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Abstract
We present ZeroEGGS, a neural network framework for speech-driven gesture generation with zero-shot style control by example.
This means style can be controlled via only a short example motion clip, even for motion styles unseen during training. Our model
uses a Variational framework to learn a style embedding, making it easy to modify style through latent space manipulation or
blending and scaling of style embeddings. The probabilistic nature of our framework further enables the generation of a variety
of outputs given the input, addressing the stochastic nature of gesture motion. In a series of experiments, we first demonstrate the
flexibility and generalizability of our model to new speakers and styles. In a user study, we then show that our model outperforms
previous state-of-the-art techniques in naturalness of motion, appropriateness for speech, and style portrayal. Finally, we release
a high-quality dataset of full-body gesture motion including fingers, with speech, spanning across 19 different styles. Our code
and data are publicly available at https://github.com/ubisoft/ubisoft-laforge-ZeroEGGS.
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1. Introduction

In human communication, gestures complement speech by provid-
ing additional information about thoughts, feelings, emotions, and
intentions [ML04, DRBD12]. Efficiently animating realistic gesture
behaviour is a key concern in many applications based on virtual hu-
mans, such as characters in video games and extended realities or
customer service agents.

A common method for the automation of gesture animation is to
trigger pre-recorded animations from a database based on tags. One
can manually mark-up a dialog or program systemic events. While
effective, this method requires significant amounts of time and man-
power in order to produce a variety of engaging and realistic anima-
tions. Therefore thismethod does not scale upwell with increasingly
large open world video games and cannot be applied to avatars in
virtual worlds where dialog content is not scripted. Moreover, pre-
recorded animation may not be synchronized with speech rhythm.

These problems of scaling and synchronicity have motivated
research into methods for automatic generation of gestures with

data-driven methods [AHKB20, YCL*20]. Nonetheless, despite
recent research efforts, generating realistic gesture motion re-
mains a difficult problem, and addressing expressivity of speaker
state and identity by providing control over style is even more
challenging.

Speech is commonly used as a control input for gesture genera-
tion systems. Yet it is a weak control signal because a speech line
may be associated with many different motions. This means that
there is not only one true gesture match, but many equally appropri-
ate gestures. In other words this is a one-to-many mapping problem.
Moreover, every person exhibits their own style of movement, and
therefore, producing relatable and engaging stories with variety of
characters requires the ability to generate such distinct and appropri-
ate styles. This implies that the model must capture this wide range
motion variation, preserving characters’ idiosyncrasies.

Previous works have sought to address the problem of creat-
ing distinct styles by modelling and generating gestures for spe-
cific speakers [NKAS08, GBK*19, YCL*20, ALNM20] and by
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Figure 1: Samples generated by our model in different styles. Left to right: Neutral, Happy, Angry, Relaxed, Old, Sad, Oration.

modifying gesture motion through general statistics such as hand
height and velocity [AHKB20, YPJ*21]. These approaches lack
flexibility because they are limited by the content of the training
data. They require examples of every target speakers and every style
prior to training the model, and cannot generalize outside of this
range. This means a specific dataset needs to be captured for each
individual and each style, which leads to a prohibitive amount of
work in larger scale applications. To scale up, a gesture generation
method must be able to capture an individual style with a very lim-
ited amount of data, ideally only one example. Secondly, motion
style can be difficult to capture in words, rather, it can be easier
to describe style by providing an example of the desired motion
style.

In this work, we propose ZeroEGGS, a system that generates styl-
ized full body gestures from speech. Unlike existing solutions, Ze-
roEGGS encodes gesture style from short example motions, which
allows for zero-shot style transfer. This means that it can gen-
eralize to styles that were not covered by the training data, and
does not require style labels. Moreover, the model learns a mean-
ingful representation that enables style manipulation directly in
the latent space. Our framework is probabilistic, allowing for re-
peated sampling to obtain a variety of output motion given the
same input speech and style. Finally, we release a high-quality
multi-modal dataset of synchronized speech and full-body gesture
in 19 different styles. We also make our code publicly available for
reproducibility1.

2. Related Work

Research addressing automatic production of gesture motion from
speech can be divided into two main approaches: rule-based, and
data-driven methods.

Rule-based methods use explicit, often manually created, map-
pings of speech markers to gestures. Some methods rely on text
analysis [CVB01, LM06, KJLW03], while others use acoustic fea-
tures [MXL*13]. Rule-based approaches provide author-control,
high motion definition and facilitate the generation of semantic ges-
tures. However, motion diversity is limited by the number of de-

1https://github.com/ubisoft/ubisoft-laforge-ZeroEGGS

signed rules and database content. Moreover, the required manual
labor hinders scalability.

Data-driven methods model correlations between speech andmo-
tion features rather than relying on hand-crafted mappings. Some
methods still require manual labour due to using hand-annotated
features such as the gesture shape [NKAS08] or timing of stressed
phrases [YYH20]. Themapping between themotion and speech fea-
tures is learned automatically. At inference, motion is produced by
concatenating snippets from a database, which retains captured mo-
tion quality. Other approaches generate motion instead of drawing
from a database. A model must learn a mapping between speech
and gesture, which is a one-to-many problem. In that situation,
minimizing the error between predicted and target motion often
leads to mean collapsing problems and lethargic motion with small
ranges (e.g., [FM18] and [KJvW*20]). Generative adversarial net-
works have been used to address this problem with varying degree
of success depending on the datasets size and gesture complexity
[FNM19, GBK*19, RGP21].

Despite recent research efforts, the naturalness of generated ges-
tures still falls significantly behind motion-captured gestures, and
often fails to outperform even mismatched real motion w.r.t. appro-
priateness [KJY*21, GBK*19].

While the aforementioned methods condition generation only on
speech, several recent efforts propose to also provide control over
gesture style. In [AHKB20], style control is achieved via input of
four desired motion statistics, specifically the gesture speed, height,
spacial extent and lateral symmetry. The authors employ a prob-
abilistic model that predicts the next pose distribution instead of
predicting a fixed pose; gesture motion can then be re-sampled re-
peatedly to obtain a variety of sequences. Similarly, in [YPJ*21]
a gesture generation toolkit is presented with the control parame-
ters speed, spacial extent, and handedness. The system in [SGD21]
uses the Laban Effort and Shape qualities as animation modifiers to
impart the intended personality to the character. All these methods
rely on handcrafted control features which are often not descrip-
tive enough to encode to wide range of distinct styles that can be
learned by the model. More recently, several text-to-motion models
were proposed [KKC22, PBV22, TRG*22, TGH*22, ZCP*22]. In
theory, these models can produce motions in a style specified by a
text query. However, they are not designed to synthesize gestures
that synchronize with speech.
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Figure 2: An overview of proposed model.

It was proposed to use style examples to address the shortcom-
ings of hand-crafted features for other animation applications. For
instance, Aberman et al. [AWL*20] transferred style in human lo-
comotion using example clips. While the method can generalize to
unseen styles, providing a large enough dataset, it requires a set
of labelled styles to train the discriminator in the model. Similarly,
Valle-PÃ©rez et al. [VPHB*21] introduced a model for dance mo-
tion generation conditioned on music and a short style example
motion. However, the model was not shown to generalize beyond
motion styles contained in the training data.

The inherent difficulty of accurately naming styles and collecting
meaningful style datasets is not unique to the animation domain. For
instance, recent speech synthesis efforts focused on speech styliza-
tion by example and enable style generalization beyond the training
data. Someworks [HZW*19,WSZ*18, ZSvNC21] augment a tradi-
tional text-to-speech model with a style encoder capturing the gen-
eral style and prosody of a line to condition the generation. These
models can generalize to new styles, but also allow for interpolation
in the style latent space. Other work has even made style generaliza-
tion for unseen speakers possible [ZSvNC21]. We take inspiration
from these methods and adapt their ideas to gesture generation to
inherit their advantages.

3. System Overview

Figure 2 shows an overview of the ZeroEGGS architecture which
can be divided into three components: (1) Speech Encoder, (2) Style
Encoder and (3) Gesture Generator. The Speech Encoder trans-
lates a sequence of raw speech data into a speech embedding se-
quence S. The Style Encoder summarizes the style of a reference
animation sequence into a fixed-size style embedding vector e.
Finally, an autoregressive decoder called Gesture Generator uses
the style embedding vector concatenated to the speech embedding
sequence to generate the corresponding gesture animation Y . This
model is trained by maximizing the likelihood of the gesture anima-
tion p(Y | S, e) = ∏

t p(yt | y<t , S, e).

3.1. Speech encoder

The Speech Encoder, illustrated in Figure 3a, converts raw audio in-
put into a sequence of speech embedding vectors. First, we convert
raw audio samples to spectrograms.We use the log-amplitude of the
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Figure 3: Architectures of the Speech Encoder and the Style
Encoder.

spectrogram and the mel-frequency scale as done in many speech
applications [ZSvNC21, HCC*14]. Spectrograms capture how fre-
quency components of a signal vary across time, and the mel scale
for frequency better approximates how humans perceive sounds.We
also extract the energy per frame as a supplementary feature. Then,
extracted features are re-sampled and passed through 1D convolu-
tion layers followed by non-linear operators, and finally a frame-
wise linear layer. This results in a sequence of embedding vectors
S = [s0, s1, . . . , sT−1] ∈ R

T×DS where T is the number of frames in
the sequence and DS is the size of the speech embedding vector for
each frame.

3.2. Style encoder

The Style Encoder summarizes the reference style animation clip
into a low dimensional, fixed size, embedding vector which cap-
tures general attributes of the reference style. The reference style
clip can have an arbitrary length but should contain enough frames
to be representative of the desired style. The style embedding is sam-
pled from a multivariate Gaussian distribution as described in the
Variational Auto-Encoder (VAE) framework [KW13]. VAE models
are known to learn latent spaces that can be disentangled [RZM19]
and interpolated [BVV*16]. Moreover, in our application they nat-
urally allow for the sampling of variations at inference time.

Each frame of the reference animation clip is represented by a
feature vector a = [ρp, ρr, ρ̇p, ρ̇r, ṙp, ṙr] where ρp ∈ R

3 j, ρr ∈ R
6 j

are the joint local translations and rotations, ρ̇p ∈ R
3 j and ρ̇r ∈ R

3 j,
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are the joint local translational and rotational velocities, and ṙp ∈
R
3 and ṙr ∈ R

3 are the character root translational and rotational
velocity local to the character root transform. j corresponds to the
number of joints in the kinematic tree. Joint rotations are represented
by 2-axis rotation matrix while joint and root rotational velocities
are specified using the scaled angle axis representation as done in
[ZSKS18]. Unlike representations with less than five dimensions,
such as quaternions, this representation is continuous and avoids
interpolation problems, making it more suitable for neural network
training [ZBL*19]. We compute the root position of the character
by projecting the position of the second spine joint on the ground.
We project the z-axis of the hip joint onto the ground to obtain the
root orientation.

The sequence of M feature frames, A = [a0, a1, . . . , aM−1], is
normalized and fed to a neural network to obtain the style embed-
ding vector e ∈ R

De , where De is the dimensionality of this final
conditioning style embedding vector. The architecture, shown in
Figure 3b, is inspired from [ZSvNC21] which was originally pro-
posed for speech prosody encoding. First, the sequence of anima-
tion features, A, are passed through two 1D convolution layers each
followed by a ReLU and a layer normalization layer. Positional
encoding encourages the model to encode the sequence ordering
[VSP*17]. Then, similarly to [ZSvNC21], we apply a Feed-Forward
Transformer block that implements a multi-head self-attention layer
[VSP*17] and two 1D convolution layers each followed by a resid-
ual connection and layer normalization. This results in a sequence
of shape M × 2De. We average over the whole sequence to obtain
the parameters μ and σ of the De-dimensional multivariate Gaus-
sian distribution from which we sample the final style embedding
vector e.

3.3. Gesture generator

The Gesture Generator, shown in Figure 4, is a conditional auto-
regressive model which produces the final animated gesture se-
quence Y = {y0, y1, . . . , yT−1} from the speech embedding se-
quence S and the reference style embedding vector e. The full
parametrization of the output pose state for each frame is given by
y = [ρp, ρr, ρ̇p, ρ̇r, rp, rr, ṙp, ṙr]. Similar to style feature represen-
tation (see Section 3.2), ρp, ρr, ρ̇p, ρ̇r are joint local translations and

Hidden State
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Recurrent Decoder

Update

Character State

Initial Pose

Output at Frame i

Style Embedding
Speech Embedding 

 at Frame i 

Figure 4: The architecture of Gesture Generator block.

rotations along with their velocities, and ṙp and ṙr are the charac-
ter root translational and rotational velocity local to the character
root transform. rp ∈ R

3 and rr ∈ R
4 are the position and orienta-

tion of the root (represented as quaternions), respectively, which
are updated using the root translational and rotational velocities at
each frame.

The core of the gesture generator is the Recurrent Decoder. It
is an auto-regressive neural network built by two layers of Gated
Recurrent Units (GRU). It produces the pose encoding for a new
frame i from the corresponding speech frame si, the reference style
embedding vector e, and the previous pose state vector yi−1.

The Update Character State block in Figure 4 formats the Re-
current Decoder output, computes the pose state, and updates the
character facing direction. To compute the pose state at each frame,
we denormalize the output of the Recurrent Decoder and use the
predicted root translational and rotational velocities to update the
root transform. In addition to the last pose encoding, we condition
the Recurrent Decoder to a fixed target facing direction to avoid ro-
tational drifting over time. We start by converting the target facing
direction fromworld space to the character root transform. Then, we
concatenate it with the previously generated pose state, normalize
the resulting vector and provide it to the Recurrent Decoder.

The Hidden State Initializer is a separate neural network that pro-
vides hidden states for the GRU layers based on the initial pose, the
character facing direction and the style embedding. As in [HP18],
we found that using a separate initializing network improved the
quality of our results. We implemented the Hidden State Initializer
using three linear layers followed by ELU activation functions.

4. Implementation and Training

4.1. Dataset and data preparation

We recorded a high quality dataset of synchronized motion cap-
ture and audio. It contains 67 sequences of monologue performed
by a female actor speaking in English and covers 19 different mo-
tion styles. The styles were chosen to cover a variety of postures
(e.g., Tired vs. Oration in Figure 5) as well as hand and head move-
ment (e.g., Oration, Agreement). The total length of the dataset is
135 minutes. The style label of each sequence is the instruction
given to the actor, thus might not always correspond to how an
external annotator would perceive the motion. Table 1 summarizes
the information about the captured styles.

We recorded full-body motion at 60 frames per second (fps) and
represented animation data via a skeleton of j = 75 joints, includ-
ing hands and fingers. For training, we added the mirrored version
of all animation data to double the amount of data and extracted fea-
ture vector a and pose state vector y for each frame as explained in
Sections 3.2 and 3.3, respectively. In addition, we extracted the head
z-axis direction for all frames in the sequence and projected it onto
the ground. Then we used the median of the extracted head direction
across all frames as the global target facing direction. During run-
time, we set the target facing direction to the global z-axis direction.

Audio data was recorded at a sampling rate of 48 kHz. For the
speech encoding, we extract spectrograms using an FFT Hanning-
window of 50 ms and a hop length of 12.5 ms. We project the
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Table 1: Details of the recorded motion and audio dataset in minutes.

Style Length (min) Style Length (min)

Agreement 5.25 Pensive 6.21
Angry 7.95 Relaxed 10.81
Disagreement 5.33 Sad 11.80
Distracted 5.29 Sarcastic 6.52
Flirty 3.27 Scared 5.58
Happy 10.08 Sneaky 6.27
Laughing 3.85 Still 5.33
Oration 3.98 Threatening 5.84
Neutral 11.13 Tired 7.13
Old 11.37 Total 134.65

spectrogram into the mel frequency scale, and use the log ampli-
tude of each of the 80 channels as well as the total frame energy as
final speech features. We then re-sampled the sequence of speech
features to 60 fps and normalized it.

4.2. Model implementation

We adjust the kernels of 1D convolution layers for the speech en-
coder network to obtain a final receptive field covering roughly
1 second of speech. The first convolutional layer has 64 channels
and a kernel size of 3, the second has 64 channels and a kernel size
of 31. Both convolution layers are followed by a dropout layer with
a rate of 0.2 and ELU activations. Our final encoder dimensionality
(DS) is 64.

For the style encoder, we set the dimensionality of the style em-
bedding vector e to 64. All convolutional layers have a kernel size of
3 with 512 output channels, followed by dropout layers with a drop
rate of 0.2. We constructed our Feed-Forward Transformer block
with a 4-head self-attention layer, followed by a dropout at a rate
of 0.1 and two 1D convolution layers with a kernel size of 3 and
64 channels.

The Recurrent Decoder in our gesture generator is constructed
by two GRU cells with a hidden state size of 1024. The cell state
encoder is a 3-layer fully connected feed-forward networkwith ELU
activation and a hidden size of 1024.

4.3. Training and losses

We train the network end-to-end using the RectifiedAdamoptimizer
[LJH*19] with a learning rate of 1e− 4, a decay factor of 0.995
is applied at every 1k iterations. We used a batch size of 32 and
stopped training after 120k iterations based on visual result qual-
ity. In a batch, the length of the sequences T is set to 256 frames
(4.26 s). We do not use teacher forcing during training, but instead
train the model on its own predictions. Although this decelerates
convergence, it ensures that the model learns to recuperate from
its own errors which leads to more robustness. The style example
sequence A is sampled from the same animation clip as the target
sequence. Its length M randomly spans from 256 to 512 frames,
but always encompasses the target sequence. This random sam-

pling scheme ensures de-correlation between styles and clip length.
We also randomly alter the animation and speech speed by 10% in
whole batches as a data augmentation strategy.

We can consider our model as a conditional VAE where the ob-
jective is to maximize the evidence lower bound (ELBO) of the
marginal log likelihood of gesture motion given a speech sequence.
Thus we can formulate the training loss as the negative ELBO ex-
pressed as

L = Eq(z|e)
[− log p(Y | S, z)] + DKL(q(z | e)‖p(z))

= Lrecon + DKL(q(z | e)‖p(z))
(1)

The first term is hereby the expected negative log-likelihood of
the gesture motion, or reconstruction loss. The second term is
the regularization term expressed as the Kullback–Leibler diver-
gence between the posterior distribution q(z | e) predicted by the
style encoder and the prior distribution p(z), which is a standard
multivariate Gaussian distribution. In our implementation, we used
the cost annealing strategy proposed by [BVV*16] for weighting
the regularization term.

Our reconstruction loss divides into several terms:

Lrecon =λpLp + λrLr + λvpLvp + λvrLvr+
λdpLdp + λdrLdr + λ fL f

(2)

where Lp, Lr, Lvp, and Lvr, are the mean absolute error (MAE) be-
tween predicted and target joint positions, rotations, translational
velocities, and rotational velocities, respectively, in both local and
world spaces. In addition to direct velocity predictions, Ldp and Ldr

penalize the velocity MAE by computing the translational and rota-
tional velocities in the local and world spaces on-the-fly via finite-
difference. This is inspired by the reconstruction loss proposed in
[HKPP20] for Learned Motion Matching. Finally, L f penalizes the
MAE for the facing direction in the world space to prevent any
character rotational drift. Loss terms are empirically weighted to
be on a similar scale.

5. Experiments and Results

We perform a number of experiments to assess ZeroEGGS’s perfor-
mance regarding generalization, style control flexibility, and sub-
jective quality. Still images of motion generated for various input
styles are shown in Figure 1; please also refer to the supplemental
video for additional visual results.

5.1. Unseen styles and speakers

With our Style Encoder, we can extract style control features from
arbitrary, previously unseen gesture motion samples. To test this, we
removed allOration style samples from the training set, a style with
noticeably larger average hand height than all other styles. We visu-
alize the model’s generalizability to this unseen style in Figure 5a.
We also retain one recording sample for each style and show that
at inference time, the model can produce appropriate style for these
samples (see Figure 5b).
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(a) Oration: This style was not part of the training data in any form.

(b) Old: This style was part of the training data, but not the specific style

example clip used for conditioning.

Figure 5: Samples of generated gestures given unseen style exam-
ples. Left column:Given example. Right column:Generated gesture.

Figure 6: Samples of generated gestures given unseen style exam-
ples and new speaker. Left column: given example. Right column:
generated gesture.

Next, we assessed our model’s generalization capabilities to new
speakers. We generated results for a male speaker with a deep voice
plus the unseen Oration style. The output is visualized in Figure 6.

Because ZeroEGGS relies solely on the speech spectrum ampli-
tude, it can be used with languages unseen in the training set. We
test and confirm this language agnosticity for French, German, and
gibberish, with results illustrated in the supplementary material.

5.2. Manipulating style in the style embedding space

5.2.1. Blending styles

The variational framework used in our Style Encoder provides a
morphable and continuous style embedding space. This allows to
mix the styles of multiple samples via linear interpolation. We il-
lustrate interpolations of the Old and Oration styles in Figure 7. As
can be seen, the character’s posture and the hand position gradually
changes as we interpolate.

Figure 7: Screenshot of generated gestures by interpolating be-
tween Old and Oration.

5.2.2. Control via PCA components

We can control some of the low level style characteristics by project-
ing the style embedding vector onto a PCA space and manipulating
the components. Figure 8a shows a scatter plot of the first two prin-
cipal components for non-overlapping samples in different styles.
We observe that the first principal component roughly corresponds
to body sway. The more static styles such as Still and Sad are lo-
cated on the left side of the plot, while more dynamic styles, such
as Happy and Angry, are located on the right side of the plot.

Similarly, the second principal component is associatedwith hand
motion height and radius. For example Oration samples, for which
hands are usually above the shoulders, are located on the upper parts
of the plot, whereas styles such as Tired, during which the actor put
her hands on her knees, are on the lower parts of the plot.

We can modify these gestures characteristics in the PCA space
and project them back into the original style embedding space. Fig-
ure 8b shows the distribution of the root velocity as an indicator of
body sway for three variation a generated gesture: A Neutral style
example and its two versions obtained by changing its first principal
component.We can see that modifying the first principal component
affects root velocity. Figure 8c shows the hand movement trajecto-
ries relative to the hip joint in a frontal view for the same Neutral
sample, after manipulation of the second principal component. The
distribution plot on the Y axis of the figure highlights the effect of
this component on hand height.

5.3. User study

We evaluated subjective result quality in three separate user studies,
assessing the motion output with regard to (1) naturalness, (2) ap-
propriateness w.r.t. the speech, and (3) recognizability of style. We
compared performance of our model to the ground truth reference
motion as well as three baselines, as described below.

5.3.1. Study design

We used a MUSHRA-like (MUltiple Stimuli with Hidden Refer-
ence and Anchor) [ITU15] interface based on [JYW*21]. We had a
total of 131 participants, with a minimum of 20 per study (ages 20-
55 years μ = 33.6, σ = 8.1). In each study, participants performed
12 ratings comparing the motion of rendered animation clips with
the female character shown in Figure 5, for the four systems listed
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(a) (b) (c)

Figure 8: We control low level gesture characteristics by projecting style embedding vector onto the PCA space. (a) Shows the first two
principal components of the style embedding vector in the PCA space for a subset of styles. The first dimension corresponds to the body sway,
while the second dimension corresponds to the hand height and radius. (b) We can control the root velocity of the character by changing the
first principal component of the style embedding vector in the PCA space. We modify the first principal component by one standard deviation of
the Neutral style. (c) Shows the hand trajectories for the neutral style after modifying the second principal component of the style embedding
vector in the PCA space.

Table 2: Comparison of our model (ZEGGS) with the baseline model (MG).

Rating on our dataset Rating on TSG

System #Parameters Inference time (per frame) Nat. Appr. Style Nat. Appr. Style

MG 86M (88M with style) 29 ms 11.8 ± 12.2 7.8 ± 9.6 12.9 ± 16.1 32.7 ± 21.0 32.2 ± 20.6 19.8 ± 18.0
ZEGGS 25M 4 ms 56.3 ± 22.2 48.9 ± 20.3 58.1 ± 25.9 36.7 ± 18.4 38.3 ± 23.3 61.9 ± 23.3

further below. The order of systems and rating pages was random-
ized. For naturalness, participants were asked how natural the char-
acter’s motion looks to them. For appropriateness, participants rated
how appropriate the gesture motion was for the speech. For style
portrayal, videos played without sound and participants judged how
well the motion represented a given target style. For this, a fixed set
of 6 representative styles (Happy, Sad, Relaxed, Old, Angry, Ora-
tion), and participants rated two samples of each.

Participants compared and rated the following 4 systems:

1. Ground truth motion (GT)
2. Mismatched motion (MM)
3. Our model (ZEGGS)
4. MoGlow (MG)

GT is the original motion-captured animation associated with the
given speech segment. MM is also motion-captured animation but
used in the wrong context. For the naturalness and appropriateness
studies,MM is amotion originally associatedwith a different speech
segment of the same style, while in the style portrayal study, MM is
a motion associated with a different style.

As a strong baseline model, we chose MoGlow (MG) by Alexan-
derson et al. [AHKB20] which represents style via their three

proposed gesture features: hand height, velocity and radius. We
chose this model based on its style-control capabilities, compet-
itive performance [KJY*21], and code availability. We compare
model statistics of ZEGGS and MG in Table 2. We first retrained
the model using our dataset, however, this led to severely jittery,
low quality output. We therefore decided to train MoGlow using
its original training dataset, the Trinity Speech-Gesture dataset I
(TSG) [FM18]. TSG contains 4 h of a single male speaker produc-
ing spontaneous speech in monologue format in an overall neutral
style. To level the playing field, we therefore ran two versions of
each of the three studies of naturalness, appropriateness, and style:
The first version used our dataset, the second version used the TSG
dataset. For the TSG version of the style study, the style input mo-
tion features were taken from our own dataset since TSG does not
contain any style data. A number of video samples from our user
study are included in the supplemental material.

5.3.2. Results

We analyzed the collected perceptual data using Analysis of Vari-
ance (ANOVA) when the normality assumption was not violated
(Shapiro–Wilk test) and corrected degrees of freedom using the
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Figure 9: Results from our three user studies. The x-axis represents
the system and the y-axis the average participant ratings.

Greenhouse–Geisser when sphericity was violated. When normal-
ity was violated, we used Aligned Rank Transform (ART) instead
of ANOVA. We performed post-hoc comparisons using Estimated
Marginal Means. We had one within-subject factor for naturalness
and appropriateness measures, the gesture generation system, with
four levels: GT, MM, ZEGGS, MG. For style portrayal, we addi-
tionally had the factor style. Results are visualized in Figure 9 and
summarized in Table 2.

The results of our user studies show that our model outperforms
the comparison model [AHKB20] for all three collected measures,
motion naturalness, appropriateness for speech, and recognizability
of portrayed style for our own dataset, and for appropriateness and
style recognizability for the TSG data. There was a main effect of
system for each of the threemeasures, andGT performed best across
each measure, as expected (p < 0.001 for all pairwise comparisons
with GT).

For naturalness, we would expect a similar level of naturalness
for MM as for GT because they are both motion-capture clip. How-
ever, the mismatch with the speech audio resulted in lower ratings
which highlights the importance of synchronicity for the percep-
tion of naturalness. MM was rated significantly lower than GT and
higher than MG (for TSG, p < 0.05 for ZEGGS vs. MM, all other

differences p < 0.001). For our dataset, MM was not rated signifi-
cantly different to ZEGGS.

For appropriateness, for our own dataset, ZEGGS scored higher
than MM (p < .01), indicating that our model was indeed able to
capture some relation between the speech and motion modalities
and produced output that was more appropriate for the given speech
than the baseline systems. This reinforces the idea that synchronicity
plays an important role in the perception of gesture quality. Here,
even if MM is a motion-captured clip in the same style as the target,
it seems inappropriate for the speech segment, because gesture are
out of sync with voice inflections. However, for the TSG dataset,
MM was rated on-par with ZEGGS and MG.

When measuring style portrayal specifically, there is also a sig-
nificant interaction between the factors system and style. This time,
MM is a motion-captured animation from another style. Therefore
it performs significantly worse than GT as it accurately portrays a
different style (p < 0.001). MM was also rated significantly worse
than ZEGGS (p < 0.001) but not MG, indicating that MG was un-
able to portray the desired styles whereas our method produced
good results. Visually inspecting the interaction of system and style,
this appears mainly stem from a lower than average performance of
ZEGGS for the style Happy (see Figure 10).

We believe there are several reasons explaining why ZeroEGGS
outperformed MoGlow in most subjective evaluations. Firstly, as

Figure 10: Rating scores per style for the style portrayal study.
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described in Section 5.3.1, training MoGlow on our own dataset
yielded poor results. MoGlow captures style information in three
statistical measures extracted from hand movement. While reason-
able for styles like public speaking or neutral conversational bearing
as in the TSG, there is a lot more information to capture when the
styles are more diverse. For instance, MoGlow cannot accurately
capture style differences of gestures with the general same move-
ment intensity, but different trajectories. Having widely different
targets for the same input impedes the model to converge during
training. In addition to the more consistent style within the TSG
dataset, this dataset is also four times the size of our dataset. These
factors are why we resorted to training MoGLow on the single-style
TSG dataset with which it was originally developed. This training
explains the relatively lower performance ofMoGlow on our dataset
when compared to the performance on the TSG dataset as seen in
Figure 9. While the difference in performance of ZeroEGGS rela-
tive to the ground truth is larger on TSG compared to our dataset, it
still outperforms MoGlow that was trained on TSG.

Regarding naturalness, MoGlow produced more jittery anima-
tions and generated at a lower frame rate (20 fps instead of 60 fps)
which may have also played a role in the evaluation.

By capturing style information in three statistical measures
extracted only from hand movement, MoGLow discards a lot of
useful information when compared to ZeroEGGS which is free to
encode any relevant information in a larger encoding space. By
focusing solely on hand movements, MoGlow ignores information
about posture, stance and leg movement. This negatively impacts
style portrayal accuracy compared to ZeroEGGS in styles such as
Oldwhere the posture of the character is important, orHappywhere
the actor shifts her weight frequently. The nature of MUSHRA-like
tests magnifies these differences between models because scores
are not an absolute quality rating but rather an indication of the
relative performance of each models.

There appears to be a larger performance gap for naturalness and
appropriateness between the ground truth and the other methods
when comparing results for TSG versus our dataset. We hypoth-
esize that the nature of the style and content in TSG may play a
role. When compared to our dataset, the speaker in TSG performs
semantic gestures much more frequently, which when present and
well timed systematically lead to a higher naturalness and appro-
priateness. ZeroEGGS and MoGlow do not model such gestures
which would explain lower comparative ratings. The fact that mis-
matched motion (MM) also underperforms on TSG is an indication
that semantic gestures are performed at the wrong moment, leading
to lower performance ratings.

6. Discussion

Our experiments show that our model generalizes to new voices,
languages and to new styles that were not part of the training data.
This zero-shot style transfer capability constitutes a major advan-
tage when compared to existing methods. In practice, it means that
a single model can be used for different characters and that it does
not have to be retrained each time a new style is needed. Moreover,
specifying style directly using examples enables the model to cap-
ture smaller details that could be otherwise discarded by the strict

information bottleneck imposed by handcrafted features and statis-
tics. This results in more realistic and compelling motions. Finally,
by using examples instead of labels, users do not have to elaborate
a precise consentaneous style taxonomy.

We also show that our variational framework learns a meaningful
style embedding that enables manipulation and interpolation within
the latent space. This allows, for example, the weighted mixing of
style reference samples. This proves useful in practice when transi-
tioning from one style to another in the same animated sequence. In
addition, the probabilistic nature of variational methods allows for
variations of gesture motion for a given input by re-sampling.

In our subjective evaluations, ZeroEGGS outperformed the base-
line model w.r.t. naturalness, appropriateness for speech, and style
portrayal. This means that for ZeroEGGS, generalization does not
come at the cost of visual quality and style diversity. Improve-
ment on state-of-the-art mainly comes from the superior descriptive
power of our example-based conditioning over handcrafted features
and statistics. As explained above, capturing more detail in the style
embedding improves naturalness, but it also helps generating sub-
tleties that helps differentiate between styles. Moreover, our loss
ensures smooth and stable motion, which also plays a role in the
perception of the naturalness of the animation.

While our model outperforms our baseline models, it does fall
significantly behind ground truth motion, motivating further work
to improve the naturalness of the generated output. Moreover, some
more subtle motions that are specific to certain styles are often over-
smoothed or even not produced. For instance, in the Agreement
style, head nods are very infrequently generated, while abundantly
present in the training data. Enforcing explicit disentanglement in
the style latent space could help capture motion localized in spe-
cific parts of the body. Our model showed a slight decrease in per-
formance on the Trinity Speech-Gesture dataset, on which it was
not trained, likely due to the frequent displacement of the speaker,
which is not captured in our dataset. Our method performs well on
more static style, but we would like to address character displace-
ment as a next step.

Finally, ZeroEGGS generates small amounts of foot sliding, a
common problem in non physically-based animation generation that
can be addressed with IK-based post-processing.

ZeroEGGS uses raw spectral audio features as input which pro-
vides robustness to language and speaker voice. However, this
means that the generation is limited to so-called “beat gestures” that
do not carry semantic information about the speech content. This
explains in part why the ground truth motion scored significantly
higher w.r.t. appropriateness for the speech in the user study. Fu-
ture work could include semantic markers in the speech as input to
the model.

7. Conclusion

We proposed ZeroEGGS, a model that generates stylized gesture
animations from speech. The desired style is specified to the model
as a short example clip. The model generalizes beyond training
data allowing the generation of unseen styles, for different voices
and languages. Moreover, the latent style representation allows for
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control over generation. Our experiments show that ZeroEGGS gen-
erates state-of-the-art gesture animations.

There are many directions for future work, including enforcing
user-specified disentanglement in the learned style latent space, pro-
viding support for semantic gestures as well as exploring new archi-
tectures based on affine transform coupling layers.
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