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Editing Compressed High-resolution Voxel Scenes with Attributes
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Figure 1: Voxelization of the Lumberyard Bistro scene with a 3D brick texture painted on the ground.

Abstract
Sparse Voxel Directed Acyclic Graphs (SVDAGs) are an efficient solution for storing high-resolution voxel geometry. Recently,
algorithms for the interactive modification of SVDAGs have been proposed that maintain the compressed geometric representa-
tion. Nevertheless, voxel attributes, such as colours, require an uncompressed storage, which can result in high memory usage
over the course of the application. The reason is the high cost of existing attribute-compression schemes which remain unfit for
interactive applications. In this paper, we introduce two attribute compression methods (lossless and lossy), which enable the
interactive editing of compressed high-resolution voxel scenes including attributes.

CCS Concepts
• Computing methodologies → Volumetric models; Image compression;

There is an increasing need for dynamic large-scale 3D voxel
structures across various facets of the computer-graphics industry.
Since voxels represent space, and not surfaces, they are a good fit
for representing volumetric data, which is useful in many scenarios,
such as 3D reconstruction [NZIS13] or indirect lighting in real-time
rendering [CNS*11].

One downside of voxel representations are the typical high mem-
ory requirements. Given that video memory is very constrained
on consumer hardware, often less than 8 gigabytes, compression
schemes are employed (Sec. 1).Nevertheless, these often imply that
access and manipulation of the data becomes slower or even impos-
sible at interactive rates.

In this paper, we focus on voxel models of 3D boundary
representations, which lead to sparse voxel occupancy. Various
data structures have been developed to reduce storage require-
ments of such sparse voxel geometry by omitting empty vox-
els [LH06; MAB19] or exploiting redundancy using a DAG en-
coding [KSA13].

Along with voxel occupancy there is often a need to store
additional information inside non-empty voxels, e.g., presence
of colours for 3D painting. These attributes can be decoupled
and compressed separately from the geometry which improves
the compression ratio [DKB*16]. Various previous works pro-
pose specialised methods for compressing attribute data [DKB*16;
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DSKA17]. However, none of these works focuses on compression
time or enable real-time editing in this context. We present two
novel compression algorithms with the aim of supporting real-time
editing. Our lossless method achieves high performance making
use of a suitable GPU mapping and competitive compression ratios.
Our lossy method improves the compression ratio further, while
maintaining a performance level that enables interactive large-scale
edits in highly-detailed voxel scenes with attributes.

1. Related Work

A regular grid is the simplest method of storing voxel data and in-
dexing is a constant time operation. Yet, the cubic memory costs
limit the practical resolution. Especially, for sparse models, where
comparatively few voxels are filled, much memory is actually
wasted on empty space. In the following, we cover approaches ad-
dressing this challenge.

Spatial Hashing [GG98; ASA*09] stores filled voxels in a hash
map, leading to a linear relation between memory use and non-
empty voxels. Access becomes more computationally involved but
can remain constant in expected time complexity for a suitable
hash encoding. Nevertheless, worst-case complexity remains linear
due to potential entry collisions, which is especially problematic
for Single Instruction Multiple Data (SIMD) architectures, such
as GPUs, where the throughput of a thread group is governed by
the slowest thread. Perfect Spatial Hashing [LH06] avoids colli-
sions with a perfect hash function. It enables a constant-time worst-
case complexity. However, building a perfect hash is expensive,
prohibiting its use for real-time modifications in large-scale voxel
scenes.

Sparse Voxel Octree (SVO) recursively subdivide the volume into
23 same-sized regions, where empty space is not subdivided fur-
ther. Hereby, octrees have the added benefit of acting as an ac-
celeration structure for rendering. Still, while voxel updates in a
single threaded program are conceptually straightforward, mem-
ory allocation and CPU/GPU transfer pose real-world challenges
[KKK18]. Similarly, a full rebuild (e.g., [Kar12] for a GPU ver-
sion) also is no alternative when opting for real-time updates in
high-resolution volumes.

Sparse Voxel Directed Acyclic Graph (SVDAG) exploit repeat-
ing patterns, which manifest themselves as identical subtrees. Hav-
ing parent nodes refer to a single remaining subtree saves mem-
ory. First expressed by [WD89] in two dimensions, it was later
extended to 3D by [PU03] and popularised by [KSA13]. Exten-
sions to this approach match identical subtrees under symmetry
[VMG16; ČMBB19] or allow approximate merges [vdLSE20].

Storing attributes, such as colours, in an SVDAGs is challeng-
ing. SVOs can store such information in leaves. Yet, in an SVDAG,
this would make merging subtrees more difficult, as geometry and
attributes need to match [PU03]. Decoupling attributes from ge-
ometry [DKB*16], by collecting them along a space-filling curve
(Morton) and storing them in a separate array, can be a remedy.

Attributes often occupy more memory than geometry. There-
fore, various compression methods, lossless [DKB*16] and

lossy [DSKA17], but none are suitable for real-time editing, with
the exception of the HashDAG structure [CBE20], which demon-
strated editing of existing SVDAGs at interactive frame rates. How-
ever, new and modified colours are not immediately compressed,
leading to high memory usage when editing large regions. Our
work addresses this issue and builds atop this solution. For addi-
tional information on SVDAGs and multi-resolution structures, the
reader is referred to [ABD*18].

2. Our method

In the following, we describe our solution. We first provide a short
overview of SVDAG structures, since they form the basis for ef-
ficient voxel editing (Sec. 2.1), in this context, we also discuss
our proposed changes to enable our solution. Next, we introduce
our two novel colour compression algorithms. The lossless method
is GPU accelerated and re-compresses large amounts of colour in
real-time (Sec. 2.2), followed by our lossy compression scheme
(Sec. 2.3).

2.1. SVDAG Background

Constructing and updating a SVDAG: An SVDAG is typically
built from an SVO, where the SVO construction is orthogonal to
our topic and will not be covered here. Turning an SVO into a
SVDAG requires searching for identical subtrees and eliminating
all but one instance. This is a recursive process, i.e., a duplicate
subtree might itself contain another subtree which appears some-
where else in the SVO.

Comparing two subtrees with M nodes is an O(M) operation,
which is computationally expensive. The bottom-up construction
presented in [PU03; KSA13] significantly reduces computation
time. Starting at leaf level, duplicates are removed and child point-
ers in the level above updated. The process iteratively works its way
up the tree. Starting at the bottom guarantees that for subtrees with
respect to the current processing level, two children are the same
if and only if their pointers match. Thus finding duplicates simply
entails comparing nodes and their child pointers.

For offline construction [KSA13], duplicates are removed by
sorting the nodes at each level, which is impractical for real-time
editing, as arrays would need to be sorted after insertions and re-
moval of nodes. The HashDAG uses a hash map to guarantee fast
insertions and stable pointers, resulting in a significant speedup, al-
beit at the cost of an increased memory usage [CBE20].

Decoupling attributes from geometry Decoupling attributes
from the voxel geometry improves compression, as attributes do not
have to match when merging subtrees. Attributes of (non-empty)
voxels are collected along a 3D Morton curve, equivalent to a depth
first traversal of the SVO/SVDAG (see Fig. 2 for a 2D example).
The index of an attribute associated with a voxel is given by the
number of non-empty voxels preceding the current voxel along
the Morton curve. To accelerate the index computation, each node
contains the number of non-empty voxels in its subtree, which re-
mains compatible with the subtree merging procedure [DSKA17;
CBE20]. During SVDAG traversal, the attribute index for a voxel
can be accumulated efficiently.
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Figure 2: The structure of the voxel grid (left) is captured in an SVO (centre/left) which is converted into a DAG (centre/right). Each node in
the DAG stores the number of voxels in its subtree. The number of preceding voxels are accumulated during traversal (grey) to give an index
into the attributes array (right). This two dimensional illustration trivially extends to three dimensions.

For a static SVDAG all attributes can be exported to a single
contiguous array. However, editing can fill previously-empty voxels
and requires inserting attributes in this array. Therefore, both of
our compression methods store (blocks of) attributes in a sorted
array which results in O(N) updates. To alleviate this issue we split
the single large attribute array into smaller chunks, one for each
node at a predetermined level of the tree. This defines an upper
bound on the number of unedited attributes that need to be relocated
in memory during editing. It also creates an opportunity for multi
threading as chunks can be updated independently.

2.2. Lossless Attribute Compression

Real-time editing of SVDAGs with attributes requires fast com-
pression and random access decompression. The latter excludes
most popular sequential techniques, such as Lempel-Ziv (LZ)
[ZL77] and Huffman coding [Huf52], which do not support effi-
cient access to individual items. LZ en/decoding is therefore not
suitable, even when using GPU versions [WS18; TRD*21; OS11;
Ozs14; ZH14; LH19; SGDF19]. Our approach achieves constant
time look-ups but still enables a strong compression. To simplify
our explanations, we will explain our solution in the context of
colour compression.

The lossy method by Dolonius [DSKA17] splits the colour array
into large "macro" blocks which could be used to multi thread on
the CPU. To achieve massive parallelism on the GPU we instead
split the colour array into very small blocks of 128 consecutive
entries, each of which is processed by different GPU work groups.
Our underlying assumption is that the colour array exhibits limited
local change, which we exploit in our compression scheme. We
normalise the colours by computing a minimum m and maximum
M per channel in each block and store the actual colour as an offset
from the minimum. The number of bits used for the offset is linked
to the value of M−m.

As a second step a Frame-Of-Reference compression [DUH*19]
is applied. Instead of an offset to the minimum, we will store off-
sets to suitable reference colours. This leads to smaller values and
thus less memory usage. The reference colours are computed by
quantizing the normalised colours into eight equally sized bins (3
bits) per channel.

As many reference colours within a block are identical, we only
store them once in a table and refer to them by index. Further, as

o�set 1

o�set 128

O�sets

o�set ...

bitmask index 1

index 2

index ...

Reference Colours

Bits

palette size

ref color ...

ref color 1

PaletteMin/max
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Figure 3: Memory layout of a single block of 128 colours as com-
pressed with our lossless compression method.
∗1 = ⌈log2(palette size)⌉ ∗2 = ∑c∈r,g,b⌈log2(

cmax−cmin
8 )⌉

especially consecutive entries are likely to share the same reference
colour, we only store an index when it changes from one entry to
the next. This information is stored in a 128 bit mask for the entire
block. Accessing an index of an entry can be achieved by using a
bitcount on the bit mask up to the entry in question. The resulting
value indicates the offset into the index table.

All this information is stored in a compact memory format as
shown in figure 3. Each block may occupy a variable amount of
memory so we use a 64-bit look-up table to provide efficient access
to individual blocks. Everything combined the fixed cost per block
is 48+7+128+64 = 247 bits resulting in a minimum theoretical
compression ratio of 247

128∗24 ≈ 8.04%.

Because blocks cover a fixed interval of colours, there is no op-
tion for fast insertions and removals. To limit compute time and
avoid treating the entire scene, we introduced colour chunks (com-
pare Sec. 2.1). The impact during an edit can then be limited;
we only decompress the modified colour chunks into a temporary
buffer (on the GPU), apply the modifications, and subsequently
compress the colours again.

2.3. Lossy Attribute Compression

A small loss in precision opens the door to a much smaller memory
footprint, as evidenced by many modern image file formats, such
as JPEG [Wal91] with their impressive compression ratios. Dolo-
nius [DSKA17] introduced a lossy scheme aimed specifically at
compressing the 1D colour arrays associated with SVDAGs. Their
algorithm is designed to achieve high quality but does not enable
real-time modifications. We extend this work by presenting a novel
fast algorithm, which is compatible with their file format. To ease
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understanding, we briefly recap their method before detailing our
algorithm.

S3TC block image compression schemes divide an image into
a regular grid of 4x4 pixel blocks. Colours inside each block are
projected onto a line segment in RGB colour space and stored as
an interpolation coefficient between the two endpoints. Dolonius
[DSKA17] applies the same concept to the 1D colour array but
utilises variable-sized blocks to better adapt to the input data.

The number of bits used to store the interpolation weights varies
per block and are stored in a separate array. Like S3TC the line
segment endpoints are encoded with 16 bits using the RGB565 for-
mat. Blocks can also encode a run of a single colour without loss
of precision when desired. For additional information regarding the
memory layout, we refer the reader to [DSKA17].

To compress a set of input colours, the Dolonius algorithm ini-
tially considers each colour as a separate block. It then sequentially
merges neighbouring blocks using a least-squares line fit to the
colours. This process is repeated until no two neighbouring blocks
can be merged without exceeding a given error threshold. The num-
ber of bits used to store the interpolation bits impacts the final error,
hence, all combinations are tested, tracked by creating a tree of all
potential blocks. A tree cut then decides on the final blocks.

For real-time compression, this solution is not adequate and only
used during preprocessing. When no more than two neighbouring
colours fit on each line segment the algorithm finishes in Θ(N)
time. However, in the worst case all colours map to a single line
segment leading to a worst-case time complexity of O(N logN).
This is problematic as larger scenes generally contain more coher-
ence due to oversampling of textures creating larger blocks.

2.3.1. Our line fitting

Our solution targets a compression based on a more local decision
making. To facilitate explanations, we will cast the problem as a
line fitting strategy to a stream of points. We aim at finding a low
but unknown number of line segments which provide a good fit to
a variable number of consecutive points from the stream. A good
fit refers to an allowed margin, which controls the tradeoff of the
number of line segments and the fitting quality.

We sequentially iterate over the input and decide for each colour
whether it can fit onto a line segment with the previous colours or
whether a new block must be created. This greedy algorithm en-
sures that each entry is touched only once. To incrementally con-
struct line segments, we use a modified version of the Hough trans-
form. We first focus on a 2D case before extending our solution to
more dimensions.

Hough Transform [Hou62] is a well known operation in image
processing for detecting lines in images. Lines are represented in a
dual space as a point with coordinates θ and ρ; representing a line
with angle θ at distance ρ from the origin (see Fig. 4).

For the classical line-detection use case, a texture representing
the dual space is used. For a given point in primal space, the texels
representing lines passing through the point are rasterized, which

can be found with a simple relationship:

p⃗ = (x,y)

ρ(θ) = xcos(θ)+ ysin(θ)
(1)

By using additive blending [DH72], high values in the texture ulti-
mately reveal those dual representations of lines that pass through
many points in primal space. Relying on a texture and rasteriza-
tion, quantizes the dual representation, which makes the line fitting
approximate.

In our context, we want to incrementally map points to the dual
space to verify if they all can still be well approximated by a line.
This approach has a number of problems though. First, using quan-
tization to approximate nearby values creates an unstable error mar-
gin. For example the values 9.51 and 10.49 will map to the same
pixel while 10.49 and 10.51 would not, despite being much closer.
A second problem is performance. For each new pixel many dif-
ferent θ values need to be evaluated. Furthermore it is not uncom-
mon to fit millions of individual line segments when compressing
a voxel scene. The rasterization method requires that the texture is
cleared before fitting starts, which is an expensive operation.

To fix these issues we keep the presentation of ρ continuous. For
each discrete step of θ, we store a minimum and maximum value
of ρ, representing all possible lines with angle θ which pass by
the previously added points with a distance less than the desired
fitting margin. This margin creates a range of ρ values which are
considered valid for a point (Fig. 4).

To further accelerate the process, we observe that only lines
which pass close to all points are relevant. Hence there we skip
θ values as soon as no value of ρ can define a valid line for the
preceding points anymore. We accomplish this by keeping a list of
θ steps for which a fitting line still exists (Fig. 4).

2.3.2. Extension to 3D

Many attributes can have more than two dimensions. For exam-
ple, colours triplets in form of red, green, blue channels (RGB).
The 3D equivalent of the Hough transform (for example, employed
in [DDSD03]) requires two angles, which is prohibitively expen-
sive due to the large number of values that would need to be cleared
when starting the fitting.

Instead we perform a 2D Hough transform for the R/G, G/B and
R/B planes. As soon as the fitting fails for one plane, we stop. Con-
sidering the resulting 2D lines as projections of the wanted 3D line,
we can reconstruct the 3D line as a plane intersection involving two
of these planes. For example, using lines in the rb and gb planes
(defined as l(t) = o⃗+ td⃗) we construct a 3D line as follows:

o⃗rgb = (o⃗rb
r − o⃗rb

b d⃗rb
r

d⃗rb
b , o⃗gb

g − o⃗gb
b d⃗gb

g

d⃗gb
b ,0)

d⃗rgb = (
d⃗rb

r

d⃗rb
b ,

d⃗gb
g

d⃗gb
b ,1)

(2)

Tracking all three planes allows us to choose the combination
that maximises the spread along a shared axis (b in Eq. 2), which
reduces numerical issues due to division by values close to zero.
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Figure 4: Two points in (x,y) space (left) and their representation in (θ,ρ) space after Hough transform. (center). The intersection of the
two lines in (θ,ρ) space defines a line in (x,y) which passes through both points (right). To allow for approximate fitting we define an error
margin e in ρ which corresponds to an euclidean error in (x,y) space. To accelerate the search we discretize θ keeping only the overlapping
values. The ρ bounds are stored in a continuous representation (center)

3. Implementation

Here, we discuss implementation details and the integration in the
available interactive-editing HashDAG framework [CBE20].

Editing the SVDAG We modified the original code to integrate
our colour compression functions. Further, the original work was
implemented on the CPU and we improved performance by hav-
ing a separate copy of the DAG maintained in system memory,
mirrored on the GPU. Editing tools, such as a sphere placement
tool and paint brush are readily available. We also produced a new
stamp tool that modifies the surface and colour simultaneously (see
Fig. 1 and video). In all cases, we determine the region of their
impact by subdividing the space into 2x2x2 regions recursively,
traversing only those, where voxels are modified. For unmodified
space, we copy the pointer to nodes in the original SVDAG.

The colour array consists of chunks, one for each node at
level 8 in the tree when using lossy compression (same as
HashDAG [CBE20]) and level 7 when using lossless compression
(where level 0 is the root of the three). The reason for using differ-
ent values is that the GPU (lossless method) requires larger pieces
of work to make effective use of the hardware. We define the con-
tents of new or modified colour chunks as an ordered stream of
three basic operations: copy existing colours, fill a single colour
and write new colours. Once all colour operations for a chunk have
been recorded, the chunk can be compressed using either our loss-
less or lossy method on a worker thread.

Lossless colours Our lossless compression algorithm does not
support incremental updates and requires a full decompression and
re-compression of any modified colour chunk. Both compression
and decompression are implemented in CUDA. For compression
we spawn a work group for each 128 colour blocks with an equal
amount of threads. Each work group compresses its block into a
shared memory bit stream, which is atomically merged into a global
bit stream when the work group finishes. We use the cooperative
groups feature in CUDA to utilise the latest hardware intrinsics for
reductions and prefix sums available in the GPU used for testing.

Lossy colours Because the lossy compression scheme uses vari-
able sized blocks, partial updates are possible. Contiguous subsets
of new colours are compressed into one or more blocks while un-
modified blocks are copied.

To compress new colours, we apply the greedy line fitting algo-
rithm (Sec. 2.3.2), where the angle θ is discretized into 96 steps,
which was empirically chosen. Computation of ρ is performed
in parallel using AVX2 instructions by grouping the θ steps into
groups of size 8. The result of the Hough-transform fitting is a line
rather than a line segment so a second loop is required to compute
the endpoints. The number of bits used to store the interpolations
weights is decided by exhaustively checking all options between 1
and 4 bits (using SSE intrinsics) and picking the lowest bit count
which allows each point to be fit, while staying within the users
specified error threshold.

Like Dolonius the threshold is defined as the maximum Eu-
clidean distance between any input colour and its compressed rep-
resentation in the output. We control the line fitting precision by
adjusting the 2D precision parameter e (see figure 4) which we set
to half of the desired 3D error.

In addition approximate line fitting, quantization of the inter-
polation weights, and line segment endpoints (RGB565 format)
also increase the final colour error. As such, a situation may oc-
cur, where it is not possible to store the fitted colours into the same
block. In such cases we encode these colours into individual colour
blocks using the RGB101210 format (Sec. 2.3).

4. Results

To evaluate the performance of our algorithms and the
HashDAG [CBE20], we will compare against the lossless compres-
sion scheme of Dado [DKB*16] and the compression algorithm
of Dolonius [DSKA17]. In case of Dolonius, we use the original
CUDA implementation and created our own version of the Dado
algorithm based on their paper.

All tests were performed on a system running a 10th genera-
tion Intel I9 processor and a Nvidia RTX3070Ti on Linux. We
found that CUDA performance on Windows is significantly de-
graded when using managed memory.

Colour Compression In order to accurately measure just the com-
pression performance, we extract raw attribute arrays from various
scenes and compress them in their entirety. The tested scenes are
voxelized versions of the Epic Citadel, Lumberyard Bistro Exte-
rior, and San Miguel scenes using diffuse textures as voxel colours.
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Figure 5: A plot showing compression ratio as a function of Root
Mean Square Error (RMSE). Comparing our lossy method to Dolo-
nius [DSKA17].

In addition we test the Citadel scene with coloured Perlin noise
to emulate the low frequency signal of irradiance (Fig 6). For the
lossy colour compression schemes, we use a colour error threshold
of 0.06. As with actual voxel editing, we split the attribute array
into smaller chunks. With the exception of our lossless method and
Dolonius’ CUDA version [DSKA17], the chunks are processed in
parallel using multiple CPU threads.

The results are shown in Table 1. For our lossless method, we
tested both the original RGB888 input, as well as RGB565. Storing
RGB565 colours will lead to a small quality loss due to the conver-
sion of the 24 bit input colours, but, being lossless, this error can-
not grow over time when editing. We also include the method em-
ployed by HashDAG [CBE20] in the table which uses the memory
layout of Dolonius. HashDAG only performs compression by de-
tecting equivalent consecutive colours, a very simple form of run-
length encoding.

Our lossless method is able to compress data at over 20GB/s
which is two orders of magnitude faster than the method of Dado
[DKB*16]. At lower resolutions our method is able to achieve com-
pression ratios comparable to Dado. However our method does not
scale as well to larger resolutions due to the fixed block size, and,
thus, memory overhead per voxel. Increasing the block size would
help, but grouping more colours also reduces their coherence in
each block. In practice, we found that blocks of 128 provide a good
balance for most scenes.

Note that the Citadel scene is a bit of an outlier with regards to
memory scaling. The scene uses low-resolution textures and under-
neath the castle are large single-coloured triangles resulting in long
homogeneous ranges in the colour array. The method of Dad o is
able to efficiently store ranges of single colours, while our method
is bound by the use of blocks. The opposite happens when stor-
ing Perlin noise rather than diffuse textures. Colours are not re-
peated locally, resulting in Dado using more memory than the un-
compressed input. In comparison our method using local offsets
handles this situation much better.

Our lossy compression algorithm was designed to achieve high
run-time performance, while utilising the memory format of Dolo-
nius [DSKA17]. At roughly 1GB/s on a 10 core CPU, our method is
well suited to large scale interactive editing or real-time smaller ed-
its. In terms of compression ratio our method typically requires be-
tween 30% and 80% more memory than Dolonius’ offline method.

Figure 6: The Epic Citadel scene using Perlin noise colours.

Both lossy methods trade quality for compression ratio, which is
illustrated in Fig. 5. The method of Dolonius outperforms our lossy
algorithm, which we attribute to various factors. They perform an
extensive search over the space of combination of potential line
segments rather than our naive greedy method. The line fitting is
performed using a least squares optimisation, which we expect to
outperform our 3D mapping of the Hough transform in terms of
accuracy. Their design decisions opt for better compression but it
makes their method unsuitable for interactive editing. Given the
gain in performance, the increased memory usage could be seen as
modest.

Real-Time Editing To demonstrate the use of our methods for
editing, we have recorded an editing session, where the Citadel
scene is painted using a rainbow brush defined by a Perlin noise
function for each of the three colour channels. Fig. 7 shows the
memory usage during editing, the time it takes to perform the com-
pression, update the colours, as well as the total frame time. The
colour update time includes the CPU to GPU copy required for the
colours to be displayed on screen plus the compression step.

We compare our compression methods to the work of
HashDAG [CBE20] on which our code is based. HashDAG loads
scenes using the same compression format as Dolonius and our
lossy method. Colours that are modified during editing are not com-
pressed and instead encoded into individual colour blocks leading
to high memory usage over time (Fig. 7). In contrast the use of
real-time compression using our methods ensures that memory us-
age remains stable.

Our lossy compression algorithm adds roughly 13 milliseconds
( 50%) to each frame. While this difference is not insignificant, it
does show that our performance is suitable for interactive editing.
Our lossless method, which is GPU accelerated, slightly outper-
forms the HashDAG method, which is in line with the compression
performance on synthetic benchmarks (Table 1).

5. Conclusion

To our knowledge, this is the first demonstration of an interactive
editing of a full SVDAG with attributes in the compressed domain.
While previous work required decompressing attributes, leading to
a large memory overhead, or relied on an offline processing, our
method achieves fast execution times while keeping memory cost
low.
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Figure 7: From top to bottom: Colour memory usage, colour
compression-, colour update- (including upload), and frame time,
when painting the Epic Citadel 32K3 with a rainbow colour brush.
The grey area indicates frames in which no editing takes place.

We have presented two methods for compressing attributes; a
lossless and lossy solution. This makes our approach suitable for
many application scenarios. The lossless method is constructed
from well-known building blocks [DUH*19] and supports random-
access decoding. It can compress large amounts of data in little
time by leveraging the GPU. The lossy solution enables even lower
memory usage although at the cost of larger colour errors and re-
duced performance. We believe our solutions increases the viability
of using SVDAGs in interactive applications, as attributes such as
colours, typically occupy more memory than the geometry itself.

While the results are positive, large edits still run at interactive-
rather than real-time frame rates. This might be of relevance for
some applications, such as VR painting. Although we do believe
that real-time performance is possible if the GPU were to be utilised
in the entire editing process. Further, the scenes themselves are
currently static and how to integrate animation capabilities into
SVDAGs is still an open question.
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Scene Method Compression Time Compression Ratio (%) RMSE

Bistro Exterior (8K) Ours (lossy) 0.77s 18.44% 0.0158
649MB Dolonius (lossy) 76.66s 13.93% 0.0170

Ours (lossless RGB888) 0.07s 72.04% 0.0000
Ours (lossless RGB565) 0.07s 35.91% 0.0140
Dado (lossless) 4.15s 74.95% 0.0000
HashDAG (lossless) 0.28s 249.21% 0.0000

Bistro Exterior (16K) Ours (lossy) 3.25s 17.31% 0.0156
2643MB Dolonius (lossy) 312.12s 12.54% 0.0168

Ours (lossless RGB888) 0.14s 68.96% 0.0000
Ours (lossless RGB565) 0.14s 33.62% 0.0139
Dado (lossless) 20.10s 69.91% 0.0000
HashDAG (lossless) 1.23s 245.24% 0.0000

Citadel (8K) Ours (lossy) 0.22s 16.04% 0.0161
210MB Dolonius (lossy) 22.97s 12.36% 0.0170

Ours (lossless RGB888) 0.03s 65.84% 0.0000
Ours (lossless RGB565) 0.03s 33.88% 0.0088
Dado (lossless) 1.56s 63.72% 0.0000
HashDAG (lossless) 0.08s 183.63% 0.0000

Citadel (16K) Ours (lossy) 0.80s 14.52% 0.0161
844MB Dolonius (lossy) 92.88s 10.06% 0.0171

Ours (lossless RGB888) 0.06s 55.30% 0.0000
Ours (lossless RGB565) 0.06s 26.53% 0.0088
Dado (lossless) 10.62s 43.43% 0.0000
HashDAG (lossless) 0.21s 138.15% 0.0000

Citadel (32K) Ours (lossy) 3.19s 13.61% 0.0161
3412MB Dolonius (lossy) 388.63s 7.67% 0.0163

Ours (lossless RGB888) 0.15s 45.06% 0.0000
Ours (lossless RGB565) 0.16s 20.20% 0.0089
Dado (lossless) 64.00s 29.85% 0.0000
HashDAG (lossless) 0.74s 97.02% 0.0000

Citadel, Perlin Noise (16K) Ours (lossy) 0.61s 9.61% 0.0178
844MB Dolonius (lossy) 37.50s 5.58% 0.0161

Ours (lossless RGB888) 0.06s 68.59% 0.0000
Ours (lossless RGB565) 0.06s 27.14% 0.0142
Dado (lossless) 10.85s 172.75% 0.0000
HashDAG (lossless) 0.40s 263.31% 0.0000

San Miguel (16K) Ours (lossy) 2.41s 17.15% 0.0154
1974MB Dolonius (lossy) 236.73s 12.04% 0.0156

Ours (lossless RGB888) 0.10s 63.01% 0.0000
Ours (lossless RGB565) 0.10s 32.93% 0.0149
Dado (lossless) 17.47s 79.23% 0.0000
HashDAG (lossless) 0.75s 200.46% 0.0000

Table 1: Comparison between ours and existing colour compression methods for SVDAGs. The size of the uncompressed colour array (24
bit per colour) is given for each scene. The colour array is split into smaller chunks which allows the lossy and Dado implementations to be
multi threaded. Our lossless method and Dolonius achieve parallelism through GPU processing and run in a single CPU thread. The lossy
methods were configured to target a maximum error of 0.06 per colour channel.
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