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Figure 1: Our optimization-based solver allows stable and robust simulations of coupling between hyperelastic solids and fluids in a unified
SPH framework. The elastic solids of this example are simulated using the Neo-Hookean model with 39.3K particles, and the fluid is simulated
using the divergence-free SPH solver with 320K particles.

Abstract
This paper proposes a novel method for simulating hyperelastic solids with Smoothed Particle Hydrodynamics (SPH). The
proposed method extends the coverage of the state-of-the-art elastic SPH solid method to include different types of hyperelastic
materials, such as the Neo-Hookean and the St. Venant-Kirchoff models. To this end, we reformulate an implicit integration
scheme for SPH elastic solids into an optimization problem and solve the problem using a general-purpose quasi-Newton
method. Our experiments show that the Limited-memory BFGS (L-BFGS) algorithm can be employed to efficiently solve our
optimization problem in the SPH framework and demonstrate its stable and efficient simulations for complex materials in the
SPH framework. Thanks to the nature of our unified representation for both solids and fluids, the SPH formulation simplifies
coupling between different materials and handling collisions.

CCS Concepts
• Computing methodologies → Physical simulation, elastic body simulation, optimization;

1. Introduction

Simulation of elastic solids has been a popular research topic
in computer graphics since the seminal work of Terzopoulos et
al. [TPBF87]. Among the discretized representations of elastic
solids, tetrahedral meshes have arguably been the most widely
used, thanks to their efficiency and efficacy in evaluating the de-
formation gradients [SB12]. However, when the simulation setups
come with different types of materials (e.g., fluids) and differ-
ent discretizations for them (e.g., grids), a sophisticated coupling

mechanism is often required to solve for interactions of the differ-
ent materials stably.

To mitigate the challenge in coupling different simulation meth-
ods, particle-based unified frameworks have been studied; they in-
clude position-based dynamics (PBD) [MMCK14] and smoothed
particle hydrodynamics (SPH) [Mon92]. A unified formulation for
both solids and fluids not only simplifies the coupling mechanism
but also facilitates their phase transitions (e.g., solid to fluid or vice
versa). Furthermore, collisions can be easily handled by the nature
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of its solving mechanism, which fundamentally aims to avoid over-
lapping of particles.

Unfortunately, evaluation of the deformation gradients for par-
ticles is not trivial. For example, a naive SPH evaluation for the
deformation gradient leads to a misinterpretation of deformation
due to the first-order inconsistency. In order to solve the problem,
Bonet and Lock [BL99] introduced a corrected SPH kernel gradient
formulation. Using the formulation, Peer et al. [PGBT18] proposed
an implicit integration scheme for SPH elastic solids to further im-
prove the simulation stability. However, their SPH formulation for
elastic solids often suffers from instability in large deformation,
due to the zero-energy modes [Gan15]. Kugelstadt et al. [KBF*21]
tackled this problem by suppressing the zero-energy modes artifi-
cially. However, their elasticity solver is limited to corotated mate-
rials, which are not adequate for simulating a wide variety of real-
world deformable materials such as rubber.

This paper proposes a novel SPH-based elastic solid simula-
tion method that supports more complex hyperelastic models, such
as Neo-Hookean and St. Venant-Kirchoff, with great stability. To
this end, we reformulate the implicit integration as an optimiza-
tion problem, as was similarly done in the mesh-based methods
[MTGG11; BML*14; GSS*15]. Our experiments show that the L-
BFGS solver, which is one of the most popular general-purpose
quasi-Newton methods [NW99] and known to be efficient for hy-
perelastic solids in the mesh-based approach [LBK17], can be em-
ployed to solve our optimization problem efficiently in the con-
text of SPH. To the best of our knowledge, our work is the first
demonstration for stable simulations of hyperelastic models with
the optimization-based SPH solver.

2. Related Work

The SPH framework has been one of the most popular choices for
simulations of various physical phenomena [Mon92]. In computer
graphics, this framework is particularly well known to be effec-
tive for fluid simulations due to the seminal work of Müller et al.
[MKN*04]. (For an overview of SPH, readers are referred to the ar-
ticle by Koschier et al. [KBST22].) A vast amount of studies, then,
has been introduced extending and improving various aspects of
fluid dynamics. In addition, there have been efforts to handle other
materials together with fluids. Particularly, robust interaction meth-
ods between SPH fluids and rigid bodies were proposed [AIA*12;
ANZS18; GPB*19].

In order to handle deformable solids in SPH, Solenthaler et al.
[SSP07] proposed a deformation gradient evaluation using SPH,
particularly focusing on a linear elastic material. Since the naive
evaluation of the deformation gradient with the SPH formulation
is not first-order consistent [BL99], however, this formulation suf-
fered from a misinterpretation of deformation regarding rotation.
To address this problem, Becker et al. [BIT09] proposed a shape
matching method and used an explicit time integration scheme
with a corotated linear elasticity model, whereas Gerszewski et
al. [GBB09] proposed deformation gradient based on moving least
squares (MLS). On the other hand, Peer et al. [PGBT18] proposed
an implicit formulation for simulating corotated SPH elastic solids
in order to remedy simulation instability. However, their method of-

ten suffered from instability in large deformations due to the zero-
energy modes [Gan15]. To improve the control of the zero-energy
modes, Kugelstadt et al. [KBF*21] introduced a zero-energy mode
penalty force that conserves linear and angular momentum. These
methods, however, focused only on the corotated model whereas
our method supports a wide variety of elasticity models such as
Neo-Hookean and St. Venant-Kirchoff.

Additionally, instead of relying entirely on SPH, Abu Rumman
et al. [ANM*20] proposed a method that couples PBD-based de-
formable solids with SPH fluids. Although this method achieved
an efficient simulation of coupling between solids and fluids, at
the same time, it shared the downside of the PBD framework, i.e.,
the method has difficulties in handling physics-based elastic mod-
els. On the other hand, to resolve such coupling, Dagenais et al.
[DGP12] used a predictor-corrector approach with shape matching,
and Huber et al. [HEW15] presented a simulation method for cloth
with SPH, which supports wetting and no-slip boundary conditions.
Gissler et al. [GHB*20] proposed a compressible SPH pressure
solver, which is coupled with a linear implicit elasticity solver, such
that it can simulate plasticity.

Since the seminal work of Baraff and Witkin [BW98] for cloth
simulation, many implicit methods have been proposed to improve
the accuracy and stability. Thanks to the stability, backward Euler
(as an implicit scheme) has been widely adopted in mesh-based
elastic material simulations, whereas it is relatively new to SPH-
based elastic material solvers.

On the other hand, reformulation of a numerical integration
problem as an optimization problem has been studied for better
performance and stability [SH98; MTGG11; GSS*15]. Here, solv-
ing for their objective functions leads to the constrained motions
of simulated objects. For example, PBD method reformulated the
backward Euler scheme for elastic object simulations as a con-
strained optimization problem, where the elastic energy for each
finite element is considered as a hard constraint and resolved itera-
tively [MHHR07]. Macklin et al. [MMC16] alleviated the problem
of iteration-dependent stiffness of PBD by adjusting the Lagrange
multiplier for each iteration.

Liu et al. [LBOK13] presented a method for efficient simula-
tions of mass-spring systems introducing two-step optimization ap-
proach with auxiliary variables. This method was generalized to
projective dynamics (PD) [BML*14], which achieves stable simu-
lations of many kinds of deformable objects such as rods, clothes
and jellies. Wang et al. [Wan15] accelerated PD and PBD using a
Chebyshev semi-iterative approach. Liu et al. [LBK17] interpreted
PD as a quasi-Newton method, whereas Overby et al. [OBLN17]
showed that PD can be interpreted as an alternating direction
method of multipliers (ADMM). These two methods allowed sup-
porting more general materials. Our work is inspired by these
optimization-based approaches while focusing on the SPH frame-
work for a similar goal, i.e., efficient and stable simulations of gen-
eral elastic materials.

3. SPH Formulation

Our method is built upon two state-of-the-art SPH formulations:
robust evaluation of deformation gradient [PGBT18] and efficient
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handling of zero-energy modes via suppression [KBF*21]. They
are briefly reviewed in Sec. 3.1 and Sec. 3.2, respectively.

3.1. Deformation Gradient

Elastic energy models (such as corotated, Neo-Hookean and St.
Venant-Kirchoff) are widely used for elastic solids. In general,
they are expressed in terms of deformation gradient, F = ∂x/∂X
(∈ R3×3), where x (∈ R3) and X (∈ R3) denote deformed and ref-
erence (i.e., undeformed) positions, respectively.

A robust evaluation of the deformation gradient for SPH is pro-
posed by Bonet and Lok [BL99]:

Fi = ∑
j∈N 0

i

V jx ji ⊗
(
Li∇W ji

)
(1)

The subscript i denotes each particle’s index, N 0
i is the set of parti-

cle i’s initial neighbours, V j is the rest-pose volume, x ji = x j − xi,
⊗ is the Kronecker product operator (i.e., a⊗b = abT ), Li is the
kernel correction matrix, and W ji =W (X ji,r), where X ji =X j−Xi

and W (X,r): R3 → R is the SPH kernel with the kernel radius r.
The kernel correction matrix, Li, is defined as follows:

Li =

 ∑
j∈N 0

i

V j∇W ji ⊗X ji

−1

(2)

This correction makes the deformation gradient, Fi, satisfy the first-
order consistency condition:

∑
j∈N 0

i

V jX ji ⊗
(
Li∇W ji

)
= I (3)

which is important to capture rotational motions correctly.

The hyperelastic energy, denoted as Ehe(x), is defined using the
deformation gradients, Fi, given in Eq. (1):

Ehe(x) = ∑
i

ViΨ(Fi) (4)

where Ψ represents the elastic energy density function, which may
vary according to the type of the elastic material to model.

3.2. Zero-Energy Mode Suppression

A well-known problem of the deformation gradient approxima-
tion given in Eq. (1) is the zero-energy modes, which are similar
to the hourglass modes in FEM simulations [Gan15]. To alleviate
this problem, Kugelstadt et al. [KBF*21] proposed implicit penalty
forces that suppress the zero-energy modes using an artificially de-
signed energy:

Eze(x) =
α

2 ∑
i

wiVi

 ∑
j∈N 0

i

W jiV j
∥e ji∥2

∥X ji∥2

 (5)

where α is the user-defined parameter, wi is the material parameter
that makes the penalty forces proportional to the elastic forces, and
e ji defined as FiX ji − x ji represents the error caused by the zero-
energy modes.

Eq. (5) can be represented in a matrix-vector product form:

Eze(x) =
1
2

xT Hx (6)

We refer the readers to the work of Kugelstadt et al. [KBF*21] for
the details on formulation of the matrix, H.

4. Optimization Problem

Given a physical system that consists of m particles, its state can
be described as a set of the particle positions x(∈ R3m) and ve-
locities v(∈ R3m). The system evolves at discrete time samples,
{t1, t2, · · · , tN}. Given a state at tn, the implicit Euler scheme ap-
proximates the next state at tn+1 as follows:

xn+1 = xn +hvn+1

vn+1 = vn +hM−1 (fext + fint(xn+1))
(7)

where h is the time step size, M is the mass matrix, fext represents
the external forces (e.g., gravity), and fint(x) represents the internal
forces, which include the elastic forces and the zero-energy sup-
pression forces in the SPH framework.

Since the internal forces can be evaluated as the negative gradi-
ents of internal energy, i.e., fint(x) = −(∇Ehe(x)+∇Eze(x)), we
can rewrite Eq. (7) as follows:

M
h2 (xn+1 −yn)+∇Ehe(xn+1)+∇Eze(xn+1) = 0 (8)

where yn = xn +hvn +h2M−1fext. Solving for the new state, xn+1,
in Eq. (8) is reformulated to an optimization problem finding xn+1
that minimizes the following objective function g(x) : R3m → R:

g(xn+1) =
1

2h2 ∥xn+1 −yn∥2
M +Ehe(xn+1)+Eze(xn+1) (9)

where ∥ · ∥2
M denotes weighted Frobenius norm. For the sake of

notation simplicity, we will henceforth use x instead of xn+1.

4.1. Numerical Solution

Our optimization problem with the objective given in Eq. (9) can
be solved using an iterative approach such as Newton’s method:

xk+1 = xk −
(
∇2g(xk)

)−1
∇g(xk) (10)

where the subscript denotes the iteration count and x0 = yn. De-
spite the fast convergence nature of Newton’s method, it requires
the Hessian matrix, ∇2g(xk), to be computed and factorized per
solver iteration, thus degrading the efficiency.

Inspired by the work of Liu et al. [LBK17], which demonstrated
the efficiency of a quasi-Newton method in a similar optimization
problem for mesh-based deformable solid simulations, we adopt
the L-BFGS algorithm [NW99]. For the sake of efficiency, it ap-
proximates the Hessian matrix, ∇2g(xk), using the curvature infor-
mation of l most recent iterates, i.e., xk−l , · · · ,xk−1. In the follow-
ing, we will show an effective approximation of this matrix for our
method and demonstrate its efficiency for our optimization-based
elastic SPH solid solver in the experiments.
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Algorithm 1: An iteration of L-BFGS

1 q :=−∇g(xk)
2 for i = k−1, · · · ,k− l do
3 si := xi+1 −xi
4 ti :=∇g(xi+1)−∇g(xi)

5 ρi := tr(tT
i si)

6 ςi = tr(sT
i q)/ρi

7 q := q− ςiti

8 end
9 r := A−1

0 q // initial approximation of Hessian
10 for i = k−m, · · · ,k−1 do
11 η := tr(tT

i r)/ρi
12 r := r+ si(ςi −η)

13 end
14 d(xk) :=−r // descent direction
15 xk+1 := xk +d(xk)

4.2. Initial Approximation of Hessian

The initial approximation of the Hessian matrix, which we denote
as A0, significantly affects the convergence rate of L-BFGS, as dis-
cussed in [LBK17]. Therefore, we search for A0 that is close to
the Hessian, ∇2g(xk), and remains constant such that the expen-
sive Cholesky factorization can be avoided during the simulation.
∇2g(xk) = M/h2 + H +∇2Ehe(xk), and ∇2Ehe(xk) is the only
non-constant term. Hence, we can achieve our goal if we replace
the non-constant term, ∇2Ehe(x), with a “constant approximation.”

To this end, we adopt the strategy taken by Bouaziz et al.
[BML*14]. First, we approximate the hyperelastic energy per par-
ticle, Ehe,i(x), as follows:

Ehe,i(x)≈Vi
wi

2
∥vec(Fi)− zi∥2 (11)

where wi consists of material parameters such as Poisson’s ratio
and Young’s modulus, vec(·) vectorizes a 3×3 matrix into a 9×1
vector, and zi is the projection of vec(Fi) onto the manifold satisfy-
ing Ehe,i(x) = 0. It is worth noting that vec(Fi) can be represented
as a matrix-vector multiplication form [KBF*21]:

vec(Fi) = Dix (12)

We refer the readers to the work of [KBF*21] for the details on
formulation of the matrix Di. Aggregating the second derivative of
Eq. (11), the desired “constant approximation,” which we denote as
B, is defined as follows:

B = ∑
i

ViwiDT
i Di (13)

Here, wi is defined in the same way as done by Liu et al. [LBK17].
Finally, the initial approximation of the Hessian matrix, A0, is com-
pleted with B:

A0 =
M
h2 +H+B (14)

Algorithm 1 presents the L-BFGS algorithm based on A0.

Algorithm 2: Coupled solid-fluid solver

1 perform neighborhood search
2 compute external forces fext

3 yn := xn +helvn +h2
elM

−1fext
4 solve Eq. (9) for x∗ with L-BFGS (using Algorithm 1)
5 v := (x∗−xn)/hel
6 ael := (v−vn)/hel
7 vn+1 := vn +hflael
8 pressure solve using DFSPH

5. Solid-Fluid Coupling and Collision

Our method is implemented with the divergence-free SPH (DF-
SPH) solver [BK16]. Coupling between solid and fluid particles
and self-collisions are naturally handled in the pressure solver
by which the particles are kept from interpenetration. See Algo-
rithm 2.

Adaptive time steps based on the Courant-Friedrichs-Lewy
(CFL) condition are commonly used in SPH. However, they drasti-
cally degrade the performance of our elasticity solver since chang-
ing the time steps requires changing the initial approximation of
Hessian, A0. To tackle this performance issue, we use different time
steps for solids and fluids, as in the works of Peer et al. [PGBT18]
and Kugelstadt et al. [KBF*21]. While the time step size of our
elasticity solver, hel, is kept constant, that for the fluid solver, hfl, is
determined using the CFL condition as follows:

hfl = 0.4d/∥v∥∞ (15)

where d is the particle diameter. We evaluate the acceleration, ael,
using the velocity change calculated in the elasticity solver and then
evaluate the final velocity, i.e., vn+1 = vn +hflael.

6. Experimental Results

All our experiments are made on an AMD Ryzen 7 5800X 3.8
GHz processor with OpenMP-based parallelization. We run our
solver with various hyperelastic materials including corotated,
Neo-Hookean and St. Venant-Kirchoff models as well as for inter-
actions of multiple hyperelastic solids and their two-way coupling
with fluids. To this end, we employ the open-source SPH-based
simulation framework SPlisHSPlasH [BKWK22] and the linear al-
gebra library Eigen [GJ*10].

We will first present the results of two experiments, named
Swinging cloth and Stretching cube, which demonstrate the sta-
bility and robustness of our optimization-based solver. For both ex-
periments, corotated materials are used. The results will be com-
pared with those of a state-of-the-art SPH-based elasticity solver,
called operator-splitting solver [KBF*21], which we abbreviate to
OSS. Table 1 lists the scene parameters and performance data for
each experiment.

Swinging cloth: In this experiment, we set up an elastic cloth,
two corners of which are attached to fixed points. The cloth
is swinging under the gravitational force. As shown in Fig. 2-
(a), OSS suffers from oscillation artifacts, particularly around the
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(a) OSS, α = 0.1

(b) OSS, α = 10

(c) OSS, α = 1000

(d) Ours, α = 0.1

Figure 2: Swinging cloth: Increasing the zero-energy suppression
in OSS alleviates the oscillating motions at the cost of introduc-
ing undesired artificial stiffness. In contrast, our solver successfully
yields a stable and desired simulation for large deformations, with
neither oscillation artifacts nor artificial stiffness. The particles are
visualized in different colors indicating high speed in red and low
speed in white.

attached points where large deformations occur. The operator-
splitting scheme jointly solves the stretching term of the corotated
energy and the zero-energy term using a pre-factorized Cholesky
solver, and then solves the volume-conservation term of the coro-
tated energy using a Conjugate Gradient solver (with termination
criteria, ε< 10−4). In this alternating scheme, the second step dete-
riorates the first step’s solution, resulting in the oscillation artifacts.

(a) Ours, h = 0.03, 1 iteration (b) Ours, h = 0.03, 2 iterations

(c) OSS, h = 0.03 (d) OSS, h = 0.003

Figure 3: Stretching cube: Our solver presents a stable simula-
tion with only two iterations and a large time step, whereas OSS
requires ten times smaller ti me step to get stabilized.

Figure 4: The ratio of the deformed volume to the rest volume over
frames of the Stretching cube example shown in Fig. 3. Ours took
a single L-BFGS iteration up to the 80th frame and then two itera-
tions afterward.

To remedy this problem, one would consider increasing the zero-
energy control parameter, α in Eq. (5), such that the zero-energy
suppression becomes dominant. Unfortunately, as shown in Fig. 2-
(b) and (c), strong zero-energy suppression results in undesired stiff
motions.

In contrast, thanks to the optimization-based scheme, our solver
successively simulates large deformations without increasing α, as
shown in Fig. 2-(d). It does not suffer either from oscillation arti-
facts or from artificial stiffness.

Stretching cube: This example presents simulations of a nearly-
incompressible elastic cuboid solid, whose Poisson’s ratio is set
to 0.45. We pull the two opposing sides of the solid and test its
deformation. In order to see how our solver’s iteration count affects
the simulation, we first run our solver with a single iteration and
then increase it to two on the fly. Even with a single iteration, our
solver presents a rough deformation close to the expected (yet with
oscillations), as shown in Fig. 3-(a). When the iteration count is

© 2023 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

229



M. Kee et al. / An Optimization-based SPH Solver for Simulation of Hyperelastic Solids

Frame 1

Frame 50

Frame 84

Frame 126

Figure 5: Twisting beam: Our solver tested with different elasticity
models: (left) corotated model, (right) Neo-Hookean model.

increased just to two on the fly, our solver quickly produces a stable
and desired deformation, as shown in Fig. 3-(b).

We test OSS with the same setup. With the same time step, i.e.,
h = 0.03s, OSS fails to generate a desired deformation, as shown
in Fig. 3-(c). The simulation is stabilized with the ten times smaller
time step, i.e., h = 0.003s, as shown in Fig. 3-(d); however, it takes
approximately five times longer than ours.

The graphs in Fig. 4 show the ratio of the deformed volume to
the rest volume, which is evaluated from the simulation results pre-
sented in Fig. 3. In our method, the oscillations are made when
using a single iteration of our solver, but they immediately disap-
pear when the iteration count is increased to two at the 80th frame,
and the ratio value converges to 0.89. It is significantly better than
the others. Indicating that the volume ratio of one means incom-
pressible deformation, we note that OSS fails to preserve the de-
sired incompressbility even when using a small time step size (i.e.,
h = 0.003s). The ratio converges to 0.63.

Twisting beam: In this experiment, we set up an elastic beam
that is twisted at its two ends, thus gradually causing a large de-
formation. See Fig. 5. As discussed in Sec. 1, corotated materials
are not adequate for large compression. In Fig. 5, the left column
shows the results of our simulation made with the corotated model.

Frame 1 Frame 25

Frame 34 Frame 40

Figure 6: Colliding bunnies: Collision between St. Venant-
Kirchoff materials.

Frame 1 Frame 10

Frame 60 Frame 130

Figure 7: Melting duck: A deformable duck is melted down.

Observe the undesired inversion (at Frame 84), which indicates a
failure of resolving a large compression induced by the series of
twists. With the Neo-Hookean model, however, our solver produces
the desired twisting motions stably, as shown on the right column
in Fig. 5.

Colliding bunnies: In order to test the efficacy of collision han-
dling in the SPH framework, this experiment is made with five elas-
tic bunnies falling into a rigid box, as shown in Fig. 6. We use the
St. Venant-Kirchoff model for the purpose of proving our solver’s
robustness in handling collision between complex hyperelastic ma-
terials.

Melting duck: Fig. 7 shows a deformable duck dropped onto a
hot plate. This experiment presents a simple yet efficient handling
of melting effects in our framework. As the heat induced from the
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L-BFGS Newton’s method

(a)

(b)

Figure 8: Comparison between L-BFGS and Newton’s method. (a)
Simulation results of Twisting beam. (b) Optimization losses of L-
BFGS with different window sizes (ws) and Newton’s method over
solver iterations.

hot plate is diffused through the particles, we decrease the magni-
tude of the elastic force according to the temperatures of particles.
To this end, a temperature-dependent weight function applies to
each particle’s energy gradient. This avoids update of the constant
Hessian approximation, A0, while effectively taking into account
the change of material property, i.e., elasticity.

Solid-fluid coupling: In Fig. 1, two Neo-Hookean elastic solids
(bunny and Suzzane) are dropped into a box, and then fluids are
emitted into the box from two nozzles. Our solver, jointly working
with the DFSPH fluid solver, successfully presents the interactions
of multiple hyperelastic solids and their two-way coupling with the
fluids.

In order to see the reliability of L-BFGS, we compare the simula-
tion results of L-BFGS with those of Newton’s method. As shown
in Fig. 8-(a), both methods present visually similar results, while
L-BFGS is two orders of magnitude faster than Newton’s method.
Fig. 8-(b) shows optimization losses, g(x), of L-BFGS with dif-
ferent window sizes and of Newton’s method over solver itera-
tions. These losses are evaluated at a selected frame of Twisting
beam example. As shown in the graphs, Newton’s method con-
verges very fast (i.e., within three iterations) whereas convergence
of L-BFGS depends on the window size. As it increases from one to
five, the optimization loss converges faster. When it is increased to
a larger value (i.e., ten), however, little difference is observed since
the larger window size makes L-BFGS consider the more distant it-
erates’ information. In our experiments, we empirically chose five
for the window size.

7. Discussions

As an alternative approach for efficient simulation of elastic solids,
one can consider solving Eq. (8) using the operator splitting scheme
proposed by Kugelstadt et al. [?], which takes advantage of the
corotated model thus making the system matrix for the stretching
and zero-energy terms constant. Unfortunately, this scheme has to
sacrifice its efficiency when considering more general hyperelastic
materials, e.g., Neo-Hookean and St. Venant-Kirchoff models.

In the optimization perspective, a solution of the operator split-
ting scheme can be seen as an approximate solution yielded after
a single iteration of Newton’s method. As a consequence, the solu-
tion may end up with undesired oscillation motions thus suffering
from instability. In contrast, our optimization-based solver tackles
the aforementioned issues while aiming at a non-splitting scheme
and converged solutions, thus enabling a wider variety of materials
to be simulated more stably, as demonstrated in our experiments.

8. Conclusion and Future work

In this work, we presented an extension of the implicit integration
scheme for SPH elastic solid simulations into an optimization prob-
lem. This extension supports a wide variety of hyperelastic ma-
terials such as the Neo-Hookean and St. Venant-Kirchoff models,
which have not been well supported in the state-of-the-art SPH-
based frameworks. Thanks to the efficiency of L-BFGS used in our
optimization solver, our method presents fast and stable simula-
tions of elastic solids from which we foresee potential applications
of our solver in many real-time simulations such as surgical simula-
tors and video games. Demonstrating our successful adaptation of
the optimization formulation, which was originally presented for
the mesh-based framework, into the SPH framework, we believe
that our work sheds light on the great potential of adapting mesh-
based methods for elastic solids into the SPH framework.

Although our solver enhances the simulation stability as demon-
strated in our experiments, the proposed method also shares draw-
backs of the backward Euler time integration scheme. One well-
known issue is the artificial damping of the elastic energy. As dis-
cussed in the previous studies [DLK18; KUJH21], investigating
energy-momentum conserving schemes such as constrained opti-
mization, Implicit-Midpoint, and Newmark-beta remains as a fu-
ture work.

In our optimization-based solver, one central factor of efficiency
comes from the constant Hessian approximation, A0, given in
Eq. (14), which avoids repeated evaluations of the time consuming
Cholesky factorization. Nonetheless, as discussed in previous stud-
ies [BML*14; LBK17; KBF*21], such a direct solver on which
our method also relies is turning into a problem when the num-
ber of particles per solid is growing very large. Moreover, if the
reference configuration of a solid object has to be updated in or-
der to simulate challenging effects such as plasticity, our method
sacrifices the efficiency of constant matrix in the solver. In order
to facilitate more efficient simulations, extending our method with
the Galerkin multigrid method [XTL19], dimension reduction tech-
nique [BEH18], or progressive Cholesky update method [LLKC21]
will be an interesting future work.
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Additionally, we plan to investigate a strong coupling of elas-
tic solids and fluids in SPH. One potential approach is to fuse
an optimization-based pressure solver such as Projective Fluid
[WKB16] with our method such that the pressure and the elastic-
ity can be solved simultaneously. Like the work of Gissler et al.
[?], which solves for strong fluid-rigid coupling via the interlinked
SPH pressure solver, combining the pressure solver with our elas-
ticity solver will also be an interesting future research direction.
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