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Abstract
We devise a technique designed to remove the texturing artefacts that are typical of 3D models representing real-world objects,
acquired by photogrammetric techniques. Our technique leverages the recent advancements in inpainting of natural colour
images, adapting them to the specific context. A neural network, modified and trained for our purposes, replaces the texture
areas containing the defects, substituting them with new plausible patches of texels, reconstructed from the surrounding surface
texture. We train and apply the network model on locally reparametrized texture patches, so to provide an input that simplifies the
learning process, because it avoids any texture seams, unused texture areas, background, depth jumps and so on.We automatically
extract appropriate training data from real-world datasets. We show two applications of the resulting method: one, as a fully
automatic tool, addressing all problems that can be detected by analysing the UV-map of the input model; and another, as an
interactive semi-automatic tool, presented to the user as a 3D ‘fixing’brush that has the effect of removing artefacts from any zone
the users paints on. We demonstrate our method on a variety of real-world inputs and provide a reference usable implementation.

Keywords: rendering, texture mapping, modelling, surface parameterization, texture synthesis
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1. Introduction

Photogrammetry is now a primary tool for producing high-quality,
realistic 3D digital models, in the form of textured meshes.
This technology has been enabled by a plethora of open-source
[GGC*21, MMPM16] and commercial [rs22, Agi22] 3D photo-
reconstruction software tools that are able to produce 3D models
of high-visual quality from a combination of high-resolution geom-
etry and extremely high-resolution texture data encoding material
and colour information at a micro-scale level. This finds applica-
tions in a broad variety of fields such as movies asset production,
videogames, cultural heritage, virtual reality and others.

Although models reconstructed from photographic data are con-
stantly improving in quality, they also present recurring modelling
artefacts [MPCT20]. A particularly frequent case is local texturing
defects, i.e. problems in the texture image associated with the 3D
mesh, which originate from a variety of issues and challenges in the
acquisition process (see Section 3.2).

In this paper, we present a technique to correct these texture in-
consistencies a posteriori, i.e. after the model acquisition has been

completed. By working on the reconstructed models, our method
is oblivious to the acquisition process and can be used to counter a
wide range of potential problems with texture images, regardless of
their origin. The basic idea is that the defective sub-areas of the tex-
ture image are discarded and inpainted anew by seamlessly filling
the gap, guided by the surrounding context. While the inpainted re-
gions may drift from the real-world object represented by the model
(which we do not want to assume to be still available), we want it
to look plausible and realistic. Inpainting methods are attractive be-
cause the vast majority of the texture data is valid and contains reli-
able information that can be used to interpolate the texture content
and cover localized artefacts.

We are inspired in this by the recent advances of modern image
inpainting frameworks, where a similar operation is successfully
performed on natural images (photographs) by leveraging Machine
Learning tools. However, it is not trivial to extend these results to
the case of diffuse colour textures of 3D models. At a first glance,
this can be attempted using either of two strategies.

Inpainting in texture space. A simple way is to feed the tex-
ture image directly to the same inpainting procedure used for
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Figure 1: Example of our inpainting operation performed in screen space, over a 3D rendering, introducing artefacts. See also attached video
(timestamp: 6 min 38 s).

photographs. However, this does not work reliably because of the
semantics of texture image, which, in the context of photogrammet-
ric models, invariably comes in the form of an atlas of texture islands
(or charts), separated by gaps of unused space. Being unaware of the
atlas discontinuities and texture distortions, any inpainting method
applied to the global texture would produce visible seam artefacts.
This is a critical issue, because photogrammetric models present
heavily fragmented UV-maps [MPCT20], with intricate and dense
texture seams.

Inpainting in image space. Another alternative that comes tomind
is to apply image inpainting to the renderings, covering the artefacts
that originate from the defective texture. The inpainted regions can
then be re-baked into the texture by re-projection. This avoids the
problem with texture seams and textures gaps, and is attractive be-
cause the texture inpainting procedure is fed synthetic images that
are similar to the natural images that they are intended (and trained)
for. Unfortunately, the inpainting method is unaware of the depth-
jumps, and of the distinction between foreground and background,
which needlessly complicates the semantics of the signal to be re-
constructed. For example, the surrounding regions that happen to be
close in image space can and will bleed into the inpainting area (see
Figure 1). Moreover, screen-space inpainting is not robust to per-
spective distortion (see Figure 2). These problems are particularly
severe in areas with high surface curvature or non-trivial topologies,
where view projections are bound to come with occlusions.

1.1. Our solution

Our solution is to apply inpainting to an ad hoc parametric domain
that is defined on-the-fly for each inpainting operation. Given a re-
gion of the meshM that presents a texturing defect, we create a local
‘auxiliary’ parametrization of the affected faces and a region around
them.We then synthesize a disposable texture for this region, inpaint
over the defected region and transfer inpainted texels back into the
original texture (possibly, across seams).

Figure 2: Comparison of screen space and our local texture-space
inpainting using multiple views. Changing the observer’s position
reveals stretching artefacts near the object silhouette induced by
the narrow viewing angle and the resulting perspective distortion
affecting the projection of the inpainted screen-space pixels over
the object surface.

This approach avoids all pitfalls from either the strategies above
(depth-jumps, background, gaps in texture space, perspective
distortions, texture seams); we can reach much lower texture distor-
tions thanks to the localized nature of the parametrization. In short,
this strategy presents to the inpainting algorithm a texture image
with almost no distortion (either of the UV-map or view projection):
every part of the texture to be inpainted, and its context that is used
to guide the inpainting, appears as if seen orthogonally to the sur-
face everywhere, which improves the learnability of the inpainting
process.

1.2. Contributions

We introduce a robust specialized method to apply texture inpaint-
ing operations to 3D models.

Frameworks. We identify, implement and test two distinct frame-
works for using our new inpainting in practice (in Section 4) that can
be used in isolation or in conjunction. One, which is fully automatic,
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targets texturing defects stemming from shortcomings inherited by
original UV-map, after a new better UV-map is available; the other
framework is interactive, and allows a user to target any texturing
defects by painting over them with a ‘fixing’ brush.

Both frameworks are modular with respect to the specific in-
painting method employed, and can seamlessly integrate and ben-
efit from future advancements in the field. The idea is to improve
the performance and applicability of any existing image- or texture-
completion methods by running (and possibly training) them on a
domain more friendly to inpainting, given by a novel specialized
auxiliary parametrization, and by automatizing their application.

Specialized local parametrization. Given an area of the mesh to
be inpainted, we need to produce a parametrization over the plane
for it and its surrounding region, minimizing the mapping distor-
tion; to reduce the distortion, we allow for carefully placed cuts
to be introduced. This task is only partly similar to the extremely
well-studied problem of producing an almost-isometric (global)
parametrization for a given mesh. The differences in objectives
are discussed in Section 5.1, and our construction procedure is de-
scribed in Section 5.2.

Training data. The above process is also the basis for producing a
dataset of images of a new category, which we use to train a network
specialized for our task. As observed, this dataset is not the same
as either natural images or textures, in spite of originating entirely
from natural images. It can be described as pictures of the surface of
natural objects transformed so that the image is (almost) orthogonal
to the surface in every position. We describe a procedure to produce
the training data in Section 6.2, andmake the resulting data available
for future investigations.

Automatic identification of UV-mapping induced defects. We
present an algorithm in Section 7, to identify the areas requiring
inpainting, considerably reducing the workload required by users to
benefit from texture inpainting techniques.

To facilitate reproducibility and adoption of our work, we provide
a reference implementation, completed with the inpainting network,
the training data, the interactive texture inpainting system and the
automatic command-line inpainting tool.

2. Related work

Our technique has predecessors in automatic or semi-automatic sys-
tems designed for alleviating texture defects of models, often ex-
plicitly targeting photogrammetric models. Some, like Huang et al.
[HDGN17], work on the original pictures used for the reconstruc-
tion, which, in contrast, we do not need to assume to be available;
a few methods [TSPD16] apply inpainting to in image space, while
others [FDGM18, SKCA20] (including ones integrated in commer-
cial products [Ado22]) apply inpainting in texture space, incurring
in the respective limitations we outlined in Section 1.

Several steps of our technique require facing challenges that have
been studied in isolation.

2.1. Parametrizing photogrammetric models

Techniques for reconstructing a 3D model from a set of digital
photos, based on Photogrammetry or Structure-From-Motion ap-
proaches [HZ04, SCD*06, RSN*14] are commonly used to create
3D textured assets for many different areas such as cultural heritage
(for documentation, analysis and preservation), the entertainment
industry, digital art, personal leisure and many others. These mod-
els have often very complex UV-map layouts and many issues as
documented, for example in Maggiordomo et al. [MPCT20]; while
some recent approaches try improving these assets working on the
parametrization [MCT21], there remains the problem that the con-
tent of the photo-reconstructed object often presents small artefacts
that need to be corrected.

2.2. Image Inpainting

Image inpainting [BSCB00] refers to the process of reconstructing
specific portions of an image while maintaining consistency. In-
painting is a low-level image processing task with many different
applications, such as photo editing, object removal and restoration
of corrupted parts. There is a vast literature on this subject. Tra-
ditional approaches use either diffusion-based image-synthesis ap-
proaches [BSCB00, BBC*01] or reuse portion/patches of the cur-
rent image [EF01, BSFG09]. Some methods work on the struc-
ture of the scene to get some kind of guidance by manually
specified points of interest [DCOY03], or by perspective distor-
tion [PSK06]. Other attempts to automatically recover these struc-
tures by exploiting tensor voting techniques [JT03], searching in
tile space [KKDK12] or by recovering perspective planar surfaces
[HKAK14]. Older patch-based approaches shared the common lim-
itation that the synthesized portion can come only from the existing
input image. A first method that exploited a very large collection of
general images was proposed in Hays and Efros [HE07] and others
followed the same concept on more specialized problems like faces
[MPK09, DDZ11].

In the last 10 years, inpainting increasingly relies on Convolu-
tional Neural Networks (CNNs) [XXC12, KSSH14, RXYS15]. The
first attempts suffered from limitations on image resolution and size
of missing parts; fully convolutional models such as Context En-
coders [PKD*16] and Generative Adversarial Networks [ISSI17]
eased these limitations.

Recent approaches based on Deep Learning [GYH21, HZW*21]
have been proven to work well with images drawn from specific
classes (e.g. faces, cars) for which approximating the data distri-
bution is somewhat easier, but the inpainting of generic images re-
mains difficult. A recent review on this subject can provide further
information [EAAMA20].

2.3. Geometric deep learning and textured meshes

Geometric deep learning is a rapidly evolving field, and recently
novel network architectures have been proposed to operate on 3D
models enriched with texture data. TextureNet [HZY*19] intro-
duces a 3D convolution operator based on local surface patches
[BMRB16, MBBV15] that leverages a 4-RoSy direction field
[JTPSH15, HZN*18] to parametrize a local neighbourhood around
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each vertex and extract consistent feature descriptors on 3D surfaces
of arbitrary topology. PFCNN [YLP*20] introduces a similar con-
volution operator that operates on aligned tangent spaces to match
the behaviour of 2D convolution over images. These methods apply
convolutions to feature maps resampled to local grids, but still out-
put vertex descriptors in the end; conversely, we need to synthesize
high-resolution signals, which remains an interesting future direc-
tion and generalization of such patch-based approaches.

TM-Net [GWY*21] is a generative model that has been recently
proposed to synthesize 3D textured objects. The model produces
objects assembled from ‘parts’ modeled as deformed squares tes-
sellated at low resolution, with the texture data synthesized by a
separate network and to a fixed UV layout. Contrary to this, we need
to be able to handle arbitrary geometry and UV atlas layouts.

2.4. Local parametrization

Constructing a global parametrization for a given surface is a long-
standing open problem [FH05], in spite of recent progress such as,
among others, [LKK*18, ZLG*18, PTH*17, LYNF18]. In a sense,
the problem is insurmountable because an ideal parametrization that
is almost isometric and free from seams does not exist for a generic
surface, and automatic construction techniques can only choose be-
tween different trade-offs, primarily between cuts (loss of continu-
ity) and isometric distortions (loss of isometry). Where appropriate,
this awareness has led to the development of solutions that, instead
of seeking a static parametrization, construct, on the fly, a new lo-
cal parametrization over a small surface area surrounding the region
of interest. The limited size of the surface lowers the total amount
of curvature that has to be flattened, reducing the need for cuts or
distortions. This approach has been followed successfully for tasks
such as surface analysis [PCCS11], 3D model inspection [PTW13],
texturing implicit surfaces [SGW06] and many others. Our work
also falls in this category, and we employ this approach for inpaint-
ing over texturing defects. To this end, we adapt our parametrization
construction algorithm to the requirements of this particular sce-
nario, which are detailed in Section 5.1.

3. Overview

Our method works on a photo-reconstructed 3D triangular high-
resolution irregular mesh M, enriched with a texture image T con-
nected toM via a UV-mapU (i.e. a per-vertex assignment of texture
coordinates). The input texture T is obtained by photographs shot
at the real object as part of the acquisition process, and presents lo-
calized defects of various nature.

3.1. Texture inpainting operations

We correct the texture with a succession of individual texture in-
painting operations, each targeting individual defective areas.

An inpainting operation acts on a subset of the mesh, i.e. it takes
as an additional input a tagging of the mesh faces whose texture
content is to be discarded and replaced by new content automati-
cally generated according to the surrounding context. We perform
this operation by first parameterizing the affected area and its neigh-
bourhood into a square region S (Section 5) that serves as the domain
of the inpainting operation (Section 6); specifically, we resample the

texture T over S (Section 6.1), perform the inpainting operation on
the resulting image and resample the newly created texels over T .

3.2. Sources of texture defects

We need to distinguish between two classes of sources of texture de-
fects.

Defects stemming from the parametrization. A class of textur-
ing defects originates from issues in the UV-mapU , resulting in the
inadequate distribution of texels of T over M. Such issues include
excessive angle or area distortions, and overlaps, either caused by
flipped triangles, or (self-)overlaps of texture charts; all these cases
are common in photogrammetricmodels [MPCT20], reporting them
in 83% of the datasets. This class also includes the case of minor
colour discontinuities appearing at texture seams, e.g. due to pho-
tograph misalignments. Another instance is resolution jumps in the
texture domain, which are frequent because the resolution of a tex-
tured area is often linked to the pixel density of the source photo-
graph, which depends on factors such as shooting distance or cam-
era resolution.

Defects stored as incorrect colours in T . This class includes de-
fects originating from all other reconstruction errors, including un-
even lighting between photos, reflections and other view-dependent
lighting effects which end up stored in the diffuse map (for example,
by failures of de-shading algorithms), wrong photo re-projection
due to camera registration errors, unaccounted photographic radial
distortions, inaccuracies in shape reconstructions etc. Re-projection
errors are particularly disruptive in areas where the texture source
switches from one photograph to another (not necessarily in cor-
respondence with a UV seam), and appear as either discontinuity
artefacts or ghosting (when photographs are blended). Pixels from
source photos can also be re-projected over partsM which are very
far from the correct one, due to misaligned depth jumps.

Our texture inpainting operations can be used on both classes of
defects, but within different frameworks (see next section).

4. Frameworks of use

We propose two different frameworks to issue the sequence of tex-
ture inpainting operations (Section 4): a fully automatic one, target-
ing defects stemming from the parametrization, and an interactive
one in which defects are corrected on demand, using an interactive
3D brush tool. The two frameworks can be used individually or in
cascade. We discuss other potential frameworks of use in the con-
clusions.

4.1. Fully automatic pipeline

Problems stemming from the UV-map (Section 3.2) cannot be
fixed by working on T alone because any reconstructed signal still
cannot be represented using the same UV-mapU . It is necessary to
first produce a better UV-mapUnew for M, either from scratch, dis-
carding and substituting the originalU [LZX*08], or incrementally,
by modifyingU locally [MCT21] (step 1, in Figure 3). The creation
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Figure 3: The fully automatic pipeline, showing the context of use of our texture inpainting technique (step 4). See text.

Figure 4: An example of our inpainting operation issued by an interactive stroke of a ‘fixing’ brush performed over a photogrammetric 3D
model M of a lion (2), originally featuring a texture defect (1). The system constructs a local parametrization P for a region surrounding the
stroke, fills its domain with texture data from the model texture T , performs an inpainting operation on the region affected by the brush (big
arrow) and transfers the result back into the texture image, fixing the texture defect (3).

of Unew is completely orthogonal to our method, and any existing
technique can be adopted. In our experiments, we use Jiang et al.
[JSP17].

Given the artefact-free Unew , we re-sample the original texture
image T into a new texture Tnew (step 2 in Figure 3). In doing so, the
original shortcomings of U are transferred into the texels of Tnew ,
where they can be fixed.

By analysing and comparingU andUnew , we automatically mark
all faces of M that presented sampling problems in U , but are no
longer an issue inUnew (step 3 in Figure 3). We detail our algorithm
to do so in Section 7. The marked faces are then divided into con-
nected components, and inpainting operations are issued on each
component separately, in cascade (step 4 in Figure 3).

4.2. Interactive mode

In the interactive framework, we apply the inpainting method on de-
mand, allowing a user to simply paint the areas of M perceived as
defective with a ‘fixing’ brush, similar to the ones used commonly
in 3D painting or sculpting interfaces (see Figure 4). From the user’s
perspective, each stroke of the brush triggers an inpainting operation
over the covered triangles, and the results are shown back immedi-
ately, at the end of the stroke, by updating the texture.

The interactive mode sidesteps the need to automatically identify
defects, and the difficulty of even defining what constitutes a defect
in T (which is not trivial, in absence of a ground truth). On the other
hand, it requires inpainting operations to be performed in interactive
times, a feature that our method provides.
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Figure 5: Our auxiliary parametrization P mapping a planar re-
gion B, which encapsulates a square S, onto the surface M (left). A
central sub-region A ⊂ B is mapped into P (A) = M′, correspond-
ing to the region to be inpainted (red), while the rest of B \ A is
mapped into an area of the mesh that will provide the context for
the inpainting operation (green).

5. Auxiliary parametrization

Given a cluster of connected faces M′ ⊂ M that needs to be in-
painted, our first task is to flatten it and its surrounding region
into a squared 2D area S, which will serve as the input domain
for the inpaint operation. We do so by building a local ‘auxiliary’
parametrization function P : B ⊂ R

2 → R
3 that maps a region of

the plane B into some subset ofM encapsulatingM′ (see Figure 5).
Area A ⊂ B must be mapped into P (A) = M′, and it will be filled
by the inpainting procedure (red in the Figure 5); the rest of B \ A
must be mapped into a surrounding mesh areaM′, and provides the
context for the inpainting procedure (green in Figure 5).

Note that in our notation, the parametrization function goes from
the manifold to the plane, rather than the inverse (which is more
customary), because in our case, P can be non-injective and there-
fore non-invertible.

The problem of constructing this parametrization (that is, deter-
mining A, B, the function P , and its image on the mesh P (B)) is
related to the extensively studied field of surface parametrization,
but there are differences in our objectives, as follows.

5.1. Objectives for the auxiliary parametrization

Low distortions. Like in most other texture-mapping related con-
texts, we want to minimize isometric distortions, that is, we want P
to be as length preserving as possible. Our tolerance for distortions
is particularly low in the A domain, where they would have the ef-
fect to deform the inpainted image while transferring it back to the
final texture. Distortions in the B \ A part of the domain are more
tolerable, but must also be kept low, as they may hinder the learn-
ing process during both training and the application of the inpaint-
ing by disrupting the context. One motivation for using a localized
parametrization (in place of the provided parametrization Unew) is
that a smaller mesh can be parametrized with lower distortions.

Cuts scarcity. We require the region A to be free from texture
seams, that is, to be mapped with continuity over P (A) = M′ (the
mesh region to inpaint). On the contrary, on the rest of the domain

B \ A, we can introduce texture cuts, whenever they are needed to
lower the distortion.

Undefined boundaries. Differently from the typical parametriza-
tion scenario, we do not know beforehand which part of the mesh
P (B) ⊂ M must be parametrized. We require it to encapsulate M′,
that is, P (B) ⊃ M′ = P (A); we also need the parametric domain B
to fully encapsulate a large squared region S around A; finally, we
want A to be far from the boundaries of S, so that sufficient context
is given to the inpainting procedure. Within these requirements, we
are free to define P (B) and B in the best way to fulfil the other ob-
jectives.

Non-strict injectivity. In contrast to typical scenarios, we do not
need P to be fully injective. Instead, we tolerate that different re-
gions inside B (but not inside A) map into the same part of M. This
will cause some pictorial detail over M to be repeated inside the
context region of S. Allowing for repetitions is necessary toward
the goal of filling the entire S in the parametric domain, in cases
where M does not provide enough surface around P(A) due to ex-
treme intrinsic curvature or open boundaries. From an inpainting
perspective, pattern repetitions in the context area are preferable to
either leaving empty gaps inside S, or distorting the details more (see
Figure 6).

5.2. Construction of auxiliary parametrization

To fulfil our objectives, we adopt the following steps.

1. We construct A and parametrization PA : A → M′.
2. We initialize B and P : B → M, to A and PA, and iteratively

extend B, one triangle at a time, until a sufficiently large squared
region S around A is fully covered.

In the first phase, any existing single-patch disk parametrization
method can be employed.We opted for the local–global As Rigid As
Possible (ARAP) parametrization [LZX*08], because of its robust-
ness and performance in terms of isometric distortions. The map-
ping is not strictly guaranteed to be free from local overlaps (which
would infringe the required injectivity), but we never encountered
this issue. If need be, existing countermeasures can be applied dur-
ing the global phase of ARAP [BCE*13].

The second phase follows the spirit of the incremental approach
of Myles and Zorin [MZ12]. We initialize B as A, and at every step
(see Figure 7), we select one boundary edge over B, according to a
prioritization strategy (see below), and attempt an expansion step of
B over that edge, adding to B the parametric domain t for one new
triangle of M, and a new one vertex v to the boundary δB; the 2D
position of v is determined as the minimizer of the total isometric
energy [LZX*08] defined over t (keeping its two other vertices con-
stant). After every expansion, we evaluate up to two potentialmerge
steps of v (an operation called ‘edge retract’ in Hoppe [Hop96]) with
either the boundary vertices v′ and v′′ located two edges away from
v on the boundary, clockwise and counterclockwise; a merge oper-
ation consists in fusing together two consecutive boundary edges,
and a potential operation exists if and only if these two edges are
mapped by P into the same mesh edge (see Figure 7, right).
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Figure 6: An inpainting operation covering a highly curved region. Using a continuous auxiliary parametrization, without cuts or repetitions,
introduces severe distortions, which negatively impact the generation and transfer of inpainted texels, and result in stretching artefacts (middle
inset). By allowing cuts, repetitions and overlaps, we produce a better context for the inpainting operation (rightmost inset). Overlapping texels
are marked in the alpha mask, are shown in white in the RGB image and as black in the alpha masks.

Figure 7: An expansion step, performed over one edge of δB (in red,
left), expanding B and δB (middle), potentially followed by either
one or the other (or both, in succession), fusion step (right). See
text.

The details of this step are as follows.

Creating cuts. After a merge operation, the 2D position of the
merged vertex is redefined as the minimizer of the combined,
area-weighted, ARAP energy of all affected triangles in B. If the
minimal ARAP energy value is larger than a tolerance value (we
used 0.1), the merge operation is rejected. In this case, a seam is
created in the final parametrization. Differently from similar ap-
proaches, we do not ‘freeze’ these edges, and both can be elected
in subsequent expansion steps, thus creating texture repetitions (see
below).

Crack-less overlaps avoidance. Different from similar ap-
proaches, we do not prevent the expansion or merge steps that would
create an overlap of the patch. Instead, simply not elect for expan-
sion any edge which is already fully in the interior of B. In other

words, expansion of B is stopped after the overlap occurred. In
this way, thus creating a narrow (up to one triangle wide) over-
lapping area, instead of a narrow empty area, at the seams of B.
These overlaps will be dealt with in the subsequent patch creation
phase.

Repetitions. We also allow expansions over triangles that are al-
ready represented inside B, resulting in potential repetitions, in S,
of the textures of the triangles of M visited multiple times; while
not ideal, repetitions are preferable to empty regions. For exam-
ple, when unfolding the side area of a thin cylinder, B can wrap
around M multiple times. As another example, when a merge op-
eration is rejected (due to excessive distortions), both copies of the
same mesh edge in parameter space can still be expanded in sub-
sequent steps, repeating the triangle on the other side of the edge
anew.

Definition and update of S. After the initialization phase, we set S
as the square having four times the area of that Axis Aligned Bound-
ing Box (AABB) of A, or its largest dimension (whichever is larger).
After every step, we recentre S into the centre of the AABB of B.

Edge prioritization strategy. At every step, we pick for expansion
the edge in δB that is currently the farthest from the boundary of
the rectangle S, so to encourage a uniform expansion of B over all
S; more precisely, we score each vertex along δB with its distance
from the nearest of the four sides of S, identify the highest scoring
vertex vmax, and pick the edge on either side of vmax (we choose the
side connecting vmax with the highest-scoring vertex).

Stopping criteria. We never pick one edge for expansion that is
fully outside S, or already fully in the interior of B. When no edge
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Figure 8: The alpha channel of the texture patch is zeroed (black
pixels, right) to annotate the discontinuities near the border edges
of overlapping triangles.

in δB is eligible, we stop the loop. At that point, the entire surface
of S will be covered at least once.

6. Texture inpainting network

The next step is to inpaint the auxiliary texture, that is, to automati-
cally generate new texel values to fill in the texels in the area marked
as ‘defective’, according to the context around that area.

We employ a close adaptation of a recently proposed Deep Con-
volutional inpainting network [LRS*18], although any othermethod
can be plugged into our framework. This model uses an encoder–
decoder architecture with skip-connections analogously to UNet
[RPB15], and partial convolutions [LSW*18] to improve perfor-
mance with masked image inputs. The network takes as input an
image and a binary mask denoting valid and invalid pixels, and out-
puts a reconstructed RGB image.

We leave the network architecture and reconstruction loss mostly
unaltered from previous art, but perform training on a dataset created
specifically for our task. We implemented the model in PyTorch.

6.1. Texture re-resampling

Once we produce the auxiliary parametrization, we resample the
original texture into S, and generate the binary mask by marking all
pixels inside A.

We perform this task with a GPU-assisted rendering over S into a
texture patch. The original texture is accessed with a standard bilin-
early interpolated access to the original texture. The mask is drawn
by rendering all the marked triangles in the patch.

As discussed, small areas of S can feature overlapping triangles
(in correspondence with parametrization cuts), meaning that this
rendering will present pixel overdraws (we render the triangles in
inverse order of expansion, and disable depth-testing to ensure the
last drawn textured triangle overwrites the others), whichwill poten-
tially generate artificial colour discontinuities. We generate an extra
binary alpha channel to annotate such discontinuities, by drawing
the visible edges of the overlapping triangles (Figure 8). The ad-
ditional 1-bit channel is then fed to the network, together with the
RGB channels; this is intended as a way to ‘inform’ it of the artefact
nature of the colour discontinuity.

6.2. Training

One of the biggest drawbacks of data-driven approaches, and deep
learning in particular, is the requirement of large amounts of data
to drive the training process. Prior knowledge about the data itself
can significantly affect the performance of neural networks, both in
terms of network architecture, and what kind of data the network is
exposed to during training.

Therefore, we choose to train the inpainting network using a task-
specific dataset, that is, texture patches created from scanned ob-
jects, instead of using general-purpose datasets of natural images
that are already available. This is motivated by the peculiarity of our
inputs which, as discussed, differ significantly from generic pho-
tographs. Since texture patches lack features such as perspective
distortion and depth jumps, the training process can be expected to
require less data, and to converge more quickly, for the same quality.
For the training, we generate a collection of around 50,000 patches
sampled from a public benchmark of textured 3D real-world models
[MPCT20] (100 patches from each model). We create training and
validation sets with a random 85–15% split.

Patch extraction. Given a textured model, we extract a number of
patches by simulating strokes over the mesh and applying the aux-
iliary parametrization construction (Section 5.2), followed by the
synthesis of the mask and the RGBA image (Section 6.1)

Training. The network is trained with batches of 24 samples at
256 × 256 pixels. We use 340 epochs of 40k images each, and fine-
tune for 60 more epochs. Because texture patches contain not only
RGB data, but also an additional channel of binary alpha values
marking colour discontinuities induced by the overdraw, we alter
the first layer of the inpainting network to optionally accept four-
channel inputs. The output is still an RGB image and the reconstruc-
tion loss used to train the model simply ignores the extra input chan-
nel. The training was carried out on an NVIDIA RTX 3060 GPU
with 12 GBs of VRAM; loss values and validation performance are
reported in Figure 16, bottom.

7. Automatic UV-map defect identification

In our automatic framework (Section 4.1), triangles in M that re-
quire an inpainting process are identified by comparing the original
UV-map U , where the original texture image is defined, with the
new UV-mapUnew , which is provided to the system and used to re-
sample the final texture.

The rationale is that Unew is assumed to be constructed to min-
imize isometric distortions with the 3D mesh M, but balances this
objective with a number of other requirements (such as sparsity of
cuts, or different texture resolution for different parts of the mesh,
etc). While Unew defines the requested distribution of texels on M,
U defines the actual availability of texels.

7.1. Per triangle labelling

First, we analyse each triangle t of M and determine if that trian-
gle requires inpainting, that is, if its image in T fails to provide an
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adequate source of texels for t. This is the case if any of the three
problems below is detected.

Excessive distortions. Let u0 and u1 be 2D triangles that are the
images of t in the two UV-mapsU ,Unew . The final texel re-sampling
will consist in sampling a regular texel grid over u1 and, for each
sample, copy the (interpolated) colour value from the position in u0
at the same barycentric coordinates. We employ the notions, well
understood in the context of surface parametrization, to quantify the
distortions of this mapping [FH05] (one difference being that our
mapping is between 2D triangles). This analysis determines if the
re-sampling will result in oversampling or undersampling, in any
direction. Specifically, let F denote the linear map from u1 to u0 and
JF its Jacobian, that is

JF = [a0|b0][a1|b1]−1 (1)

with a0, b0 being 2D column vectors denoting two arbitrarily chosen
2D edge-vectors in u0, and a1, b1 being the corresponding ones in u1;
let σ0 and σ1 the singular-values extracted from the Singular Value
Decomposition of JF (σ0 ≤ σ1) If σ0 is larger than a given thresh-
old, we mark the triangle as defective. As a default value for the
threshold, we use 1.2, which corresponds to the choice to mark all
and only the triangles region that will undergo an over-sampling of
20% in any one direction. If σ0,1 < 1, this denotes a situation where
the original texture is undersampled to produce the final texture, and
requires no intervention (because we assume that the sampling rate
determined byUnew is the desired one).

Overlaps. We mark the triangles of M whenever u0 overlaps with
the image of any other triangle in U . This situation occurs when
U is non-injective, unavoidably leading to texture artefacts when
the same area of the original texture is copied multiple times over
different areas of the final texture. Any detected overlap invalidates
both overlapping triangles. To speed up detection, we use a regular
grid paired with hashing as a spatial indexing structure.

Seam discontinuity. Another test we perform is to check whether
or not the colour signal stored in the original texture T happens to be
mismatching on the two sides of any texture seam ofU (in other con-
texts, such as CAD models or manually modelled game assets, this
occurrence can be assumed to be by design, as texture seams often
separate semantically different areas; in photogrammetric models,
which are our target, it evidences a likely reconstruction defect, as
discussed in Section 3.2). To detect the mismatch, we linearly sam-
ple every seam edge on both sides, collecting bi-linearly interpo-
lated samples at the two corresponding locations of T , and measure
their Euclidean (r, g, b) distance. If the difference, averaged over
the edge, is larger than a threshold (we used 0.1 in a colour intensity
scale from 0 to 1), we mark any triangle sharing one vertex with
that edge.

7.2. Clustering defective faces

Once the triangles have been individually marked, we group them
into connected components, each to be addressed by one inpaint-

Figure 9: Segmentation and clustering of defective faces.

ing operation (Figure 9). This may lead to an excessive number of
patches, with jagged and discontinuous borders. To address this is-
sue, we apply a patch border regularization using morphological op-
erators, in a dilate-erode procedure. We apply two steps of dilation
(marking any triangle sharing one vertex with an already marked
one) followed by two steps of erosion (un-marking any triangle shar-
ing one unmarked vertex).

8. Results and experiments

We empirically validate both our interactive and fully automatic
frameworks, by performing a range of experiments on real-world
data aimed at producing a qualitative (Sections 8.2, 8.3 and 8.6) and
quantitative (Section 8.4) assessment, including direct comparisons
with competing strategies.

8.1. Examples of results

Interactive inpainting sessions. Figures 10, 11, and 18 and the
attached video show examples of results of various interactive in-
painting sessions. More experiments of this kind can be conducted
using the attached implementation. The network correctly interpo-
lates textures and recovers details that are consistent with the patch
surroundings. In Figure 11, the isotropic content in the rock texture
is correctly replicated, while in Figure 10, the inpainted areas cor-
rectly capture the anisotropy of the wood grain and fibres; in both
cases, realistic looking missing detail is produced that seamlessly
blend with the surroundings.

Automatic defect correction. Figure 12 shows the results of in-
painting the automatic framework (Section 4.1), where texture de-
fects are automatically identified and corrected. The procedure is
reasonably quick, with the iterative inpainting accounting for most
of the processing time. In the reported example (400k faces), the
entire process takes around 10 min. More examples can be pro-
duced using the command-line tool in the provided implementa-
tion. While simple, our heuristic detects several visible artefacts,
which are effectively corrected by the inpainting procedure. On
occasion, the heuristic produces patches that are too large for the
neural network to inpaint effectively, producing visible artefacts
(see Figure 19).
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Figure 10: Interactive inpainting of a wooden statue. The interpolation over the artefacts correctly reproduces the wood grain.

Figure 11: Interactive inpainting of a textured rock using the
texture-space network. The network correctly reproduces the sur-
face texture and remedies artefacts. Sharp discontinuities in the sur-
face material (first row) are more difficult to treat and the network
tends to produce overly smooth transitions.

8.2. Comparative evaluation

We compare our results against two alternative strategies: inpaint-
ing performed in screen-space, and inpainting performed in texture-
space using texture synthesis.

Comparison with screen-space inpainting. For this comparison,
we trained the same network from scratch on generic photographs
taken from the Places365-Standard dataset [ZLK*18]. We used
batches of six samples at a resolution of 512 × 512 pixels, as sug-
gested in Liu et al. [LRS*18], and a learning rate of 2 · 10−4 for 140
epochs (35k images each), followed by a fine-tuning with a learning
rate of 5 · 10−5 for 30 more epochs. Overall, the process took about
10 days.

Visual results can be seen in Figure 13. Experiments evidence a
significant quality improvement in moving from screen-space in-

Figure 12: Inpainting of automatically detected defects. Top: UV-
overlaps and texture seams. Middle: visible texture seam due to the
colour discrepancy induced by adjacent texture charts with different
sampling resolutions. Bottom: UV-map distortion.

painting to texture-space inpainting, (third to fourth column). The
screen-space inpainting systematically produces visible artefacts
and is unable to correctly capture the silhouette of the 3D geometry
and its impact in the overall image lighting. As a result, the inpainted
area always looks flat and disconnected from its surroundings.
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Figure 13: Visual comparison of inpainting results in different
spaces. The framing is the same one used for screen-space inpaint-
ing.

Conversely, out inputs constructed from the auxiliary parametriza-
tions visibly improve the results both in texture richness and
smoothness of blending the inpainted patch with the surroundings.
Other insights on the differences between texture-space and screen-
space inpainting are given by the assessment of the respective train-
ing process, in Section 8.5.

An additional, inherent advantage of texture-space inpainting is
that the results are independent of the observer’s position. This is
shown in Figure 2, where a texture defect is interactively selected
for inpainting.With screen-space inpainting, switching to a different
view reveals projection artefacts induced by perspective distortion;
our method, instead, is only affected by the distortion of the under-
lying parametrization, which is usually drastically lower.

Comparison with texture synthesis. For this comparison, we use
a publicly available implementation of a State of the Art texture
synthesis technique [Opa19, Emb19, EL99, WL00], and feed it the

Figure 14: Inpainting with the texture-space network and texture
synthesis produces results of similar quality. Texels interpolated
with the neural network blend smoothly with the surrounding con-
text, while texture synthesis occasionally produces sharp material
transitions (first row).

same input as that of our neural network (the input texture patch, and
a binary mask marking the area to be inpainted). We have integrated
this tool in our implementation; the GUI exposes it as a different in-
painting mode, easing the comparison with the neural model on the
exact same inputs.

Examples of visual results can be seen in Figure 14, and more can
be made using the attached implementation. The results of the neu-
ral network are qualitatively similar to using texture synthesis, but
sometimes the texture synthesis produces sharp transitions between
surface textures (Figure 14, first row, where the texture synthesis
hallucinates a sudden transition from moss to rock); when used to
fix a blurred input, texture synthesis sometimes produces lower fre-
quencies than desired (third row).

8.3. Comparison with inpainting in global texture space

Figure 15 compares our local strategy that leverages the auxiliary
parametrization against a more trivial approach of inpainting di-
rectly in global texture space. For global texture inpainting, we use
a neural network trained on texture patches without overlaps and
alpha masking (as described in Section 8.4). We show an example
where an inpainting operation is attempted near a seam of the global
texture space, resulting in disconnected regions of the texture to re-
quire inpainting. Our approach bypasses the problem, resulting in
a significant quality improvement in the produced result. Another
drawback of the direct approach is that the entire texture must be fed
to the inpainting model, drastically increasing the time and memory
requirements of the operation. For reference, inpainting a 4k texture
with our CNN model allocates more than 16 GBs of memory and is
an order of magnitude slower compared to inpainting our 512 × 512
patches.
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Figure 15: Comparison of inpainting in global texture space and
our approach of building a local patch. Global inpainting causes the
unused background texels to bleed into the texture charts. Model:
Broken Stone Elephant by Andrea Spognetta (CC BY-NC 4.0).

Table 1: Validation of our inpainting approach using the SSIM score on tex-
ture patches extracted from unseen 3D models.Natural images is the screen-
space model (trained on the Places2 dataset), Textures is the texture-space
model without UV-overlaps and alphamasking,Textures with Alphamask is
our proposed model, trained on input domains with UV-overlaps and alpha-
masking. SSIM scores are computed using [Ima21].

Network trained on

Natural images Textures Textures with Alpha mask

Average SSIM 0.526 0.546 0.551
Winning rate 12.6% 39.1% 48.3%

Bold values indicate the best score for each row.

8.4. Quantitative evaluation and ablation study

We also compare results obtained by allowing or disallowing trian-
gles to overlap the auxiliary parametrization, and report quantitative
measures that validate our choice to do so. Without overlaps, empty
‘cracks’ regions appear in the image patch and are left for the net-
work to fill.

We evaluate three different variations of inpainting in texture-
space: feeding texture patches without overlaps to the screen-space
network; feeding patches without overlaps to a network retrained
on examples of the same kind; and our proposal of feeding patches
with alpha-masked overlaps to the network trained on examples of
the same kind.

For this quantitative analysis, we extract 721 texture patches (sim-
ulating user strokes from interactive inpainting sessions) from a
fresh set of eight models not used in the training dataset, and mea-
sure the texture reconstruction quality using the original texture as
ground truth reference. Table 1 reports the average Structural Sim-
ilarity (SSIM) [WBSS04], restricted to the inpainted area, and the
number of times each network produced the best score. The screen-
space network is out-performed, further corroborating the argument

Figure 16: Training runs for the screen-space network (top) and
the texture-space network trained on our patch-dataset (bottom).
The screen-space model converges with a larger loss due to being
trained and validated with samples at higher resolution (512 × 512
pixels instead of 256 × 256).

Figure 17: Texture-space network improvement during training for
stretching artefacts removal. The network progressively learns to
produce patches both with richer texture detail and that blend better
with the surrounding texels.

that tailored training on texture-space patches is beneficial to our
task; the inclusion of UV-overlaps and alpha masking further im-
proves overall inpainting performance.

8.5. Effectiveness of the learning process

Figure 16 reports training and validation losses for both screen-
space and texture-space networks; loss values are averaged and inte-
grated over the image area, accounting for the resolution difference.
The data indicate that both networks are successfully learning the
respective domain, but a comparison suggests that the inpainting
task is indeed made ‘easier’ to learn in texture-space, using the aux-
iliary parametrization, as we conjectured, empirically validating the
premise at the basis of our work.

Figure 17 qualitatively shows the progress of the texture-space
network as the training is performed. At the beginning, the
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Figure 18: A qualitative assessment of the ability of our framework
to restore the look-and-feel of a defective texture. From top to bot-
tom: (a) a rendering of a 3D reconstructed model, featuring texture
defects caused by missing photographic data; (b) a real photograph
of the same object (not used in the texture reconstruction), showing
the real aspect of the defected areas; (c) the manually selected re-
gion that marks the defected region; (d) the resulting inpainted tex-
ture. On the right: two close-ups. Comparing (b) and (d) suggests
that in this instance, the overall aspect of the object is successfully
recovered.

network learns to produce rich patches with varied detail; as the
training advances, most of the improvement involves a better blend-
ing of the inpainted patch with the surroundings, by adjusting con-
trast and tone.

8.6. Comparison with real photographic data

Finally, we show a qualitative comparison of the ability of our
inpainting framework to restore the original appearance of a
textured object, using an actual photograph of the real-world object
as ground truth.

In this experiment, we exclude a photograph from the texture re-
construction process, and compare it with the reconstructed texture
before and after inpainting, as seen from the held-out view; the re-
sults are shown in Figure 18. In the first row, we show the texture
obtained by excluding the view from the texturing process, which is
affected by noticeable ghosting artefacts (first close-up) andmissing
colour data (second close-up) compared to the ground truth photo-
graph in the second row. The third and fourth rows show the re-
gions selected for inpainting and the inpainted texture, with ghost-
ing artefacts removed and plausible surface texture generated by the
network in place of the missing data.

Figure 19: Artefacts produced by the neural network when attempt-
ing to inpaint large defective regions.

9. Conclusions

We presented a methodology to employ inpainting techniques to
textures of models coming from photogrammetric acquisitions. Our
contribution is orthogonal to present and future advancements in
inpainting techniques themselves and provides a setup where most
such techniques can be first trained and then applied. This allows for
the direct inclusion of future works in a fast-advancing field such as
inpainting, even if it is designed for natural images (and not tex-
tures). The new inpainting models are likely to still benefit from
the present work, that is, from the idea of operating in a tailored
re-parametrized texture domain, resorting to marked repetitions to
limit both gaps and distortions.

Limitations. An issue of current Neural-Network-based inpaint-
ing, inherited by our system, is the limited size of the missing
region in pixels. When the missing region is too large, the net-
work can produce unexpected results, as shown in Figure 19. Us-
ing Neural Networks to inpaint high-resolution images and large
missing areas is a currently developing research area, and re-
cent works show promising results by combining and integrating
patch-based strategies in the neural architecture to hallucinate high-
frequencies.

Our work also inherits the inability of neural networks and tex-
ture synthesis approaches to always deal correctly with repetitive
structures and patterns (e.g. grids, checkerboards).

Ethics and misuse. Altering the appearance of specific classes
on captured models, e.g. cultural heritage objects or real people,
raises ethical concerns; while the original texture defect does not
faithfully document the reality, neither does our ‘fixed’ texture,
which has the additional peril of deceptively looking realistic. To
counteract this problem, it may be helpful to visually annotate the
inpainted regions.

Future improvement. Our texture inpainting operator can be po-
tentially employed in other frameworks for texture repairing, in ad-
dition to the ones we present in Section 4. First, it may be possible
to identify areas needing inpainting by means of a separated CNN,
trained for the purpose, for the cases where full automatism is a
requirement; this is not trivial because there is no natural domain
where to perform the detection; possibilities include the global tex-
ture or synthetic renderings. Second, the inpainting process might
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be embedded in reconstruction tools, letting the latter identify re-
gions requiring inpainting (e.g. by providing a confidence value for
each texel).
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