1111/cgf.142662
https://doi.org/https://doi.org/10.1111/cgf.142662
https://doi.org/10.1109/RT.2008.4634626
https://doi.org/10.1109/RT.2008.4634626

