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Figure 1: Equal-time comparison between a neural BRDF model fitted without meta-learning (top), fitted with meta-learning (second row)
and fitted with our meta-sampling (third row), all at 64 BRDF acquisition samples. Meta-sampling improves the visual quality, as seen right:
for the same compute and acquisition time at deployment, the third row is closer to the reference in the fourth row than the second row.

Abstract
We propose a method to accelerate the joint process of physically acquiring and learning neural Bi-directional Reflectance
Distribution Function (BRDF) models. While BRDF learning alone can be accelerated by meta-learning, acquisition remains
slow as it relies on a mechanical process. We show that meta-learning can be extended to optimize the physical sampling pattern,
too. After our method has been meta-trained for a set of fully-sampled BRDFs, it is able to quickly train on new BRDFs with up
to five orders of magnitude fewer physical acquisition samples at similar quality. Our approach also extends to other linear and
non-linear BRDF models, which we show in an extensive evaluation.

1. Introduction

Learned representations of BRDFs [NRH∗92] offer intuitive edit-
ing, compact storage or interpolation of material appearance

[RJGW19, HGC∗20, RGJW20, SRRW21, FWH∗21]. What neural
BRDF models so far do not offer is a way to accelerate acquisi-
tion. Acquisition is slow, because it is a physical process, where
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a device has to change the illumination and capture an optical re-
sponse, involving mechanical effort. Therefore, the simplest way to
decrease capture time is to take fewer acquisition samples. Reducing
the number of samples was investigated for linear BRDF models
[NJR15, NDM05].

In this work, we reduce the number of BRDF acquisition samples
by jointly learning the sample pattern and a non-linear, deep, neural-
network based BRDF model. We use meta-learning [FAL17] to
optimize the hyper-parameters of an optimization. Furthermore, we
extend the Metappearance approach [FR22] to also meta-optimize
over the sample pattern (“meta-sampling”), reducing the sample
count by five orders of magnitude at similar visual quality. Finally,
we show that our idea is applicable to Neural Networks (NNs) as
well as to classic models, such as Phong or mixtures of basis BRDFs.
Our code is available at https://github.com/ryushinn/
meta-sampling.

2. Previous Work

BRDFs Classic BRDF models include Phong [Pho75], Cook-
Torrance [CT82], Ward [LFTG97] or Disney’s shading model
[BS12]. These models are compact to store, lend themselves well
to manipulation, but face limitations when it comes to reproducing
captured materials.

Acquisition Gonioreflectometers measure the re-
flectance, depending on the light and view direction
[Erb80, WSB∗98, LFTW06, McA02] but this process remains
slow, as it requires the mechanical change of light and sensor
position. For spherical objects, this process can be accelerated by
imaging all normals at the same time [MWL∗99]. We consider
acquisition a black box that requires effort (time, energy, heat, etc)
linear in the number of acquisition samples. Our aim is to reduce
this effort.

BRDF acquisition setups have led to the construction of BRDF
databases [NDM05, Mat03], which we will rely on in this work.

Fitting parametric BRDF models requires an optimization
[LKG∗03, NLGK18], often with complex target functions, a (differ-
entiable) image formation model and many resulting non-linearities.
We operate on another layer of abstraction, and ask how to automat-
ically tune this optimization on some training BRDFs, together with
the BRDF acquisition’s sampling so they jointly perform best on
new test BRDF optimizations, i.e., on unseen tasks.

Optimizing acquisition Several approaches have sought to re-
duce the BRDF capture time, for example using adaptive sampling
[FBLS07, DJ18]. Most related to our work is the linear statistical
analysis of a set of BRDFs [NJR15]. Authors optimize for a sam-
ple pattern, assuming the BRDF they wish to reconstruct can be
expressed as a linear combination of basis BRDFs, found using
Principal Component Analysis (PCA). [LRR04] and [DJ18] derive
BRDF models that also lead more efficient acquisition. Acquisition
can be accelerated further when using a more principled objective
function [BP20]. Similar ideas were proposed for spatially-varying
BRDFs (svBRDFs) [ZCD∗16, YXM∗16] and for Bi-directional
Texture Functions (BTFs) [dBWK18]. Our work differs in that it
targets non-linear, deep, representation of BRDFs.

For svBRDFs, light patterns have been optimized together with
an auto-encoder for reconstruction [KXH∗19, KCW∗18]. Similar
ideas apply to image-based relighting [XSHR18], related to BRDFs.

Deep BRDF representation Recently, methods have been
proposed to represent the BRDF itself by a neural network
[RJGW19, HGC∗20, RGJW20, SRRW21, FWH∗21]. These meth-
ods can be more expressive and offer improved editing or inter-
polation properties. However, fitting them to a new BRDF can be
time-consuming for two reasons: first, a lengthy optimization is
required, and second, the fitting process makes use of many BRDF
samples. For example, [SRRW21] use over 8×105 samples to learn
a BRDF instance and [HGC∗20] even use 100% of the measure-
ments in a BRDF. In our work we combine the idea of optimizing
the optimization with also optimizing over the sampling.

Deep material acquisition A popular approach to speed up acquisi-
tion of (sv)BRDFs is to learn a mapping from images to BRDFs, ei-
ther supervised [RRF∗16, GRR∗17, DDB20, DAD∗18, LCY∗17],
or with some level of self-supervision and differentiable rendering
in the mix [PHS20, GLD∗19, GSH∗20, HDMR21]. These methods
produce parameters to classic BRDF models (and inherit their limi-
tations), while we produce a NN that represents the BRDF itself.

Meta-learning From the previous paragraphs, we see that two
schools exist on how to represent and acquire BRDFs: either by
learning feed-forward networks, typically a CNN that maps im-
ages to parameters, or by running optimizations on many care-
fully calibrated measurements. The first is fast but with lim-
ited quality, the second takes longer, but provides better quality.
One proposal to bridge this gap is meta-learning. It uses an op-
timization at test-time to fit to observations, but this optimiza-
tion has been optimized on a training set of many optimization
tasks [FAL17]. This idea has been applied in computer vision
[SCT∗20, WMM∗21, BKW21, TMW∗21] and also to visual ap-
pearance [MLTFR19, FR22]. These methods assume the training
data given and then learn how to optimize on it. In this work we take
this further, and also optimize over what the training data needs to be.
So instead of learning to optimize with a given set of BRDF samples,
we also learn what BRDF samples to take to then fit successfully.

Sampling strategies Learning to sample is not novel in the deep
learning community and research on the order of feeding samples
can date back to the framework of Curriculum Learning [BTPG16].
[SRJ17, ZZ15, NWS14, KF19] wish to learn an ideal probability
distribution, from which Stochastic Gradient Descent (SGD) draws
training samples in terms of importance sampling, so the stochastic
gradient with limited samples will benefit from the samples’ reduced
variance. They are expected to obtain the (sub)optimal approxima-
tion of the unbiased gradients given a set of samples, but there is no
guarantee that the unbiased first-order gradient would guide the best
path of optimization.

Active or online sampling research [SS18, DPD22] chooses to
generate or label the next sample based on metrics inspired by
Curriculum Learning, e.g., gradient norm or loss, to allocate more
training time to the samples that will reduce the loss the most. The
sampling pattern we find transfers across problem instances and
does not need to be re-learned. We operate at a regime of extremely
few samples and use orders of magnitudes fewer samples than the
aforementioned methods.
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3. Meta-sampling

We will first recall classic fitting of a BRDF (Sec. 3.1), then how
meta-learning extends this (Sec. 3.2) and finally introduce our con-
tribution: joint meta-learning of the BRDF model’s parameters and
the samples to take (Sec. 3.3).

Algorithm 1 Learning to learn and to sample BRDFs. The function
GRAD computes the gradient of the first argument w.r.t. the second.

1: procedure LEARNTOLEARNANDSAMPLE(T )
2: φ = UNIFORM()
3: ξ = UNIFORM()
4: for i ∈ [1,no] do
5: T = SAMPLETASK(T )
6: θ = LEARN(φ, ξ, T )
7: φ = φ−∆o· GRAD(EVALUATE(θ, T ), φ)
8: end for
9: for i ∈ [1,ns] do

10: T = SAMPLETASK(T )
11: θ = LEARN(φ, ξ, T )
12: ξ = ξ−∆s· GRAD(EVALUATE(θ, T ), ξ)
13: end for
14: return φ, ξ

15: end procedure

16: procedure LEARN(φ, ξ, T )
17: θ = φinit
18: for i ∈ [1,nl] do
19: x = SAMPLE(ξ)
20: θ = θ−φstep· GRAD(LOSS(x, θ, T ), θ)
21: end for
22: return θ

23: end procedure

24: procedure EVALUATE(θ, T )
25: return LOSS(SAMPLE(UNIFORM()), θ, T )
26: end procedure

27: procedure LOSS(x, θ, T )
28: c = cos(x.θi)
29: return | log(1+T (x) · c)− log(1+ fr(x;θ) · c)|
30: end procedure

3.1. Random

We denote classic learning as “Random”, as the training samples are
drawn uniformly and the model is randomly initialized. It uses the
function LEARN in Alg. 1, which is provided with hyper-parameters
φ (e.g., step size, initialization), parameters of a sampling method ξ

and a BRDF we want to learn T †. It returns the model parameters θ

that best encode this BRDF T .

The function LEARN implements learning via stochastic gradient
descent: At each learning iteration i, i ∈ {1,2, ...,nl}, the sampler,
parameterized by ξ, generates samples x, which are pairs of incom-
ing and outgoing 3D directions in a suitable parametrization (we use

† In the meta-learning literature, learning a single BRDF would be called a
“task”, hence the symbol.

Rusinkiewicz angles [Rus98]). The function LOSS then queries the
BRDF supervisions and compares it with model’s predictions for
those samples. We adopt the mean absolute logarithmic error of the
cosine weighted reflectance values proposed in [SRRW21] as our
loss and descend along the loss gradient to update the parameters
θ, usually until convergence (i.e., in classic learning, nl is large).
This chain of update steps starts at a certain model initialization
(e.g., Kaiming-He) and uses a certain learning rate, or step-size,
both defined by the hyper-parameter vector φ.

Classic learning usually does not have the capability of automat-
ically determining good parameters for neither φ nor ξ. Usually,
hyperparameters like learning rate and model initialization are de-
termined empirically, and samples are drawn randomly from the
dataset. We will next look into the first issue, while solving the latter
is the contribution of this paper.

3.2. Meta

Meta-learning is depicted in orange in Alg. 1. Gradient-based meta-
learning (we use the MAML algorithm [FAL17]) relies on a nested
optimization, where the inner optimization loop is tasked with over-
fitting the model onto a specific BRDF T under the constraint of a
very limited number of gradient steps (typically around 10 only, i.e.,
nl is small). After completion of this inner loop, the model’s final
performance is evaluated through the function EVALUATE, which
calculates losses at a set of uniform-random test samples. The outer
loop then computes the gradient of the performance w.r.t. the meta-
parameters φ (commonly, learning rate and model initialization), and
moves these in a direction that will yield improved performance of
the next inner-loop iteration. The outer loop subsequently samples
a new task T from a set of tasks T and the inner loop starts anew,
thereby ensuring parameters φ that will generalize across all tasks
in T .

We follow the approach of Metappearance [FR22] who meta-
learn the initialization and step size for a deep BRDF representation.
Note that the sampling pattern ξ is still random.

3.3. Meta-Learned sampling

With these steps laid out, we can now define our contribution in blue.
We repeat the meta-construction from Sec. 3.2, but now include the
parameters of our sampling method ξ in the meta-optimization. To
do so, we use ξ to sample a set of n BRDF entries (i.e., obtain many
supervision pairs of angle pairs x and BRDF values y) at the start
of the inner loop, all from the same BRDF task. These are the only
samples that the learner will have access to within this inner loop
completion, and they are fixed throughout the inner loop. Hence,
the final model’s performance is directly related to the samples
produced by ξ, which now allows to compute a meta-gradient w.r.t.
ξ. As previously done with φ, we use this meta-gradient to adjust
ξ such that during the next iteration of the inner loop, the final
performance will improve. This is repeated ns times. Typically ns
is much larger than n, i.e., the meta-sample-learning will see many
tasks (training BRDFs) for multiple times (epochs).

Experimentally, we found it necessary to decouple the optimiza-
tion loops of the optimizer’s parameters φ and the sampling method
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ξ to stabilize training and hence run them consecutively (L. 4-8 and
L. 9-13 in Alg. 1, respectively).

Note that this is more than simply augmenting φ by some ad-
ditional dimensions as the samples are not part of the inner-loop
optimization (recall, they are sampled once and then fixed), but part
of the supervision that drives the inner-loop optimization. So we
do not only change the way we learn, given the problem, but we
also change the problem (i.e. which samples are chosen from the
BRDF) such that it can be learned better. We hence aim to discover
the subset of BRDF samples that is most informative to our learner.

The sampling method ξ can be parameterized in multiple ways.
During classic- and meta-learning, as already mentioned, ξ is a
random generator without any learnable parameters, and SAMPLE(ξ)
simply returns random uniform numbers. For our learned sampling,
we went with the most direct approach and parameterized ξ as
an explicit n-dimensional vector of sample coordinates, which we
meta-initialized with a low-discrepancy sequence in 3D. ξ then is
a set, and not a sequence, as batched SGD averages over gradients
from all samples, which is a symmetric operation that makes order
irrelevant. Meta-learning ξ then becomes as simple as moving the
sample coordinates in small steps, so that after each step, ξ becomes
slightly more useful to the inner-loop BRDF learner.

x.ϕd

x.θh

x.θd

Figure 2: Projection.

Enforcing valid samples. Not
all vectors x in the unit cube
[0,1]3 are valid Rusinkiewicz sam-
ples, as some configurations re-
sult in views below the horizon
(the white regions in Fig. 2). As a
consequence, optimizing ξ might
result in individual samples mov-
ing into these invalid regions. Sim-
ply redefining the BRDF to have
a specific constant value in these
regions (e.g., -1.0) leads to areas
where the gradient w.r.t. the sam-
ple position is zero. This will ulti-
mately result in wasted samples that cannot adjust any longer, as a
sample loses all gradient information as soon as it reaches such a
constant region and cannot recover. Instead of redefining the loss,
we opt to extend it by a barrier function LOSSB that forces invalid
samples back into the defined regions. One way to achieve this is to
penalize their distance to the origin in the φd-plane (Fig. 2), as in

LOSSB(x,θ,T ) =

{
LOSS(x,θ,T ) if x is valid, and
x.θ2

h +x.θ2
d if else.

(1)

This function, applied to all individual samples, is used as a drop-
in replacement for LOSS in Alg. 1. Also, all the random uniform
samples mentioned above and henceforth are in fact uniform in
the valid region, rather than in the cube, which can be achieved by
rejecting invalid samples.

3.4. Models

To underline the generality of our proposed algorithm, we show
that meta-sampling can increase performance on four increasingly

complex BRDF models (PHONG, COOK-TORRANCE, LINEAR
and NEURAL). We will now shortly describe these models.

Phong One of the simplest, yet widely used BRDF models is the
physical version [LW94] of the PHONG [Pho75] model:

fr(x) = kd
1
π
+ ks

q+2
2π

max(⟨x.ωo,x.r⟩, 0.0)q , (2)

where ⟨·⟩ denotes the dot product between outgoing and reflected
direction x.ωo and x.r, respectively. We re-parametrize kd and ks by

kd = ksumkratio

ks = ksum(1− kratio), where

ksum = σ(λsum) and kratio = σ(λratio).

σ is the Sigmoid function and hence ensures kd + ks ≤ 1. Further-
more, we linearize q by means of an exponential mapping. The learn-
able parameters hence are λsum,λratio ∈R3 and the scalar glossiness
q. We meta-learn their initial values and a learning rate per parame-
ter.

Cook-Torrance The PHONG model is easy to implement and cheap
to evaluate, but often does not produce realistic appearance, which is
why we include the more sophisticated COOK-TORRANCE [CT82]
model in our experiments. COOK-TORRANCE explicitly defines
the characteristics of a surface’s normal distribution N (we use
Beckmann), the geometric attenuation G in the surface, and the
Fresnel effect F , for which we use Schlick’s approximation [Sch94].
As also implemented in [NDM05], we compute the reflectance as

fr(x) = kd
1
π
+ ks

D(α,x)G(x)F(F0,x)
πcos(x.θi)cos(x.θo)

. (3)

The learnable parameters are kd, ks, roughness α, and the Fresnel
value F0. We use a Sigmoid to constrain them within (0, 1).

Linear The next higher level of complexity is a LINEAR model, as
proposed by [NDM05] and refined by [NJR15]. Here, every BRDF
is a linear combination of m basis BRDFs:

fr(x) = (A · (w|1)T)[x] , (4)

where A is an (affine) matrix of m basis BRDFs in Rusinkiewicz
parametrization and their mean, w ∈ Rm is a weight vector and [·]
is a 3D table lookup. We follow the PCA method from [NJR15]
and [NDM05] to construct A from MERL, which is the same for all
BRDFs. m typically is a small number, like 5 we employ here. The
weight vector w changes for each BRDF and is fitted to n BRDF
observations y ∈ Rn at n direction pairs x in closed form:

w = (ÂTÂ+ηI)−1ÂTy, (5)

where Â∈Rn×m =A[x] is the “reduced” basis, a lookup into the full
basis at x. η is a regularization weight, set to η = 40, as proposed in
[NJR15]. The closed-form Eq. 5 replaces the SGD loop in function
LEARN, so there are no meta-learnable SGD parameters for the
LINEAR model. However, optimizing the samples still impacts the
quality, even if the solution is closed-form. η could be meta-tuned,
but we did not explore this. Our approach is general enough to
support non-linearity, but also flexible enough to efficiently support
a closed-form special case.

Neural networks An even more sophisticated way of encoding
BRDF data is non-linear NEURAL networks. In our case, we want
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the network the encode the mapping from light- and view-direction
to reflectance data. As in [SRRW21], we use a simple two-layer
Multi-Layer Perceptron (MLP) with 21 hidden units per layer, ReLU
activations, and an exponential activation for the final layer. We use
this architecture as it is simple and efficient (only 675 trainable
parameters), yet highly expressive. A low number of parameters is
desirable, as computing higher order gradients in the meta-learning
inner loop is memory-intensive. The learnable parameters are the
model’s weights, fitted to each new BRDF. The meta-learnable
parameters are the initialization and step sizes.

3.5. Implementation

We implement our method in PyTorch [PGM∗19] and use the
learn2learn framework [AMD∗20] as our meta-learning library. The
outer-loop optimization for the meta-learned optimization happens
via Adam with learning rate 1×10−4 (note that the Adam step was
replaced by vanilla SGD in Alg. 1, Lines 7 and 12, for ease of ex-
position). For the optimization of the inner loop, we use MetaSGD
[LZCL17], i.e., optimize a per-parameter learning rate together with
the respective method’s parameters. MetaSGD is initialized with
1×10−3, and we run 20 inner-loop steps of MAML optimization.

To train ξ, we also use Adam in the outer-loop with learning rate
5×10−4 and a cosine annealing scheduler [LH17]. As mentioned in
Sec. 3.3, we initialize the sampler with a low-discrepancy sequence
and the guess-reuse techniques proposed in [NJR15]. More specifi-
cally, we start from training n0 = 1 samples with multiple guesses
for the best loss in train set. Then, when we train more ni = 2ni−1
samples, we reuse those ni−1 learned samples and initialize the
other half with a 3D Sobol sequence.

In practice, the two for-loops implementing the meta outer loop in
Alg. 1 could operate batched to improve parallelism and to smooth
gradients. We experimented with meta-batching these loops, but
observed no benefit, and hence set the meta-batchsize to one. So
this layer of complexity is omitted from the pseudo-code for clarity.

Moreover, we have manually adjusted the learning rate for the
Random method of the NEURAL model. In [SRRW21], the au-
thors use 5×10−4, whereas we use 1×10−3. Without this change,
Random in Fig. 1 would be entirely black.

4. Evaluation

Our evaluation uses one methodology (Sec. 4.1) to produce qualita-
tive (Sec. 4.2) and quantitative (Sec. 4.3) results, which are comple-
mented by some final ablation experiments (Sec. 4.4).

4.1. Methodology

Our evaluation is on i) a dataset, involving ii) several metrics to mea-
sure success, iii) methods to learn a model and iv) models describing
BRDFs. We will now detail all of these four aspects.

Dataset We use the popular MERL [Mat03] dataset for our ex-
periments. MERL consists of 100 measured BRDFs, where each
BRDF is composed of 90×90×180 = 1,458,000 angular configu-
rations (θh,θd ,φd) in Rusinkiewicz parametrization and one RGB
reflectance per triplet. The measured BRDFs range from diffuse

to highly specular, and we organize our data in the classic random
80%−20% train-test split. Moreover, we also test our approach on
the additional eight BRDFs provided by [NJR15] and the BRDF
data from the RGL material database [DJ18].

Metrics We employ four different metrics. The first is the mean ab-
solute logarithmic error of the cosine weighted BRDF values, which
we use as our optimization loss (LOSS in Alg. 1) and hence refer
to as the metric “Loss”. The other three are image-based DSSIM,
L2, and PSNR, for which we render the BRDF on a sphere under
environment illumination. For Loss, DSSIM and L2, less is better,
whereas for PSNR, higher values are better. All values are reported
on unseen test BRDFs, i.e., neither method has had access to any of
the evaluation data during training.

Methods We compare three training paradigms: Random denotes
conventional NN training (as in [SRRW21]), following Sec. 3.1.
Meta follows [FR22] (for details, cf. Sec. 3.2), and Ours is de-
scribed in Sec. 3.3. As we use a closed form solution for the LINEAR
model, there is no counterpart of Meta. We hence employ the con-
dition number optimization proposed in [NJR15] as the baseline
to compare against, which is referred to as NJR15. All methods
are compared under equal time, i.e., using the same number of gra-
dient steps, unless said otherwise. As for Random and Meta, we
report average results on five independent experiments with different
random seeds.

Models We study applications to all four different models, PHONG,
COOK-TORRANCE, LINEAR (using five basis functions) and NEU-
RAL as explained in Sec. 3.4. Note that LINEAR is not identical to
the specific combination of method and model in [NJR15], which
we study separately.

4.2. Qualitative results

The key qualitative results are shown in the right part of Fig. 1,
where different methods are applied to learn NEURAL for different
BRDFs for an equal sample count of n = 64 at equal time. At this
point, a common learner, Random, has not made much progress
from the init, which, under the uniform initialization proposed in the
original publication [SRRW21], results in the black BRDF depicted
in the first row. The second row shows Meta, that has learned a
more informative init (the pink sphere on the left), and manages
to converge to different materials with a low number of samples
(compared to [SRRW21], [HGC∗20] or [FR22]). However, the ap-
pearance is a bit “stereotype”, i.e., the differences between BRDFs
mainly happen via color changes, but the specularity does not match,
and the nuances in glossiness are not picked up correctly either.
Looking at the fourth column, Ours, we see that the very different
appearance characteristics (e.g., highlights, their shape, color, gloss,
etc.) from the reference are faithfully reproduced and that Ours
matches the reference in the last row most closely.

Fig. 3 shows a similar comparison for which we contrast all meth-
ods with all models for a diffuse BRDF at a very low sample count
of n = 8 samples only (upper part). The effects we saw previously at
n = 64 samples become even more pronounced: for models PHONG,
COOK-TORRANCE and LINEAR, we see that Random completely
fails to faithfully recover the BRDF, and even advanced learning
methods like Meta struggle with this highly constrained setting

© 2023 The Authors.
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(top and bottom row). The lower part in Fig. 3 shows the same
configuration with a specular BRDF, for which we utilize n = 32
samples, as specular samples are harder to optimize. Again, Ours is
closest to the reference. Overall, across all models, Ours performs
best, which shows that our meta-sampling truely gathers valuable
information that helps to accelerate the fitting process over drawing
random samples.
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Figure 3: Result for all methods (horizontal) and models (vertical)
at equal sample count for the test-set BRDFs blue-rubber (top)
and silver-paint (bottom) at n = 8 and n = 32, respectively.

4.3. Quantitative results

Same-sample count Our main quantitative result is seen in Tbl. 1,
where we study a same-sample-count (n = 8) setting for all models
(four major column blocks) and all methods (rows) under all metrics
(four-blocks of columns). We see, that for all models according to
all metrics, Ours is able to improve upon Meta, which again is an
improvement over Random. The improvement is ranging between
a factor of two and four. Most importantly, our method is able to
improve the quality of a neural BRDF model by co-optimizing the
sample pattern, the main contribution of this work. As Tbl. 1 only
displays the average outcome across all test BRDFs, we further
display each method’s performance on all individual BRDFs in
the test set at n = 8 in Fig. 5. To this end, we sort the resulting
BRDFs according to the loss values achieved by Ours, i.e., each
horizontal point in Fig. 5 is a BRDF, and contrast them against
the other methods. We see that we do not only achieve better mean
performance, as reported in Tbl. 1, but outperform the other methods
for every BRDF.

Same-quality In Fig. 4 we visualize the influence of sample count
on performance, for all models on all methods, according to two
representative metrics, Loss in BRDF space and DSSIM in image
space. In each plot, the horizontal axis is the sample count in log
scale between 1 and 512. The vertical axis, also in log scale, is
scaled identically per metric, so as to enable comparisons between
the individual models. We show the upper quality bound for each
model for an unlimited number of samples and time as a red dot in
the lower right. This is the target for all methods economizing on
sample count to chase. Always, less is better. The red lines show
Random and confirm our qualitative findings from Sec. 4.2, as it
does not manage to do much at such low sample counts, even with
many steps. The yellow lines show Meta, which has seen many
inner-loop trainings and hence can learn to cope with fewer samples,
but has no way to change what is sampled. The blue line, denoting
Ours, consistently performs better across the entire sample range,
documenting that the improvement claimed in the previous table and
figures generalizes to all sample counts. This view is made explicit
in Tbl. 4, which shows how many more samples are required to
achieve the quality of Ours for all models and all metrics if the
sample count is fixed to n = 8. It by now is clear that a common
learner will take much longer, but we also see a good improvement
of more than one order of magnitude in sample effort reduction for
Meta. The improvement for the simple PHONG model seems to be
larger than for more complex models.

For the LINEAR model, we also computed the performance of
NJR15, who equally assume a linear BRDF model, on our test data
(green line). Essentially, this compares using their method of select-
ing samples to our method of selecting samples for a comparable
model (PCA). In image space, we see that for larger sample counts
(n ≥ 16), their way of selecting samples is slightly better than Ours,
whereas for sample counts below 16, our method is superior. Inter-
estingly, this finding does not transfer to BRDF space, where we
consistently outperform NJR15 for all n. We hence assume that
their optimization method (minimizing the condition number) is
more closely related to human perception than our training loss, and
hence achieves a lower DSSIM. Also, NJR15 is not yet as good as
the full NEURAL, to which our method extends. This implies that
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Table 1: Mean test-set performance of all methods on all models at n = 8 samples according to different metrics.

Model → PHONG COOK-TORRANCE LINEAR NEURAL

Method ↓ ↓ Loss ↓ DSSIM ↓ L2 ↑ PSNR ↓ Loss ↓ DSSIM ↓ L2 ↑ PSNR ↓ Loss ↓ DSSIM ↓ L2 ↑ PSNR ↓ Loss ↓ DSSIM ↓ L2 ↑ PSNR

Random 0.085 0.103 0.093 12.54 0.098 0.123 0.124 10.75
0.028 0.029 0.007 23.49

0.065 0.105 0.067 13.38
Meta 0.084 0.068 0.026 18.82 0.044 0.039 0.007 24.21 0.059 0.125 0.052 15.23

NJR15 — — — — — — — — 0.016 0.012 0.002 28.45 — — — —
Ours 0.044 0.034 0.006 24.51 0.039 0.029 0.003 27.09 0.011 0.009 0.001 33.70 0.035 0.033 0.005 27.50
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Figure 4: Performance (vertical, log scale) of different learning methods (colors) for different models according to different metrics (Log.
MAE in BRDF space and image-based DSSIM in every pair, lower is better) depending on the sample count (horizontal, log scale). The red
dot indicates the theoretical optimum, when giving the model five orders of magnitude more samples, i.e., compute and acquisition time.
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Figure 5: Test set loss (vertical) per BRDF (horizontal), sorted based on the results of Ours in decreasing order.

the benefit of our method depends on the target model: When the
aim is to get most of the (many) BRDF samples regardless of model
complexity and usefulness (PCA is not compact, not fast to evalu-
ate, etc), NJR15 can be superior. If a compact and efficient model,
e.g., NEURAL, is to be used with only few samples, Ours is to be
preferred. We have repeated similar experiments with 240 instead of
five basis functions, leading to similar results, but with the additional
disadvantages in storage, train and test compute requirements.

Table 2: Comparison of Ours and
[NJR15] on their dataset at n = 2.

↓ Loss ↓ DSSIM ↓ L2 ↑ PSNR

NJR15 0.023 0.128 0.003 26.28
Ours 0.018 0.009 0.002 30.02

Additional BRDF
data We also com-
pared to NJR15 on
their dataset of 8
additional BRDFs
in Tbl. 2 and Fig. 6.
At similar sample
counts, our method
performs better ac-
cording to all metrics. We see that our method, albeit trained on
MERL only, can find sample patterns that generalize reliably to
BRDFs from a dataset unseen during training, even if these were
acquired with a different acquisition setup.

We also compare to the isotropic part of RGL material database
[DJ18] and show the results in Tbl. 3. Although the overall loss
slightly increases due to data shift, our meta-learned samples over
the MERL corpus generalize to the new dataset and lead to better
reconstructions.

Table 3: Evaluation of Ours on the RGL database [DJ18] at n = 8.

↓ Loss ↓ DSSIM ↓ L2 ↑ PSNR

PHONG
Meta 0.095 0.070 0.025 17.980
Ours 0.044 0.040 0.009 22.686

COOK-T. Meta 0.068 0.059 0.026 17.824
Ours 0.067 0.051 0.009 21.563

LINEAR
NJR15 0.050 0.068 0.025 21.897
Ours 0.030 0.041 0.016 23.849

NEURAL
Meta 0.074 0.168 0.110 12.228
Ours 0.044 0.062 0.011 21.889

Sample count Here we explore the performance of our sampler
ξ with only a limited budget of samples. We visualize this for all
models in Fig. 8, where each column depicts the outcome of a
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Table 4: Relative number of samples required by other methods to achieve our quality at n = 8 samples. Here, less is better for all metrics.

Model → PHONG COOK-TORRANCE LINEAR NEURAL

Method ↓ Loss DSSIM L2 PSNR Loss DSSIM L2 PSNR Loss DSSIM L2 PSNR Loss DSSIM L2 PSNR

Random 105× 105× 105× 105× 105× 105× 105× 105×
105× 105× 105× 105×

105× 105× 105× 105×
Meta 48× 37.5× 24× 8× 8× 64× 64× 64× 4× 6× 8× 6.5×

NJR15 — — — — — — — — 8× 3× 3× 4× — — — —
Ours 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1×

OursNJR15 Reference

Figure 6: Results on data from [NJR15] at n = 2 samples.

full training run with the number of samples annotated below. In
general, all methods increase their final quality with more samples.
We specifically picked a specular BRDF, as these are harder to
optimize for (for diffuse, all samples could be in a similar spot).
At roughly n = 8 samples, we can see first highlights developing.
Moreover, once a certain quality is reached, e.g., , n ≥ 64, the
increase in performance with more samples starts diminishing. This
is confirmed by Fig. 4, especially for LINEAR and PHONG, and
further validates our approach and theory, as in expectation, i.e.,
n →∞, the optimization of samples does not matter.

Convergence We further investigate whether meta-sampling will
converge to a solution no worse than pure random sampling. Due
to memory constraints, we cannot directly train Ours with the
same number of samples as Random, like 10,000, as that would
require back-propagation to 10,000 nested samplings and network
executions. Fortunately, a method much simpler is already better
than Random: if we first run Meta or Ours for 20 steps with
32 learned samples, followed by 10,000 steps with 512 random
samples, Ours already performs better than 20+10,000 steps with
512 purely random samples (0.0117 Loss for Random, 0.0067 for
Meta and 0.0065 for Ours). This confirms that Ours does not
hamper convergence, but instead, improves it.
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Figure 7: Error (vertical, less is better) at different numbers of
samples (horizontal) for different variants of train and test subsets
(colors, line styles). While the training subset corresponds to colors,
the test subset maps to line styles (see legend). For a discussion,
please see “Subsets” in Sec. 4.4.

Moreover, when repeating the setting of Tbl. 1 with randomized
Quasi-Monte-Carlo initializations (five independent meta-sampling
trainings), the standard-deviation for Ours is less than 5% of the
total error reported in Tbl. 1. We thus conclude that our method
consistently converges to similarly good samples. Moreover, when
iterating the sampler- and model-training once more after conver-
gence, the Loss of Ours improves by 0.9/2.86% over the values
reported in Tbl. 1 for PHONG and NEURAL, respectively.

Actual patterns The result of meta-sampling for all three methods
can be seen in Fig. 9 for 8 samples, and in Fig. 1 for 64 samples and
the neural model. We found it difficult to assign interpretation to
those patterns, other than that they seem to group samples and seem
not to have the tendency to fill space evenly.

We verify our learned pattern’s robustness by randomly changing
points and evaluating the resulting variance. We report the increase
in loss with respect to Tbl. 1 in Tbl. 5 for r random out of 8 learned
samples, averaged over five independent runs. For all configura-
tions, the loss increases, especially notable for the LINEAR model,
indicating the specific sample positions are relevant.
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Figure 8: We show the results of using our proposed meta-sampling for the training of each model (vertical) on the BRDF two-layer-gold
for an increasing number of samples (horizontal). Note that each result is an individual training, not a progression of one training along a row.

Table 5: Loss-increase for r random out of eight learned samples.

PHONG COOK-T. LINEAR NEURAL

r = 2 8.3% 6.9% 13.9% 7.3%
r = 4 12.6% 10.5% 21.4% 14.2%

Cook-T.

θh

Phong

θh

Linear

θh

Neural

θh

NJR15

θh

θd

Figure 9: Projections of our meta-sampling patterns at n = 8 for
all models. For reference, we also show the pattern from [NJR15].

4.4. Ablations

Here we confirm the relation of our approach to several variants.

Mean-BRDF importance sampling A straightforward approach
to reduce the variance of the stochastic gradient is to importance
sample for the average BRDF. To test this, we log-averaged all
BRDFs in MERL and then created an inverse Cumulative Distribu-
tion Function (CDF) to use for importance sampling, again employ-
ing low-discrepancy samples. Such a model performs on average
more than 4 times worse across all sample counts, in particular for
many samples, where it can be over 10 times worse.

Subsets We now explore how our meta-sampling behaves on se-
lected subsets of the dataset that share specific semantics of MERL.
To this end, we meta-train the model NEURAL on the full MERL
training set as before, but now only use a specific subset for the
training of the sampler ξ. We use two subsets: one with diffuse (D)
and one with specular (S) materials. Moreover, let A denote the set
of all BRDFs. In the following, we will write X ×Y to denote train-
ing of the sampler on subset X and evaluation of its performance on

subset Y . In this notation, A×A is what we already considered in
the previous sections: train the sampler on the training set, evaluate
its performance on the test set.

We show the results for different train- and test permutations
in Fig. 7. A×S performs worse and A×D performs better than
A×A, indicating specular is harder than diffuse when trained on
both. Importantly, S ×S and D×D, so methods that were tested
on what they were trained on, perform better than D×S and S ×D,
methods that test on something they were not trained for. In gen-
eral, that is not an impressive feature for a learned method, but at
the same time it proves that the meta-optimized sampling pattern
adapts to the characteristics of the dataset, and does not just cre-
ate some generic useful sample pattern, akin to some perturbed
low-discrepancy sequence.

5. Discussion

Sample model Normalizing Flows [RM15] look like a well-suited
alternative parametrization for our sample model ξ: they generate
distributions, produce probability density for samples in the inverse
direction and could provide an infinite stream of samples instead of
a finite set. In practice, we have found these properties not relevant,
or not applicable to our case, as the generative nature and additional
complexity adds further variance to a process that has already two
meta-levels and stacks of optimizations. For tasks other than BRDF,
this might become relevant in future work.

Bias Moreover, getting the probability of a sample is important in
tasks where we want to retain unbiased estimates, such as in Monte
Carlo rendering. Note that while we sample unevenly, we do not
attempt to divide by the probability density to produce unbiased
estimates of gradients, as it is not clear whether a biased gradient
estimate can ultimately not be better than an unbiased one [DPD22].
What matters more is that the outer meta-optimizer sees the effect of
those gradients and can factor it into the optimization by changing
the initialization or step sizes.

© 2023 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

209



Liu, Fischer, Ritschel / Learning to Learn and Sample BRDFs

Real-world acquisition cost We assume a naïve cost model of a
gonioreflectometer that takes samples in isolation and for which
the order of samples does not matter. An actual device will devi-
ate from this model for several reasons. The first is, that multiple
samples (slices) can be taken at once by capturing entire images.
Our model assumes samples to be taken in isolation. The second
main simplification is, that the cost of taking a sample while already
moving along a trajectory is much lower than changing the direction,
which requires acceleration. Or model assumes that every change of
sample direction has the same cost. For a discussion of BRDF cost
properties, please see [GGG∗16].

Progressivity The way we meta-optimize implies that the test-time
optimization is good once converged after a fixed number of steps.
A progressive or interruptible version could be optimized so that it
delivers optimal result throughout the entire optimization, by adding
all intermediate inner loss values to the meta loss.

Fixed sample count We currently use a fixed-size vector of sample
directions, while in practice a method with varying sample counts
would be more flexible. In particular, a method with no limit on the
sample count, which eventually converges the same way as random
sampling would do. This could be achieved by meta-learning a
generative model of samples, e.g., using Normalizing Flow.

Adaptivity The sampling pattern is not on-line [VKŠ∗14] or adap-
tive [DPD22], but the same for each BRDF. A pattern that adapts to
some other condition, or maybe to the outcome of previous samples,
would be a relevant avenue of future work.

Time and space overhead Meta-learning with MAML [FAL17]
requires the computation of the Hessian-vector product, making it
very memory intensive. We found that this does not apply so much to
our scenario, as the most memory intensive operation is the training
of the NBRDF network (2.76 GB VRAM), a property of [SRRW21]
and [FR22]. The overhead of meta-sampling is negligible in com-
parison: for Ours at n = 10/20 samples, we require an additional
40.9/51.2 MB of VRAM, respectively, as we are merely optimizing
scalar variables. There is no overhead at inference time.

6. Conclusion

We have described a method to reduce the number of samples re-
quired to fit a non-linear BRDF model, such as a NN. To this end,
we jointly optimize over the model parameters and the sampling
parameters. Our approach reduce the number of samples required
by substantial factors while achieving the same quality.

In future work, we would like to apply the meta-sampling to
other domains where samples can be freely taken, such as light
field compression [SRF∗21], radiance caching [MRNK21] or path
guiding [VKŠ∗14].
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