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Figure 1: From just two depth images of a fabric sample casually placed in two specific configurations (input), we accurately infer the
corresponding set of mechanical parameters of the material. Estimated parameters can be used in a cloth simulator, enabling to visualize the
overall drape of any garment (output). Our method further introduces a novel perceptually-validated drape similarity metric, which enables
sorting materials based on their final drape.

Abstract
We propose a method to estimate the mechanical parameters of fabrics using a casual capture setup with a depth camera. Our
approach enables to create mechanically-correct digital representations of real-world textile materials, which is a fundamental
step for many interactive design and engineering applications. As opposed to existing capture methods, which typically require
expensive setups, video sequences, or manual intervention, our solution can capture at scale, is agnostic to the optical appear-
ance of the textile, and facilitates fabric arrangement by non-expert operators. To this end, we propose a sim-to-real strategy to
train a learning-based framework that can take as input one or multiple images and outputs a full set of mechanical parame-
ters. Thanks to carefully designed data augmentation and transfer learning protocols, our solution generalizes to real images
despite being trained only on synthetic data, hence successfully closing the sim-to-real loop. Key in our work is to demonstrate
that evaluating the regression accuracy based on the similarity at parameter space leads to an inaccurate distances that do
not match the human perception. To overcome this, we propose a novel metric for fabric drape similarity that operates on the
image domain instead on the parameter space, allowing us to evaluate our estimation within the context of a similarity rank. We
show that out metric correlates with human judgments about the perception of drape similarity, and that our model predictions
produce perceptually accurate results compared to the ground truth parameters.

CCS Concepts
• Computing methodologies → Computer vision; Neural networks; Computer graphics;

1. Introduction

Creating accurate digital representations of real-world materials,
or Digital Twins, is crucial for enabling realistic 3D visualizations
suitable for interactive design and predictive engineering. Some in-
dustries, like fashion or textile manufacturing, further require these
methods to work at a scale to cope with the fast pace of the current
production workflows. However, digitalizing cloth is challenging

due to the high variability and type of fabric samples, where the
fabric composition, the microstructure, or the finishing play crucial
roles in the perceived appearance.

While casual systems which obtain optical appearance have long
been a focus of research, comparably less attention has been paid
to estimating mechanical properties. Indeed, capturing and simu-
lating the mechanical behavior of cloth is challenging due to the
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Figure 2: Capture setup, RGB (top), and depth (bottom) images for
hanging (left) and stretch (right) scenes in rest position. Each scene
conveys a different mechanical appearance of the fabric: hanging
exhibits the overall drape; stretch exhibits an extra diagonal ten-
sion, which is key to understand the stretching properties.

complex interplay between the internal and external forces occur-
ring in this type of physical system, which is highly sensitive to the
environmental conditions. Nevertheless, with the current need to
create virtual copies instantly, a casual setup able to produce auto-
matic and accurate estimates –beyond having a set of presets from
which to manually choose the closest one– of mechanical parame-
ters could prove very valuable.

Previous methods are impractical for scalable and customiz-
able workflows. Accurate fabric parameter acquisition systems re-
quire specialized and expensive devices [Kaw80,Min95,CPGE90],
which are often slow and need skilled operators. Existing ca-
sual capture setups use input video sequences [BTH∗03, BXBF13,
YLL17] or, even if they take a single image, might require manual
user input [JC20]. In this paper, we present a casual capture sys-
tem that only requires taking two depth images of the textile posed
in a static drape. Our capture setup does not require complex cali-
bration, can be easily manipulated by non-expert operators, and is
agnostic to the optical properties of the fabric thanks to leveraging
depth images instead of RGB data. Figure 2 illustrates our capture
setup. It involves capturing the fabric with a depth camera in two
relaxed positions: the hanging scene, that conveys the drape when
no force other than gravity is applied to it, and the stretch scene,
which provides cues on the stretching properties of the fabric.

We propose a learning-based method to instantly return the me-
chanical parameters given static depth images and the fabric density
as input. Our method relies on a sim-to-real strategy [ZGO∗21],
leveraging transfer learning and building on a dataset of physical
fabrics digitalized with precision equipment. Our model is trained
solely with synthetic data, and thanks to carefully designed policies
of data augmentation and neural features, it can generalize to real-
world scenarios. Under the hood, our approach leverages a custom
architecture that enables a flexible design, that can take one or mul-
tiple images as input, enhancing its performance when more data is
available. We perform an extensive evaluation by means of ablation
studies and by measuring aggregated neural network saliency maps,
which show that some scenes are more informative than others for
predicting the mechanical properties of the fabric. Furthermore, we
demonstrate the performance of our model on real-world captured
samples, showcasing our system’s generalization capabilities.

Key to our work is to demonstrate that evaluating the predic-
tion accuracy of mechanical properties using typical error metrics,
such as the Mean Absolute Error (MAE) on the parameter space,

leads to inaccurate distances that do not match the human percep-
tion. We identify that such mismatches occur due to two factors:
first, the parameter space is not bijective –i.e., different set of pa-
rameters might convey the same drape–; and second, a numerical
error in a parameter does not necessarily correlate with what we
perceive as an error. To address this shortcoming, common in all
existing works, and inspired by previous work on similarity met-
rics for material appearance [LMS∗19], natural images [ZIE∗18]
or illustration [GAGH14], we propose an image-based metric that
measures differences on the mechanical behavior of textiles taking
into account the overall drape. We validate that our metric agrees
with human perception, and it and can be used to sort materials by
drape similarity with respect to a reference fabric.

Using our similarity metric, we finally validate that the estima-
tions of our method correlate with human judgments about drape
similarity, and that our model predictions produce perceptually ac-
curate results compared to the ground truth parameters. All in all,
our approach makes an important step towards solving sim-to-real
problems for mechanical estimation since it shows that simulated
cloth using inferred parameters maximize the similarity with re-
spect to real-world target fabrics.

2. Related Work

2.1. Parameter Estimation Methods

Estimating the mechanical properties of real fabric samples is a
highly challenging problem for several reasons: the number of un-
controllable extrinsic factors (e.g., wind forces, initial state, col-
lisions, etc.) which affect the predictiveness of the physical sim-
ulation; the lack of a standard deformation model and parameter
spaces; and the use of computation-intensive simulation methods.
Accordingly, a wide range of strategies exist, aimed at overcoming
these challenges.

Measurement Devices. It is common to combine optimization
techniques with the output of testing devices to find the optimal
set of parameters which best explain the observations [MTLVL07,
SB08, VMTF09, WOR11, MBT∗12, CTT17]. Existing technolo-
gies of this type are diverse and, as discussed by Kuijpers et
al. [KLBG20], lack of a clear standard. The Kawabata Evaluation
System (KES) [Kaw80] is perhaps one of the most well known,
measuring 16 coefficients including bending, shearing, and tensile
among others. Despite its precision, this method was not widely
adopted by the industry due to its lengthy processes and the need of
expensive equipment. Consequently, several other methods tried to
simplify and unify the methodology with partial success according
to some studies [LMT08, Pow13]: the Fabric Assurance by Simple
Testing (FAST) [Min95], the Fabric Touch Tester (FTT), the CLO
Fabric Kit 2.0, the Fabric Analyser by Browzwear (FAB), the Op-
titex Mark 10, and the cantilever principle [CPGE90].

Reconstruction-Optimization Methods. Another set of tech-
niques jointly tackles the reconstruction and parameter optimiza-
tion problems. By taking as input data from arbitrary real simula-
tions (e.g., the cloth deforming on an avatar [YPA∗18]), they itera-
tively reconstruct and simulate the scene which better explains the
observation. Bhat et al. [BTH∗03] takes as input a video sequence
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Figure 3: An overview of the main components of our method. We propose a technique to estimate fabric mechanics using depth images of
hanging and stretch scenes as input. To validate the error of our estimations in a perceptual manner –accounting for the global drape–, we
propose an image-based drape similarity metric which we validate with human judgments and can be used to sort fabrics by similarity. We
show through several metrics that the estimations provided by our method using our similarity metric agree with those given by humans.

of the cloth and use simulated annealing to optimize the parameters
by measuring its folds. Yang et al. [YL15] use multi-view stereo
reconstruction to initialize the 3D shape. Runia et al. [RGSS20]
also introduces simulation steps to explain observed phenomena
of cloth in the wind. They rely on similarity metrics computed on
deep latent spaces to supervise the optimization of the parameters.
These methods require simulation steps embedded into the fitting
processes, making them computationally expensive due to the high
dimensionality of the parameter spaces. Recent differentiable sim-
ulation techniques [LLK19,JBH19,HAL∗19,MMG∗20,LDW∗22]
have proven to be efficient ways to reduce the fitting burden by
enabling the computation of gradients with respect to these param-
eters within latent spaces of neural networks, taking into account
dynamics, self-collisions, and contacts.

Data-Driven and Regression Methods. The third set of meth-
ods avoids reconstructing the original 3D scene by working on an
estimated feature space and leveraging previously simulated data
and machine learning techniques. Our approach falls in this cat-
egory. Taking videos as input has been explored by Bouman et
al. [BXBF13] to recover stiffness and area weight using a descrip-
tor of the image based on PCA and optical flow, and later by Yang et
al. [YLL17], who leverage neural networks to extract image fea-
tures used for regression. Davis et al. [DBC∗15] estimated the
same simulation parameters by exploiting imperceptible vibrations
in high-speed video recordings. Bi et al. [BJNX18] further evalu-
ated that humans also need fabric motion to understand its stiff-
ness. Friction coefficients have been estimated using reflectance
values [ZDN16] or dynamic videos of cloth sliding through a sur-
face [RRBD∗20] Instead of regressing the parameters, Huber et
al. [HEW17] find the most similar cloth in a database using motion
descriptors. A different approach only using a single image of the
Cusick drape was followed by Ju et al. [JC20], but it requires a 360◦

scan to reconstruct the target cloth, and a manually fitted Bezier
curve to obtain the feature vector. In contrast, we just require a
depth map that can be captured easily. Concurrent work [FHXW22]
uses multiple-view depth images as input to a trained regressor.

Our approach is inspired by these ideas; however, we do not re-
quire optimization –providing instant estimation of the parameters–
and leverage neural features to understand and model fabric behav-
ior in a semi-controlled setup. We demonstrate that our approach
works with two images as input to predict bending and stretching
coefficients without requiring a full video of the piece of fabric.

2.2. Pre-Trained Models and Transfer Learning

Deep learning models typically require vast amounts of data for
generalizing to unseen examples. When this amount of data is
not possible to acquire, tranfer learning techniques helps by re-
using model parameters trained on a related task [KSL19,RZKB19,
BHA∗21]. These techniques include: Fine-tuning the weights
of a pre-trained classification model [WKW16, RD17, CZW∗18,
WLZ∗18,RJ19,GSK∗19,KBZ∗20]. Pre-training an image descrip-
tor model on contrastive or self-supervised learning tasks, and use
the activations of its last layer as input to the downstream task (Lin-
ear Probing) [CKNH20,RKH∗21,CXH21,HCX∗22,KRJ∗22]. For
domain adaptation problems, it is common to adapt the internal
representations of pre-trained CNNs so as to efficiency [RBV17,
RBV18, RPB19, PCYS20, LLB22]. Inspired by these approaches,
we design a model that leverages fine-tuning of a pre-trained image
CNN classifier as a feature extractor, capable of processing depth
images, and extend it to account for additional input variables, and
handling multiple images at the same time during test.

2.3. Similarity Metrics

Full-Reference Image Quality Assessment (IQA) aims to provide
a single score which measures the amount of distortion between
two images. Traditionally, these metrics leveraged low-level image
statistics. PSNR is commonly used for measuring image degrada-
tion, but correlates poorly with human perception [ZIE∗18]. More
sophisticated alternatives have been developed, including SSIM,
mSSIM [WBSS04], and others [ZZMZ11, NSHC16, ZSL14, ZL12,
RBKW18]. Algorithms based on latent spaces of CNNs [GEB16]
have been extended to better approximate human perception,
for example, by training on a large pool of human evalua-
tions LPIPS [ZIE∗18], or by other means [DMWS20, PCMS18].

Besides, similarity metrics that measure abstract or complex
concepts like style have been proposed for 3D furniture [LKS15],
illustration [GAGH14], icons [LGG19], product design [LKS15],
or material appearance [LMS∗19]. Unlike ours, these metrics re-
quire to be trained with human ratings, thus incurring a consid-
erable cost to collect such information via user studies. Instead,
our metric does not require specific training, leveraging an off-the-
shelf image-based metric. Despite this, we show that our metric
correlates with human judgments on the perception of fabric drape
similarity and that can be used to evaluate the overall drape.
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3. Overview

Figure 3 presents an overview of our work. First, in Section 5, we
introduce our novel solution to infer fabric mechanics directly from
depth images. As input, our approach only requires static depth im-
ages in two specific configurations, shown in Figure 2, as well as
the fabric density which can be easily obtained with conventional
equipment. In Section 4 we describe the datasets of synthetic and
real samples, with mechanical ground truth parameters, used train
and evaluate our regressor.

The quantitative evaluation suggests that our method is able to
estimate the mechanics within a certain error. However, since a di-
rect interpretation of that error is not human-friendly, we propose a
method to evaluate the overall drape in the context of a real scene.
In Section 6, we introduce our image-based similarity metric for
drape, which takes as input renders of the chosen scenes and pro-
vides a relative value that is useful to compare the drape of differ-
ent fabrics. With a user study, explained in Section 7.1, we validate
that our metric agree with human preferences on the global percep-
tion of fabric drape. Also, in Section 7.2, we evaluate our capture
method using our drape similarity metric and compare it with hu-
man judgments. We effectively validate that our estimations agree
with human assessments and provide several qualitative examples
in Section 7.3.

4. Datasets

We develop two different datasets of depth images, which we use
at different steps of the pipeline to train and evaluate our mod-
els: a synthetic dataset, generated using physics-based cloth sim-
ulation; and real dataset, generated using images of real fabric
samples. In both datasets, a sample consists of a depth image
of a fabric simulated in a scene for which we have the corre-
sponding mechanical parameters, namely: bending [GHDS03] and
stretch [VMTF09] in the warp, weft, and bias directions and the
fabric density, {kStretchWarp, kStretchWeft, kStretchBias, kBend-
inghWarp, kBendingWeft, kBendingBias, ρ} ∈ R7. We support two
different static configurations for the scenes: hanging, which ex-
hibits the overall drape; and stretch, which exhibits diagonal ten-
sion and is key to understanding the stretching properties. Figure 2
depicts examples of each configuration.

Simulated Dataset. To train our model, we generate a synthetic
dataset by simulating fabrics in a virtual scenario, replicating the
hanging and stretch configurations. We use a standard simula-
tor, similar to ARCSim [NSO12], with a quadratic strain, a lin-
ear strain/stress relationship, and standard definitions for bending
and stretch [GHDS03,VMTF09]. To model highly anisotropic fab-
rics, we use three parameters for warp, weft, and bias. Note that
the model used for stretch already has some nonlinear behavior
(quadratic strain), but more parameters (one per direction) are re-
quired to control the nonlinearity of the forces. Thickness is not in-
cluded as it is implicitly accounted for in the other parameters. Con-
trarily, density is required as the simulator is dynamic. In a static
one, it could be dropped after normalizing the other parameters.

After simulation, we render the resulting mesh (discretized at
5mm/edge) with a white Lambertian material and extract the depth
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Figure 4: Spearman correlation matrix between parameters of our
synthetic dataset.

Hanging

S
tr

e
tc

h
: 2

0
0

0
S

tr
e

tc
h

: 2
0

0
S

tr
e

tc
h

: 2
0

Bending: 10-8 Bending: 10-7 Bending: 10-6

Stretch

Bending: 10-8 Bending: 10-7 Bending: 10-6
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buffer. To ensure that our synthetic dataset covers a wide range of
materials, we densely sample the parameter space using a distribu-
tion of common mechanical parameters of real-world fabrics. Fig-
ure 5 shows a sweep of parameters showcasing the variability of
resulting drapes in the hanging and stretch scenes. To better under-
stand potential relationships between the parameters, we compute
the Spearman correlation r, shown in Figure 4, where we observe
the higher correlation between the three kStretch coefficients and
some correlation between the kBendingBias and the density.

Real Dataset. To evaluate our model, we test it with real data from
images captured by the Intel RealSense SR300. To this end, we ca-
sually hang 50×50 cm fabric samples using several magnets into a
metallic panel, which requires little to no expertise and can be done
very fast. Pin location does not need to be centimeter-accurate. Be-
cause we use depth images, no special lighting is necessary. We
measure fabric area density by weighing a 10× 10 cm sample and
dividing by its area. See Figure 2 for a visualization of our capture
setup and the accompanying video for an illustration of the process.
We capture ten fabrics of diverse compositions and structures, for
which we have ground truth mechanical parameters previously ob-
tained with specific equipment and methods [SSBL∗22].

In the supplementary material, we include further details of
this dataset, including each material’s composition, structure, and
closeups.
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4.1. Data Augmentation

To make our model robust to potential noise and scenario vari-
ations common in uncontrolled capture setups (e.g., slightly dif-
ferent camera viewpoint or fabric configuration), we apply several
data augmentation strategies to our synthetic dataset.

Simulation-Space Data Augmentation. To enforce robustness to
different camera viewpoints, simulated meshes are rendered within
a range of different inclinations with respect to the vertical plane.

This range covers ±5 degrees from the rest position orientation,
creating 11 depth maps per material and scene.

Image-Space Data Augmentation. Real images are largely dif-
ferent to synthetic images, due to distortions, noise, perspective
changes, unknown illumination, lens and sensor characteristics,
blurs, etc. To enforce the robustness of our models to those dis-
tortions, we design an extensive image data augmentation policy
consisting of random individual deformations, performed in a par-
ticular order. These not only include random noise, blurs, perspec-
tive changes and rescales, but also more complex policies such as
thin-plate deformations, posterization and erasing. This data aug-
mentation policy bridges the gap between synthetic renders and real
depth images, which are typically more noisy. See supplementary
material for more details.

5. Fabric Mechanics from Depth Images

In this section, we present our learning-based approach to esti-
mate fabric mechanical parameters P̂ from depth images. Given
a set of depth images, I = {Ihanging | Istretch} ≥ 1, which depicts
the hanging and stretch scenes, we train a model M which maps
I, along with the material density ρ, to mechanical parameters:
M(I,ρ) = P̂ ∈ R6. To this end, at train time we learn to extract
relevant features from depth images, which are then fed into a re-
gressor to learn to predict mechanical features. Importantly, our ar-
chitecture enables to input sets of images at test time by fusing their
respective features. Figure 6 illustrates the train and test pipelines.
See the supplementary material for implementation details.

5.1. Neural Network Architecture

Feature Extractor The first part of the model is a feature extrac-
tor F , which receives as input a single depth image Isc ∈ I and
outputs a feature vector fsc = F(Isc) that describes it. This fea-
ture extractor is composed of three different components, shown
in Figure 6. First, the image is processed by a Convolutional Neu-
ral Network (CNN) that outputs a dense latent representation. We
use a ResNet-18 [HZRS16] pre-trained on ImageNet [DDS∗09],
which we finetune with our data. To reduce the gap between
real and synthetic images, we equalize the image before feeding
it to the feature extractor, during both training and evaluation.
Then, the output of this CNN is passed through a Self-Attention
[ZGMO19] module, which helps the model learn non-local de-
pendencies, enlarging the model receptive field, so it accounts
for distant information in the input images. Self-Attention mecha-
nisms were originally designed for language models [VSP∗17] but
have recently demonstrated significant efficacy for computer vision

Baseline Data Augmentation Architecture
Metric Parameter w/ sim w/ image w/ pre-Train w/ attention w/ pooling

ℓ1 ↓

kStretchWeft 0.122 0.118 0.112 0.087 0.071 0.071
kStretchWarp 0.109 0.101 0.102 0.074 0.066 0.061
kStretchBias 0.050 0.043 0.046 0.043 0.042 0.038
Avg. Stretch 0.094 0.087 0.087 0.068 0.060 0.057
kBendingWeft 0.095 0.093 0.091 0.084 0.0.82 0.072
kBendingWarp 0.124 0.119 0.112 0.110 0.101 0.094
kBendingBias 0.086 0.081 0.086 0.081 0.068 0.060
Avg. Bending 0.102 0.098 0.097 0.092 0.084 0.075

r ↑

kStretchWeft 0.445 0.475 0.453 0.643 0.788 0.798
kStretchWarp 0.543 0.503 0.510 0.645 0.715 0.771
kStretchBias 0.477 0.508 0.608 0.701 0.733 0.781
Avg. Stretch 0.488 0.495 0.523 0.660 0.745 0.783
kBendingWeft 0.611 0.684 0.781 0.783 0.798 0.863
kBendingWarp 0.614 0.654 0.747 0.772 0.806 0.921
kBendingBias 0.624 0.828 0.837 0.872 0.893 0.942
Avg. Bending 0.616 0.722 0.788 0.809 0.832 0.909

Table 1: Ablation study of the neural architecture and data aug-
mentation. From left to right, we build upon our baseline and
progressively add: simulation-space data augmentation, image-
space data augmentation, pre-training, self-attention, and average-
pooling. On both MAE (ℓ1) and correlation (r) metrics, we observe
increased performance on the validation set in every added com-
ponent. Using a pre-trained network for feature extraction yields
the largest gains. We use a color code to highlight best and worst
cases.

tasks [RPV∗19,ZGMO19,ZJK20,HWC∗22]. We add a single Self-
Attention layer, as they are expensive to train and evaluate.

Finally, we perform pooling operations to transform the output
of the Self-Attention layer to a feature vector, fsc, of a fixed size.
In addition to the commonly used max-pooling [SZ14], we further
concatenate it with the output of average-pooling, which has shown
to improve performance of attention modules [ZKL∗16, HSS18,
WPLK18]. The feature vector fsc is thus a concatenation of max-
pooled features and average-pooled features: fsc = {fmax

sc ⊕ favg
sc }.

Fusion Our design allows us to combine features fsc from more
than one scene into a single feature vector f. For every image in
I, we compute fsc. We then fuse those feature vectors into a single
vector by performing pooling across f. Similarly to fsc, f is com-
posed of two types of features: f = {maxsc{fmax

sc }⊕{avgsc{favg
sc }}.

The max-pooled features are fused using the maximum value
across scenes, while the average-pooled features are fused using
the mean across scenes. We illustrate this procedure in Figure 6.

Parameter Regressor Our last component is a fully-connected
Multi-Layer Perceptron (MLP), which takes as input the feature
vector f and the material density, ρ, and outputs the simulation pa-
rameters P̂ . As our loss function, we compare the real parameters
P with the model estimations M(I,ρ) = P̂ using an ℓ2 norm.

5.2. Quantitative Evaluation

In this section we quantitatively evaluate the performance of the
method for estimating the mechanical parameters. We validate the
design choices of the model, and evaluate our results depending on
the type of input used.

5.2.1. Ablation Study of the Model Design

We aim to understand the effective contribution of the data aug-
mentation strategy, and the network architecture design. For these
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Figure 6: Diagram of our training and evaluation pipelines. For training, we use a single image of the material, along with its density. The
image is processed by our Feature Extractor, followed by an MLP, which computes the parameter estimation P̂ . For evaluation, we process
each available image with our trained feature extractor and use a fusion operator before feeding it to the trained regressor. We use the same
Feature Extractor and MLP for both scenes.

experiments, we randomly split the synthetic data in 90% for train-
ing and 10% for validation, using the same split for every experi-
ment. Results are shown in Table 1. As our baseline, we use a sim-
ple model without self-attention, without average-pooling features,
where the CNN backbone is randomly initialized, and without data
augmentation. From this baseline, we progressively add different
components and measure the performance of the validation data
using Mean Absolute Error (MAE) and Spearman correlation (r).
The parameters are normalized using the minimum and maximum
values of the training set.

Given the training configuration with all the data augmentation
–which provides a small increase in performance most likely be-
cause the validation dataset is synthetic data– we evaluate the neu-
ral architecture.

Using a CNN backbone pre-trained on ImageNet [DDS∗09] in-
stead of a randomly initialized one, we observe a significant in-
crease in model performance across every parameter and metric.
Training a feature extractor that receives images from both scenes
at the same time would not allow us to leverage pre-training,
which would negatively impact generalization. Then, we add a self-
attention [ZGMO19] layer after the CNN backbone, which allows
the model to integrate information that is present on distant areas
of the images. Interestingly, this module significantly helps predict
the kStretch parameters while having a more minor influence on
the kBending. Finally, adding average-pooling in addition to the
commonly used max-pooling have a highly positive impact in the
error rates. We use this last configuration with all the components
for all the results shown in the paper. It is worth noting that the
kBendingBias is easily predicted by the model, even in its most ba-
sic configuration. This is likely because this parameter correlates
most strongly with the density of the material (shown in Figure 4),
so the model can leverage this information for the predictions.

5.2.2. Evaluation of Input Influence

The design of our method supports taking as input one or multi-
ple images. In this experiment, presented in Table 2, we evaluate
the error testing different configurations of the input. Note that we
train a different model for each configuration. In every case, using
the density as input helps the model to generalize. This is particu-
larly relevant for kBending parameters, for which the density alone
provides more information than depth images. The stretch scene
is typically more informative than the bending one, as both MAE

Density Only Depth Density & Depth
Metric Parameter Stretch Hanging Both Stretch Hanging Both

ℓ1 ↓

kStretchWeft 0.113 0.102 0.107 0.062 0.054 0.056 0.051
kStretchWarp 0.091 0.067 0.081 0.056 0.055 0.059 0.052
kStretchBias 0.034 0.039 0.054 0.034 0.033 0.036 0.031
Mean Stretch 0.079 0.069 0.081 0.051 0.047 0.050 0.045
kBendingWeft 0.142 0.233 0.213 0.145 0.128 0.139 0.125
kBendingWarp 0.126 0.184 0.126 0.074 0.037 0.063 0.035
kBendingBias 0.094 0.166 0.081 0.054 0.055 0.069 0.046
Mean Bending 0.121 0.194 0.140 0.091 0.073 0.090 0.069

r ↑

kStretchWeft 0.184 0.407 0.403 0.418 0.712 0.469 0.728
kStretchWarp 0.002 0.502 0.407 0.503 0.520 0.433 0.533
kStretchBias 0.289 -0.141 -0.068 -0.007 0.367 0.383 0.550
Mean Stretch 0.158 0.256 0.247 0.305 0.533 0.428 0.604
kBendingWeft 0.483 0.052 0.267 0.625 0.673 0.683 0.717
kBendingWarp 0.317 0.048 0.156 0.407 0.467 0.433 0.533
kBendingBias 0.357 -0.044 0.108 0.250 0.333 0.417 0.546
Mean Bending 0.386 0.019 0.177 0.427 0.491 0.511 0.599

Table 2: Results for real depth images varying the input. From left
to right, the input is: only density, only depth images, and both
density and depth. The best results are obtained using every data
source as input. For kBending, the density alone provides more in-
formation than only depth images. We use a color code to highlight
best and worst cases.

and correlations are usually better when it is provided. When using
both scenes simultaneously, the model provides more accurate es-
timations than any of the scenes individually, showing that the two
scenes provide complimentary information.

5.2.3. Neural Saliency Maps

H
a
n
g
in
g

S
tr
e
tc
h

kStretchWeft kStretchWarp kStretchBias kBendingWeft kBendingWarp kBendingBias

Figure 7: Saliency maps [FHD∗20] aggregated per parameter. The
model relies on the central areas of the fabric samples for predict-
ing the stretch parameters. For bending, it is most sensitive to areas
on the borders of the samples.

We aim to understand which part of the scenes are most rel-
evant for the model when making its predictions. To do so, we
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create saliency maps using Axion-Based Class-Activation Map-
pings [FHD∗20], that averages the activations of the deep layers
weighted by their importance with respect to each target parame-
ter, and aggregate them over our real dataset. In Figure 7 we ob-
serve that each scene provides the model with different cues. For
kStretch parameters, the model is sensitive to the central wrinkle of
the stretch scene and the central fold of the hanging. For kBending
parameters, the model is sensitive to areas in the borders of the fab-
ric where small but noticeable wrinkles are present, in both scenes.
As in other experiments, we observe that the model can find more
relevant features on the stretch scene.

6. A Similarity Metric for Drape

The regressor introduced in Section 5 allows to infer the mechan-
ical parameters of target fabric. However, since a direct interpre-
tation of such parametric space is not human friendly, it is nearly
impossible to understand the residual errors shown in Tables 1 and
2. Do the regressed parameters produce a drape similar to the tar-
get image? Notice that, since the mechanical parameter space is
non-orthogonal, small parameter changes may produce unexpected
deformations. Therefore, we hypothesize that a perceptual similar-
ity metric for drape is needed to interpret our quantitative results.
We describe this metric next.

6.1. Image-based Similarity of Drape

Motivated by our hypothesis that the hanging and stretch scenes
are sufficient to convey the fabric mechanics, we propose an image-
based similarity metric using renders of such scenes. Let P ⊆R7 be
the parameter space of our simulator, Pa ∈P and Pb ∈P two differ-
ent parameter sets, and a ∼R(Pa,scene) and b ∼R(Pb,scene) two
rendered simulations obtained for a certain scene configuration. We
define a distance metric for a particular scene as

dscene(Pa,Pb) =
∑

N
i=1 ∑

N
j=1 IM(ai,b j)

N2 (1)

where IM is an image-space distance metric, and N is the number
of different simulations we run. Since real cloth is very sensitive to
parameters such as initial state or initial shape, in order to learn a
metric that is robust to real-world conditions, we perturb the initial
state and boundary conditions in a set of simulations using random
jittering to the initial forces. We empirically found that averaging
over multiple simulations for the same set of (Pa,Pb) gives us a
more informative metric.

Further more, we take into account both hanging and stretch
scenes, hence our final metric is defined by averaging their dis-
tances across both scenarios, resulting in our final metric:

d(Pa,Pb) =
dhanging(Pa,Pb)+dstretch(Pa,Pb)

2
(2)

Note that we propose a similarity metric, which, as opposed to
real distance metrics, does not necessarily have to meet the metric
axioms [TK74]: it can produce asymmetric values, violate the tri-
angle inequality, and does not need to define what the identity is.
According to the Equation 1, the distance of one fabric with itself is
not necessarily zero; it just needs to satisfy a minimum requirement

where the distance of every material with itself should be smaller
than the distance of any material with any other material,

d(Pa,Pa)< d(Pa,Pb),∀Pa ̸= Pb (3)

In order to remove the possible influence of optical properties,
scene illumination, and camera parameters, we use the same scene
configuration for every render, with grayscale albedo and a lamber-
tian BRDF.

For IM we use LPIPS [ZIE∗18] which we empirically found
to perform better than other alternative image metrics. We find
that metrics based on pre-trained neural networks work better than
lower-level alternatives, while content-aware distances are more
powerful for this purpose than style-aware metrics. This suggests
that the size, position and shape of the wrinkles and deformations
of the fabrics are important factors that explain differences between
materials. We empirically found that N = 5 simulations is typically
enough, as more samples provide very marginal improvements. See
the supplementary material for more details about the proposed
metric.

7. Evaluation

We propose to evaluate our method from Section 5 and the metric
from Section 6 by comparing our estimations with human ratings
(recall that we provide quantitative errors per parameter in Sec-
tion 5.2). To this end, in Section 7.1, we first collect a large number
of ground truth human judgments about the similarity of triplets of
fabrics. Then, in Section 7.2, we demonstrate that our image-based
metric using ground truth parameters, as well as the estimated ones,
encode the same preferences. Finally, in Section 7.3, we show qual-
itative comparisons and demonstrate the usefulness of our approach
in a downstream task consisting of ‘search by similarity’.

7.1. Human Judgment Perceptual Similarity of Drape

We then use ten samples from our real dataset with known ground
truth mechanical parameters and setup the user study as follows.
Participants are presented with a triplet of fabrics and, using one
fabric as a reference, they are asked which of the two remaining
fabrics is most similar [ZIE∗18, GAGH14] to the reference fab-
ric. Participants are encouraged to manipulate the samples and fo-
cus only on the mechanical similarity and overall drape, and to ig-
nore properties like material reflectance. Each participant rated 20
triplets that were pseudo-randomly sampled, ensuring that at least
each of the ten test fabrics is used twice as reference. Given the
same triplet, we observe an average of 86.68% agreement between
our participants across all experiments and materials, suggesting
that there is a perceptual understanding of fabrics mechanics that
humans share. We did not observe any significant differences in
agreement depending on the volunteer demographics or level of
expertise in fabric handling or simulation.

Leveraging the user study described above, we can compute an
embedding that captures the relative distance between real mate-
rials according to human perception (i.e., ground truth perceptual
similarity). Figure 8 depicts such embedding in 2D, computed us-
ing tSTE [TLB∗11], which allows us to calculate perceptual dis-
tances between materials using the Euclidean norm. The embed-

© 2023 DESILICO SL and The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

155



C. Rodriguez-Pardo, M. Prieto-Martin, D. Casas, E. Garces / How Will It Drape Like? Capturing Fabric Mechanics from Depth Images

0

0,2

0,4

0,6

0,8

1

-0,2 0 0,2 0,4 0,6 0,8 1

Wovens

Knits

Rigid

Thick

With elastic fibers

Thin & 
elastic

Stiffness

Figure 8: Human Judgments 2D tSTE embedding [TLB∗11] com-
puted from human perceptual judgments about real fabric similar-
ity (i.e., ground truth). We observe interesting patterns: woven and
knits are separated; elastic materials are clustered; thick and thin
materials are separated. Neither axes directly correspond to any
material property, instead they emerge from the embedding.

ding depicts many interesting patterns, including perfectly sepa-
rated woven and knitted fabrics; elastic and thin fabrics are clus-
tered together; thick and thin knits are well separated. These pat-
terns suggest that fabric structure, composition, and density play
an important, non-linear role in the overall perception of the me-
chanical properties of fabrics.

7.2. Image-based vs. Human Perceptual Similarity

We evaluate the agreement between humans and our estimations
within the context of a similarity rank. For each fabric of our real
dataset, we compute the distance to the rest of the materials using
different metrics: 1) the Euclidean distances on the Human Judg-
ments tSTE embedding shown Section 7.1; 2) the z-score distances
in the parametric space of the mechanical simulation, P; 3) the dis-
tance using our similarity metric for drape explained in Section 6.
We compare ground truth parameters and estimated ones for the
second and third cases. The summary of results is shown in Ta-
ble 3, and the complete analysis is presented in the supplementary
material.

First, we demonstrate that our similarity metric using ground
truth parameters correlates with human judgments. Figure 9 (top)
illustrates the outcome using Spearman correlation (r). We observe
that the correlation for each fabric is higher than 0.8, with an av-
erage of 0.893, showcasing a strong correlation. These results sug-
gest that our metric, which only takes images of the hanging and
stretch scenes as input, can measure distances between materials as
humans would. Then, as shown in Figure 9 (bottom), we use our es-
timated parameters instead of the ground truth, reaching an average
correlation of 0.680. Even though this value is slightly smaller than
the ground truth, it is still significant to conclude the estimations
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Figure 9: Correlation between the ordering provided by the Hu-
man Judgments (x-axis) and our drape similarity metric with (top)
the Ground Truth simulation parameters (y-axis), and (bottom) the
estimations of our model. We plot z-scores instead of the raw dis-
tances to help visualization.

Parameter Distance Similarity Metric

GT 0.431±0.17 0.893±0.05
Estimated 0.377±0.19 0.680±0.09

Table 3: Average (± std.) correlation with rankings obtained
through the Human Judgments tSTE Embedding, depending on the
parameter source (ground truth or predicted), and metric used to
compute similarity (parameter distance or our drape similarity).

of our model agree with human judgments. Note that the materials
with higher correlation are those lying on the extreme areas of the
embedding obtained in Figure 8 that have very distinct characteris-
tics. Likewise, we also compute the distance for each material us-
ing merely the parameter spaces of the simulation. As can be seen,
using this space does not produce correlated outputs with human
judgments, reaching correlations below 0.44 in any case tested.

7.3. Qualitative Results

Figure 10 compares the simulations obtained with the parameters of
our method with the ground truth parameters for a few examples.
We can observe that our estimations are very close to the ground
truth in this cases. The full results are contained in the supplemen-
tary material. Finally, our metric can be used to search between ma-
terials of similar drape. We illustrate this in Figure 12. As shown,
a naive ranking using directly the parameter space does not pro-
vide any meaningful ordering. On the contrary, using our similarity
metric, we obtain ranks that agree with those given by the human
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ID-0061 Ground Truth Prediction

ID-0115 Ground Truth Prediction ID-0242 Ground Truth Prediction

ID-0183 Ground Truth Prediction

Figure 10: A comparison between the simulations obtained
through the ground truth parameters, and those obtained using the
predictions of our model, from a representative set of fabrics of our
test set. As shown, the estimations of the model yield similar drapes
to those of their ground truth counterparts, which we also evaluate
quantitatively.

Reference 

Most Similar: Metric + Prediction

Ground Truth Prediction Ground Truth Prediction

Most Similar: Humans

Reference 

Figure 11: A failure case of our method. Given the reference ma-
terial (first row) as input, the model predicts fewer bends than the
ground truth. According to our metric, this prediction is closer to
a thicker material (middle row), than to what humans perceive as
most similar to the reference fabric (bottom row).

embedding, showcasing the potential of our automatic metric to ex-
plore fabric collections.

Limitations Even if our model provides accurate predictions, its
estimations are not always truthful to the real materials. We illus-
trate this in Figure 11, where the model predicts fewer bends on
the final drape than what the ground truth generates. According to
our metric, this prediction is closer to thicker materials than to what
humans perceive as most similar to the reference material.

8. Conclusions

In this work, we have presented a casual method to estimate me-
chanical parameters of fabrics from depth images of fabric samples

ID-0115 Top 3 Similarity in Parameter Metric

Top 3 Similarity in Human Ranking

Top 3 Similarity in Perceptual Metric (Ours)

ID-0061 Top 3 Similarity in Parameter Metric

Top 3 Similarity in Human Ranking

Top 3 Similarity in Perceptual Metric (Ours)

ID-0242 Top 3 Similarity in Parameter Metric

Top 3 Similarity in Human Ranking

Top 3 Similarity in Perceptual Metric (Ours)

ID-0183 Top 3 Similarity in Parameter Metric

Top 3 Similarity in Human Ranking

Top 3 Similarity in Perceptual Metric (Ours)

Figure 12: Search by drape similarity. The ordering provided
by the parameter space (first row) does not match human judg-
ments (second row), while the arrangement obtained by our metric
matches humans with high consensus (third row).

placed at two specific configurations. We have validated our archi-
tecture and inputs numerically, proving that all the components of
our method are necessary to provide accurate estimations. While
our quantitative analysis helped us understand the importance of
each component, we found that these errors are not interpretable,
nor do they help us understand the overall appearance of the pre-
dicted drape. Therefore, we have presented the first metric, which,
by purely working on the image space, can capture differences in
fabric mechanics like humans do. We have used such metric for two
purposes: first, to validate the accuracy of our estimated parameters
perceptually, and second, to showcase a novel application of search
by drape similarity.

Our work could be improved in several ways. Our neural net-
work is trained using a purely regression loss. Training the network
using differentiable simulation could improve training, and help
generalization and error interpretation. We could incorporate our
perceptual metric as a loss function. However, it requires multiple
differentiable simulations and a deep feature extractor, which will
result in a significant computational overhead. In addition, less ex-
pressive simulation engines may correlate less with human percep-
tion. Similarly, we would like to scale our training dataset and user
study to handle more and more diverse samples, to cover a broader
variety of fabric families. Interesting possible extensions would in-
clude taking as input RGB images instead of depth maps, training
with real samples, incorporating symmetry consistency losses, or
learning a similarity metric that can work by using captured images
as input (instead of simulations). Finally, we hope our work might
inspire future work in the long-standing problem of validating fab-
ric mechanics in a way that is agnostic to the simulator parameters.
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