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Abstract
We propose to use nonlinear shape functions represented as neural networks in numerical coarsening to achieve generalization
capability as well as good accuracy. To overcome the challenge of generalization to different simulation scenarios, especially
nonlinear materials under large deformations, our key idea is to replace the linear mapping between coarse and fine meshes
adopted in previous works with a nonlinear one represented by neural networks. However, directly applying an end-to-end neural
representation leads to poor performance due to over-huge parameter space as well as failing to capture some intrinsic geometry
properties of shape functions. Our solution is to embed geometry constraints as the prior knowledge in learning, which greatly
improves training efficiency and inference robustness. With the trained neural shape functions, we can easily adopt numerical
coarsening in the simulation of various hyperelastic models without any other preprocessing step required. The experiment results
demonstrate the efficiency and generalization capability of our method over previous works.
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1. Introduction

The pursuit of efficiency in the simulation of complex elastic models
is an ever-lasting goal in the field of computer graphics. Among
all the proposed acceleration techniques, numerical coarsening is
one of the promising solutions, in which the computation is applied
on the coarse level of resolution with reduced degrees of freedoms
(DoFs) rather than on the fine mesh, as the simulation cost usually
increases rapidly as the resolution of the model gets finer.

Existing methods [KMOD09, NKJF09, TREO16, KMOD09,
CBW*18] consider the coarsening process as an analytical solu-
tion or optimization problem with guaranteed accuracy, which can
be applied to the simulation of co-rotational linear materials and
hyperelastic materials limited in small deformation. One of the re-
cent works [CBW*18] proposes to modify the shape functions of
coarse models from scalars to matrices with increased DoFs. How-
ever, these methods suffer from a lack of generalization capability.
First, they require preprocessing to be conducted in a cumbersome
case-by-case way, which fails to generalize to a broad range of sim-
ulation scenarios with large deformation while achieving good ac-
curacy. Second, their formulations are still linear, which constrains
the expression capability of shape functions. Their methods only

behave well for small strains or elastic energy when applied to non-
linear materials.

Inspired by the recent works on learning-based meth-
ods [FMD*19, RCPO21], our key idea is to extend the linear
mapping between coarse and fine meshes used in [CBW*18] to a
nonlinear one by replacing the linear shape functions in numerical
coarsening with a nonlinear one to increase the DoFs further.
Furthermore, to achieve good generalization capabilities, we adopt
a neural representation of the shape function trained from sampled
simulation data, enabling our numerical coarsening method to
simulate hyperelastic materials with large deformation.

However, directly applying an end-to-end neural representation
of shape functions leads to poor performance. The reasons are two
folds. First, the space of network parameters is too large to get
enough training data with an acceptable number of samples. Sec-
ond, some intrinsic geometry properties of shape functions, which
must be met, may fail to be captured by the plain neural representa-
tion, which leads to unstable inference performance in simulation.

To overcome these shortcomings, we propose embedding the ge-
ometry constraints as prior knowledge in training the neural shape
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Figure 1: We compare the simulation on fine grids (b) and coarse grids with our new numerical coarsening method (c). Our method can
generalize to different models without any other preprocessing step while achieving good accuracy. For the bird model above, the simulation
using our method is 16 times faster than that on fine grids. The position’s mean error of our method is 3.0 × 10−3.

functions. Specifically, we constrain the learned shape function to
be a quasi-linear one, which significantly reduces the dimension of
parameter space and improves the robustness of the result in numer-
ical coarsening.

The experiment results (Fig. 1) demonstrate the efficiency and
generalization capability of our method. Our trained neural shape
functions can be directly applied to different models and materials
without requiring other preprocessing. Furthermore, compared with
[CBW*18], our method can achieve about twice the accuracy.

Our paper makes the following technical contributions:

• We adopt learning-based shape functions in numerical coarsen-
ing to achieve both generalization capability and good accuracy
compared with traditional methods.

• We propose to embed specific geometry constraints as prior
knowledge in training neural shape functions, which significantly
improves the training efficiency and inference robustness.

2. Related Work

2.1. Model reduction

Efficient simulation based on the finite element method (FEM) has
been developed for many years. Model reduction is a set of methods
that are used widely and attempt to use less DoFs to describe the
simulated system, such as the methods described in [HSO03] and
[XLCB15]. They approximate the deformation with the linear com-
bination of a set of basis. The basis of the deformation space may
be derived from PCA analysis or be chosen by the user. Many other
example-based simulations are similar to model reduction methods
by also representing the deformation space with a set of finite ba-
sis. However, this type of method incurs errors in the simulation of
nonlinearmaterial due to the limitation of linear combination.More-
over, the choice of basis greatly influences the simulation results.

2.2. Traditional numerical coarsening

Another set of methods is numerical coarsening. The coarsening
method simply embeds the fine grids into the coarse grids in 3D
space. But if we use the same material parameters with the fine
mesh on the coarse grids, the elastic body usually behaves stiffer
than the fine grids. To increase accuracy, many algorithms have

been proposed to modify the coarse grids. [KMOD09] attempt to
compute the elasticity tensor to capture the physical behaviour,
which can be considered as trying to modify the material param-
eters to fit the ground truth of the simulation. [CBW*18] compute
the matrix-valued shape functions for FEM simulation. Such an in-
crease in the DoFs of shape functions helps to capture the physical
behaviour without changing material parameters. Global methods
have also been implemented to improve the accuracy of dynamic
solutions. [CLMK17] and [CLK*19] approximate the global eigen-
values on the coarse mesh. [CBO*19] introduce a hierarchical con-
struction ofmaterial-adapted basis functions, which is compromised
between global accuracy and local efficiency. However, these meth-
ods fail to generalize to different simulation scenarios without case-
by-case preprocessing.

2.3. Data-driven methods

A lot of effort has been put into data-driven physics simulation re-
cently. [CLSM15] compute the material parameters of coarse grids
to replace the ones of fine grids by data-driven methods. Besides,
many approaches tend to implement model reduction via neural net-
works. [FMD*19] use an autoencoder to construct nonlinear sub-
spaces automatically. Some algorithms have been used to separate
the subspace apart and learn only the nonlinear corrections, such
as those applied in [RCPO21] and [SYS*21]. Beyond model re-
duction, NNWarp in [LSW*18] makes use of simple networks to
correct linear nodal deformation to nonlinear ones. Some also pro-
pose to adopt learning methods in fluid simulations, such as in
[KAT*19]. Alternatively, data-driven approaches can be applied to
add fine details. Chu et al. [CT17] train a feature descriptor with
CNNs to match high-resolution results, while Lahner et al. [LCT18]
use GANs to add high-frequency details. However, to the best of
our knowledge, few of the applications of the data-driven methods
in numerical coarsening have appeared yet. Different from the way
to find the best-fit parameters for coarse mesh in the database in
[CLSM15], our method to learn an appropriate shape function can
act more flexibly and elegantly.

3. Preliminaries

We begin with traditional FEM simulation methods for elastic bod-
ies and introduce some notations. Let �0 ⊆ R

3 be the initial (rest)
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configuration of the elastic body in 3D space and X ∈ �0 be the
material point in the initial configuration. Let � ⊆ R

3 be the de-
formed configuration in 3D space and x = x(X ) ∈ � be the position
in the deformed configuration corresponding to the point X ∈ �0.
Similarly, many physical quantities can be considered as a function
of X , such as the density of the material ρ = ρ(X ) and the displace-
ment u(X ) = x(X ) − X .

3.1. Neo-Hookean constitutive model

We focus on the neo-Hookean model, a hyperelastic material, to
compute the elastic force. The neo-Hookean material defines the
elastic energy density in a nonlinear way:

ϕ(x) = ϕ(F ) = μ

2
(J− 2

3 Ic − 3) + κ

2
(J − 1)2, (1)

where μ and κ are the coefficients related to the material, F = ∂x
∂X

denotes the deformation gradient and J = det(F ), Ic = tr(FTF ).
With Equation (1), we can compute the first Piola-Kirchhoff stress
P = ∂ϕ

∂F and the elastic force.

3.2. Shape functions

Shape functions (or basis functions) are used to describe the geom-
etry of the space. To numerically solve a PDE problem, we need
to discretize the domain �0 into a set of subdomains �e and nodes
xi. For each element �e and its corner nodes xi, we define the shape
function asNi : �h �−→ R, which is required to satisfy the Lagrange
property: Ni(x j ) = δi j. Then we can interpolate the displacement
field in the domain from ui, the displacement of the nodes, as

u(X ) =
∑
i

Niui. (2)

Specifically, since the trilinear shape functions of hexahedral ele-
ments in 3D space are widely used, we only consider voxel grids.
In Figure 2b, a bilinear shape function in 2D space is shown, which
is similar to the trilinear function in 3D space.

Figure 2: In 2D space, every single coarse element consists of 2 ×
2 fine elements. As shown in (a), four corner points are the DoFs of
coarse grids and all nine points are the DoFs of fine grids. (b) plots
a bilinear function in domain [−1, 1]2, which is usually used as the
shape function for 2D simulation (similar with 3D simulation).

3.3. Space discretization

We divide �0 into several subdomains �e (such as hexahe-
dral areas in 3D space) with nodes xi ∈ �e. The number of
nodes in �0 is denoted as ne. Then, we can describe the elas-
tic body with x(t,X ) = �iNi(X )xi(t ) or x(t,X ) = D(t )N(X ), where
D(t ) = (x1(t ), . . . , xne (t )) ∈ R

3×ne and shape function N(X ) =
(N1(X ), . . . ,Nne (X ))

T ∈ R
ne×1.

The deformation gradient is computed as

F (t ) = ∂x

∂X
= D(t )∇N(X ), (3)

where ∇N(X ) = (∇N1(X ), . . . ,∇Nne (X ))T ∈ R
ne×3. With the de-

formation gradient, we can quickly compute the elastic energy.

3.4. Force computation

To describe the mechanic system, we define the Lagrangian by L =
T −V , where T is the total kinetic energy of the system and V is
the potential energy of the system. Then, we can get

T =
∫

�

1

2
ρẋT ẋdx =

∫
�0

1

2
ρ0ẋ

T ẋdX (4)

and

V =
∫

�0

(ρ0g
T x+ ϕ(x))dX. (5)

Here ρ = ρ(x) is the density of the material at point x in � , ρ0 =
ρ0(X ) is the density of the material at point X in �0, ẋ = dx

dt is the
velocity of point x, and g is the gravitational acceleration.

With the Euler-Lagrange equations d
dt (

∂L
∂ ẋ j

) = ∂L
∂x j

, we can get the

equation:

∫
�0

ρ0(NN
T )

⊗
I3
d2x

dt2
dX = −

∫
�0

(ρ0N
⊗

g+ ∂ϕ(x)

∂x
)dX, (6)

where
⊗

denotes the Kronecker product, I3 is the 3 × 3 identity
matrix, and x(t ) = vec(D(t )) (the vectorization of D(t )) indicates
the list of all DoFs.

3.5. Time integration

Using the backward Euler time integration, we can solve the follow-
ing optimization problem to get the (i+ 1)th time step states:

min
x

g(x) = 1

2
(x− y)TM(x− y) + 	t2V (x), (7)

where M = ∫
�0

ρ0(NNT )
⊗

I3dX , y = xi + 	tvi is constant, and
	t is the time step. Usually, we solve the problem with Newton-
Rapson method with the following iteration scheme:

x(n+1) = x(n) − [∇2g(x(n) )]−1∇g(x(n) ). (8)
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3.6. Shape function based coarsening

For shape function-based numerical coarsening in [CBW*18], they
use matrix-value functions instead of scalar functions as the shape
functions for the coarse grids:

x(X ) =
∑
j

Nh
j (X )x

h
j in fine grids,

x(X ) =
∑
i

NH
i (X )x

H
i in coarse grids,

NH
i =

∑
j

ni jN
h
j ,

x(X ) =
∑
j

[Nh
j (

∑
i

ni jx
H
i )] in coarse grids.

(9)

Here Nh
j ∈ R and NH

i ∈ R
3×3 denote the shape functions of the fine

and coarse grids, respectively. ni j ∈ R
3×3 are the coefficients that

need to be computed. The last equation of Equation (9) is derived
from the others. By converting NH

i from scalar to matrix, they can
achieve more DoFs and represent larger deformation space. From
the first and the last equations in (9), the matrix-value shape func-
tions can be regarded as h : xH ∈ R

24 �−→ xh ∈ R
81 being the linear

mapping from coarse nodes to fine nodes.

4. Method

As introduced in Section 3.6, the shape function works as a bridge
to connect the coarse and fine mesh for deformation mapping in nu-
merical coarsening. In [CBW*18], they modify the shape functions
of coarse meshes from scalars to matrices with increased DoFs; but,
the mapping h is still defined as linear, which restricts their gener-
alization capability to be applied to nonlinear materials with large
deformation. Our key idea is to further increase the DoFs of h by
adopting a nonlinear mapping to compute xh from xH instead of a
linear one. Specifically, we use a learning-based neural network as
shape functions for its generalization capability.

4.1. Basic neural shape functions

In the beginning, we tried to train an end-to-end neural representa-
tion of shape functions h : xH ∈ R

24 �−→ xh ∈ R
81.

We use a three-layer multilayer perceptron (MLP) to learn the
neural representation of the mapping h. The input variables of the
neural network include the positions of nodes xH ∈ R

24 of a coarse
element and Young’s modulus (θ ∈ R

8) of eight fine elements. We
fix the input Poisson’s ratio as it usually changes only in a small
range in simulations. The network output is the positions of fine
nodes xh ∈ R

81. Thenwe can get the deformation x(X ) with the node
positions and the shape functions of fine grids using (2) (we use the
traditional trilinear function as the shape function of fine grids).

We notice that we can reduce the dimension of network output as
we can expect the coarse nodes and their corresponding fine nodes
to have the same spatial positions:

Kh(xH1 , . . . , xH8 ) = xH . (10)

HereK is the selectionmatrix (i.e.,Kxh = xH ). Therefore, we ignore
these DoFs when we compute the h(xH ) or just replace the mapping
h with h′ = Kh : R

24 �−→ R
81−24=57.

4.2. Training data generation

The neural network is trained in a supervised manner. We gener-
ate training data by solving FEM simulations to get the data pair
((xH , θ ), xh). We use the approach of [KMOD09] and solve the fol-
lowing problem:

∇ · σ (p) = 0 in �e,

σ (p) = σ0 · n, on ∂�e.
(11)

Here σ is the stress tensor, p is the displacement, and n is the normal
vector of ∂�e. We solve the problem above with different σ0 and get
the solution displacements p or position xh. Then we get xH = Kxh.
In this way, we generate the training data.

We further reduce the amount of required training data by notic-
ing that h is invariant to scaling when we scale some parameters:

h(xH , λθ ) = h(xH , θ ),

h(λxH , θ ) = λh(xH , θ ).
(12)

Here λ > 0 is a scalar. Figure 3 shows that the deformation is similar
when we scale some parameters. So we can get all the training data
from a unit-size voxel grid and only care about the material parame-
ters’ relative ratio of different elements instead of its absolute value.

For training data sampling, we randomly select material parame-
ters θ and different stress tensors (σ0 in Equation (11)) to generate
different deformation samples. Then we randomly select the param-
eters (the ratio of Young’s modulus) and apply the simulation to the
elastic object to compute the relationship between xh and xH with
different stress. Besides the six harmonic displacements (in Fig-
ure 4) computed in [KMOD09] with six selected stress tensor σ0,
we randomly sample other stress tensors with a linear combination
form of the six stress. When we select different stresses, we may
get illegal results (i.e., the inverted hexahedral element), which usu-
ally happens when the scale of external force is too large. We will
check it by computing the determinant of the deformation gradient
and exclude the illegal ones.

Figure 3: Our method is scale-invariant: (a) the deformation of a
bar under gravity; (b) a deformed bar with two times Young’s modu-
lus under two times gravity of (a); (c) a deformed bar with half size
under two times of gravity of (a), which has similar deformation
with (a).
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Figure 4: Our method adopted the six harmonic displacements
generated in [KMOD09].

4.3. Learning with geometry prior

However, directly adopting the end-to-end network suffers from a
couple of serious problems. First, the space of network parameters
is too large to get enough training data with an acceptable number
of samples. Second, some intrinsic geometry properties of shape
functions that must bemetmay fail to be captured by the plain neural
representation, which is introduced below.

4.3.1. Geometry constraints

When we translate or rotate an object, its strain or stress will not
change. Hence, all the nodes of the object will have the same rigid
transform, that is, the same translation or rotation, which means:

hj(x
H
1 + t, . . . , xH8 + t ) = hj(x

H
1 , . . . , xH8 ) + t,

hj(Rx
H
1 , . . . ,RxH8 ) = Rhj(x

H
1 , . . . , xH8 ).

(13)

Here t ∈ R
3, R ∈ SO(3) and h(xH ) = (hT1 , . . . , hT27)

T .

4.3.2. Prior knowledge in learning

To satisfy the above constraints, we adopt the following quasi-linear
formulation for the learned mapping, which is similar to the formu-
lations in [VSB17]:

hj(x
H
1 , . . . , xH8 ) =

∑
i

ki j(‖xHi − xt‖, θ )(xHi − xt ) + xt . (14)

Here xt = 1
8

∑
i x

H
i and θ is the material parameters. We learn the

function ki j(‖xHi − xt‖, θ ) which maps ‖xHi − xt‖ and θ to xh ∈ R.

With the required form above, hwill automatically be invariant to
rigid transforms, that is, translation and rotation. Thus, we take these
geometric constraints as the prior knowledge to only learn ki j with
neural networks, which means we restrict the form of the learned
neural shape functions as a quasi-linear one (Figure 5). The experi-
ment results (Table 1) show that training with this prior knowledge

Figure 5: Instead of an end-to-end neural representation of the re-
lationship between xH and xh, we train it with a quasi-linear formu-
lation.

Table 1: Experiment results of training an end-to-end neural shape function
versus training with geometry constraints embedded as prior knowledge.
With the prior knowledge we proposed, the network requires fewer neurons
while achieving better performance.

MLP form #Neurons (#layers) Loss Training time (h)

End-to-end 800(9) 5.5 ×10−2 5
End-to-end 700(8) 5.9×10−2 5
End-to-end 2500(8) 8.8×10−1 7
End-to-end 500(4) 8.3×10−1 3
Quasi-linear 900(8) 1.0×10−3 7
Quasi-linear 400(4) 1.2×10−2 4
Quasi-linear 500(4) 9.0×10−3 4

requires fewer network parameters while achieving better perfor-
mance.

4.4. Force computation and simulation scheme

Once we get the mapping h from the coarse nodes to the fine nodes
represented by our neural shape function, we can compute the force
on the coarse mesh. Similar to the fine mesh, we compute the La-
grangian with the mapping x = vec(D) = xh = h(xH ):

T =
∫

�

1

2
ρẋT ẋdx =

∫
�0

1

2
ρ0ẋ

T ẋdX

=
∫

�0

ρ0∇T h(xH )(NNT )
⊗

I3∇h(xH )ẋHdX
(15)

and

V =
∫

�0

(ρ0g
T x+ ϕ(x))dX

=
∫

�0

(ρ0g
T (NT

⊗
I3)h(x

H ) + ϕ(x))dX.

(16)
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Algorithm 1. Simulation for one step

Require: The point position (xH ) of coarse grid in step i, material
parameters (θ )

Output: The point position (xH+) of coarse grid in step i+ 1
1: while Residual of Equation (17) is larger than a given threshold

do
2: for All coarse elements (nodes xHe ) do
3: 1. Compute the corresponding fine grids xh and the

gradient ∂xh

∂xH
by the learned shape functions.

4: 2. Evaluate gravity and elastic forces with their gradient at
integral points with xh and Equation (2).

5: 3. Assemble the matrix and vector in Equation (17).
6: 4. Solve Equation (8) with Newton-Rapson method.
7: end for
8: end while

Weget themotion equation from the Euler-Lagrangian equations:

∫
�0

ρ0∇T h(xH )(NNT )
⊗

I3∇h(xH ) d
2xH

dt2
dX

= −
∫

�0

∇h(xH )(ρ0N
⊗

g+ ∂ϕ(xh)

∂xh
)dX.

(17)

Here we ignore the second-order derivatives for efficiency. The
simulation results show that the accuracy is acceptable with the ap-
proximation.

In all, the algorithm of the simulation is shown in Algorithm 1
and the simulation pipeline is shown in Figure 6.

5. Results

We have trained our neural network using Pytorch with an RTX
3060GPU and implemented the simulation using C++with an Intel
Core i9-10900K 3.7 GHz CPU on a desktop workstation computer.
We demonstrate the feasibility and effectiveness of our algorithm
with various models and experiments.

5.1. The choice of material parameters

In our experiments, we fix the size of the grids. As described in Sec-
tion 4.2, we can derive that the deformation of large grids behaves
similarly to that of small grids, which only differs by a scalar (the
external force needs to be scaled by the same constant). We fixed
Poisson’s ratio as 0.45 to evaluate the influence of different Young’s
modules. The deformation only depends on the ratio between the
fine elements and the external force. So we set Young’s modulus of
the stiffest material 50 times that of the softest material.

5.2. Network training configuration

We use a fully connected, three-layer neural network to model ki j
in (14), which is a mapping from R

n to R. We use tanh as the acti-
vation function. We generate the training data by solving (11) with
different stress tensors. As illustrated in Section 4.2, we randomly
select the stress tensor with a uniform distribution and generate 100
thousand displacement samples for about five days.

We use the 
2 norm of the difference between the estimated value
and the ground truth as the loss function. We optimize the network
using Adam with 2000 to 4000 epochs, a batch size of 128, and a
learning rate of 10−3. We trained our neural network for about 8 h
and achieved about 10−2 
2 norm error on test data.We also compare
the loss on test data of training an end-to-end neural shape func-
tion versus training with geometry constraints embedded as prior
knowledge (Table 1). From the result, we find that with the prior
knowledge we proposed, the network requires less number of neu-
rons while achieving better performance.

5.3. Simulation results

We apply the backward Euler scheme in our simulation algorithm
by solving (7) with a time step 	t = 0.03 s. To compute the space
integration, we select 8 Gaussian quadratures in each fine (or coarse)
element for fine (or coarse) grids simulation. Thus, the integration
points in fine grids are more than in coarse grids. In our experi-
ments, the integration points in fine grids are eight times those in
coarse grids.

Figure 6: Our simulation pipeline: first, we get the coarse grid nodes at ith step in (a); then, we map the coarse nodes in (a) to the fine ones
via our learned neural shape functions. In (b), we simultaneously compute the internal force of fine grids and its gradient for later simulation.
Later, we map the force and its gradient on the fine grids back to that on the coarse grids (a). Finally, we solve the mechanical equation and
get the deformed coarse nodes in (c) at (i+ 1)th step.
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Figure 7: We apply our method to simulate the bar to confirm
the feasibility with basis deformations (stretch, bending, and twist).
The first column is the deformation computed on fine grids and
the second column is the same simulation on coarse grids. Our
method shows good accuracy when applied to these basic defor-
mation modes.

Figure 8: We simulate the bending of a bar with a single material.
It shows a large error when we apply the simulation on the coarse
grids with regular trilinear shape functions.

We use material with different Young’s modulus for simula-
tion. In the simulation result figures, deeper colour means a larger
Young’s modulus. In Figure 7, we test our method on the simplest
two-material bar model with basic actions, respectively. In Figure 8,
we simulate bar bend on coarse grids with regular trilinear shape
functions and compare it with our method. It shows that our method
can simulate more accurately. To show the generalization capability
of our method, we then test the method on hand and Eiffel tower
models whose parameters vary in space (Figure 9). We also exam-
ine large models in Figure 9 and Figure 10. The numerical results
are shown in Table 3.

Table 2: Time breakdown of hand (Figure 9) simulation of different resolu-
tions for different solvers. The time in the table is counted for one simulation
step.

Assembly time (s) Solving time (s)

Grid # DoFs w/o MLP with MLP Eigen Pardiso

Fine 1.0×105 40 - 2409 10
Coarse 1.5×104 7.3 10.5 25.7 0.8
Fine 2.9×105 81.8 - 2×105 42.8
Coarse 4.2×104 31.8 40.1 402 2.8

5.4. Timing

We always expect to accelerate the simulation when we use numer-
ical coarsening. We simulate different models and test the time con-
sumed.We solve our simulation with a Newton-Rapson solver using
the Cholesky factorization from the Eigen library. The speed-up of
numerical coarsening compared to fine meshes is different for dif-
ferent models. For small models, such as the bar with 432 fine ele-
ments, the coarse grids perform 10 times faster than fine grids. For
large models, such as the hand with 30K fine elements, the coarse
grids perform 50 times faster than fine grids. Since the most time is
spent solving the linear system, the speed of our method is almost
the same as [CBW*18].

We also test the Pardiso solver. As shown in Table 2, the speed-
up mostly comes from reducing the DoFs. Besides, the numerical
coarsening reduces the iteration steps. With the MLP, the assembly
timewill increase, but it is slight.Whenwe use the Pardiso solver in-
stead of the Eigen, the speedup factor decreases as the solving time
of the Pardiso is less than the Eigen. The complexity of matrix as-
sembly isO(N ), and the complexity of solving linear equations with
the Eigen or the Pardiso is larger than O(N ). When we simulate a
larger model, the time for solving dominates the overall time, and
the speedup factor becomes larger.

5.5. Comparison with [CBW*18]

They use linear mapping to compute the fine grid nodes with xH .
Instead, we use a quasi-linear function to represent the mapping,
which has more DoFs and can approximate nonlinear deformation
better. Besides, we can easily apply numerical coarsening to differ-
ent models with the learned neural shape functions. For example,
when we apply the method to the dynamic simulation of a bar (Fig-
ure 11), despite the same error at the first five steps of the simula-
tion, our method outperforms [CBW*18] with a smaller error. More
comparisons are shown in Figure 12 and Table 3.

6. Conclusion

We propose using nonlinear shape functions represented as neural
networks in numerical coarsening to achieve generalization capabil-
ity as well as good accuracy. We use MLP to represent the mapping
from coarse to fine grid nodes to achieve more DoFs and general-
ization capability to nonlinear deformation. As the end-to-end rep-
resentation of the mapping suffers from some limitations, we then

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 9: We apply our scheme to the models composed of materials with different Young’s modulus (as shown in the colour bar encoding
the values of the Young modules). Our method shows good generalization capability to different Young’s moduli.
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Figure 10: We also tested our method on bridge, fish, and bunny models. We can see that the results of (c) look much similar to those of (b),
demonstrating our method’s good accuracy when applied to these complex models without other preprocessing steps.

Figure 11: We simulate the bend of a bar (in Figure 7) and compare
our mean error of the displacement with [CBW*18]. Our method
performs with less error during the dynamic deformation.

embed the geometry constraints as the prior knowledge in train-
ing and formulate the learned neural shape function as a quasi-
linear one.

There are some limitations of our work. First, our method is not
suitable for extreme simulation configurations, such as where the

Figure 12: We simulate the bend of a bridge. The red grid is the
exact solution; the green grid is the method of [CBW*18], and the
blue grid is our method. Our method shows better accuracy.

difference in the material parameters between elements is too large
or the deformation is extremely nonlinear. Actually, the ability of the
learned mapping to capture different physical behaviours depends
on the training data and the complexity of the neural network. Sec-
ond, we do not apply our method to a multi-level coarsening. If we
want to formulate a multi-level coarsening scheme, we have to re-
train the network. Finally, we formulate the learned mapping as a
quasi-linear function to capture the geometry constraints. However,
there are some other intrinsic constraints of shape functions in prac-
tice not considered as the prior knowledge in training, for example,
some variables of the mapping are actually symmetric, which is an
interesting topic for future investigation.
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Table 3: We apply our scheme to several models and compare our results with [CBW*18]. We simulate these models for fixed numbers of frames and list the
largest mean error of the deformation during the simulation in the table. Our learning-based coarsening method achieves higher accuracy than [CBW*18]
with the same level of speed without the need to do case-by-case preprocessing.

Error Time of one frame simulation(s)

Model # �h #node in �h #node in �H ours [CBW*18] ours [CBW*18] speedup fine grids

Bird (Figure 1) 7944 10783 1750 3.0×10−3 3.4×10−3 3.9 2.9 16× 62.2
Bar (stretch) (Figure 7) 432 637 112 3.0×10−3 2.1×10−2 0.16 0.11 10× 1.7
Bar (bending) (Figure 7) 432 637 112 9.0×10−3 1.5×10−2

Bar (twist) (Figure 7) 432 637 112 2.4×10−3 2.5×10−2

Long bar (Figure 9) 320 525 99 5.2×10−3 6.3×10−3 0.98 0.09 5× 0.48
Eiffel (Figure 9) 1088 1761 324 7.6×10−4 1.5×10−3 0.4 0.3 4× 1.6
Hand (Figure 9) 29072 34685 5104 1.2×10−4 1.8×10−4 27.1 23.6 72× 1952.1
Bridge (Figure 10) 704 1215 230 2.0×10−3 5.8×10−3 0.14 0.1 8× 1.11
Fish (Figure 10) 10184 14389 2404 1.9×10−3 2.1×10−3 4.76 3.49 9× 43.59
Bunny (Figure 10) 8232 10135 1532 1.6×10−3 1.7×10−3 3.55 2.87 38× 135.51
Elephant (Figure 9) 89104 100609 14103 2.9×10−3 3.4×10−3 211 185 100× 2×105

Dinosaur (Figure 9) 10656 13569 2102 7.5×10−2 9.1×10−2 2.71 2.43 16× 38
Hanger (Figure 9) 3528 5217 901 6.8×10−2 8.7×10−2 0.81 0.75 6× 4.9
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