
DOI: 10.1111/cgf.14730 COMPUTER GRAPHICS forum
Volume 42 (2023), number 6, e14730

Evonne: A Visual Tool for Explaining Reasoning with
OWL Ontologies and Supporting Interactive Debugging

J. Méndez,1 C. Alrabbaa,2 P. Koopmann,2 R. Langner,1 F. Baader2 and R. Dachselt1,3,4

1Interactive Media Lab Dresden, TU Dresden, Dresden, Germany
julian.mendez2@tu-dresden.de, {langner, dachselt}@acm.org

2Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{christian.alrabbaa, patrick.koopmann, franz.baader}@tu-dresden.de

3Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
4Centre for Tactile Internet with Human-in-the-Loop (CeTI), TU Dresden, Dresden, Germany

Abstract
OWL is a powerful language to formalize terminologies in an ontology. Its main strength lies in its foundation on description
logics, allowing systems to automatically deduce implicit information through logical reasoning. However, since ontologies
are often complex, understanding the outcome of the reasoning process is not always straightforward. Unlike already existing
tools for exploring ontologies, our visualization tool Evonne is tailored towards explaining logical consequences. In addition, it
supports the debugging of unwanted consequences and allows for an interactive comparison of the impact of removing statements
from the ontology. Our visual approach combines (1) specialized views for the explanation of logical consequences and the
structure of the ontology, (2) employing multiple layout modes for iteratively exploring explanations, (3) detailed explanations
of specific reasoning steps, (4) cross-view highlighting and colour coding of the visualization components, (5) features for dealing
with visual complexity and (6) comparison and exploration of possible fixes to the ontology. We evaluated Evonne in a qualitative
study with 16 experts in logics, and their positive feedback confirms the value of our concepts for explaining reasoning and
debugging ontologies.

Keywords: interaction, visualization

1. Introduction

OWL ontologies as a means to formalize terminology have ap-
plications in medicine [IB14], biology [HSG15], the semantic
web [Hor08] and many other areas. Realistic ontologies often pro-
vide formalizations of up to hundreds of thousands of concepts, ex-
amples including the medical ontology SNOMED CT [LdKLC13]
and the Gene Ontology GO [Gen04]. Using a formalization inOWL
(Web Ontology Language) [HKP*09] allows OWL reasoners to
compute implicit information through automated reasoning. Due to
the sheer size, and non-trivial nature of the interactions between
the logical statements (axioms) in an ontology, the output of the
automated reasoning process can be unexpected. For ontology en-
gineers, it is thus vital to understand why an entailment inferred

J. Méndez and C. Alrabbaa contributed equally to this work.

through logical reasoning follows from the ontology, and how it can
be repaired in case it is wrong. Moreover, it is important to under-
stand the role of the involved axioms within the greater context of
the ontology if an engineer intends to repair it.

To this end, entailments can be explained using justifications
(minimal sets of axioms responsible for an entailment [SC03,
Hor11]), or proofs (series of reasoning steps to reach an entail-
ment from a justification), which can be produced using different
approaches [ABB*20]. Research in this area generally focuses on
computational complexity, soundness, completeness and efficiency
of computing such proofs [ABB*21, KKS14, KK15]. However, as-
pects like interactivity and presentation of proofs have received less
attention. In this work, we address these visualization aspects with
the goals of facilitating the understanding of entailments and sup-
porting debugging by showing the impact of the potential fixes on
the ontology.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

1 of 15

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-1029-7656
https://orcid.org/0000-0002-2925-1765
https://orcid.org/0000-0001-5999-2583
https://orcid.org/0000-0003-4519-2168
https://orcid.org/0000-0002-4049-221X
https://orcid.org/0000-0002-2176-876X
http://creativecommons.org/licenses/by/4.0/

2 of 15 Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging

(d)

(a)

(e)

(b) (c)

Figure 1: Overview of Evonne in split view: (a) Proof View, (b) Ontology View, (c) sidebar where settings and diagnoses for debugging are
shown, (d) minimap feature for the proof view and (e) Rule Explanation tooltip, showing a property domain translation.

We present the latest version of our tool Evonne: a web applica-
tion for explaining reasoning through visualizations of proofs and
ontologies. Evonne uses specialized views for exploring both ex-
planations of logical entailments (as proofs) and the knowledge from
which these entailments are obtained (in the ontologies). In partic-
ular, we offer innovative layout modes for proofs that aim to help
overcome the cognitive complexity of the tasks surrounding them,
while also exploiting the connection with the ontology to visually
support the understanding and repairing of ontologies. For instance,
we introduce the Magic Mode (bidirectional layout), a specialized
approach for exploring proof trees, which allows a true combination
of the typical reading directions by granting users the flexibility to
manipulate the structure of proofs while maintaining their seman-
tic integrity. For the ontology content, we use a visualization based
on the atomic decomposition (AD) [VHP*20], instead of using the
typical subsumption hierarchy [DLSP18], and support debugging
via exploration of diagnoses [ABD*20].

Some early concepts for Evonne were discussed in
Refs. [ABD*20, FLAD20]. Here, we present (1) the design
rationale for the proof layouts, diagnoses exploration, and visual
encoding; (2) further concepts such as the linear and bidirectional
layouts, as well as filtering options for diagnoses, hiding known
parts of the proofs, etc.; (3) the finalized realization of our concepts
to date including several settings that accommodate user prefer-
ence and expertise and (4) an evaluation of our approaches in a
qualitative user study with 16 logic experts, where we collected
information about their perception of our concepts, as well as
qualitative feedback about the value of our tool, and their user
experience as a whole. The positive reception and assessment of
our work confirms our assumptions about usefulness and usability,
while the constructive feedback also reveals future areas of work
to explore.

2. Background

In this section, we provide an overview of the relatedwork on visual-
izations for ontology engineering tasks, recall notions from descrip-
tion logics (DLs) that are relevant to Evonne, and give an overview
of the challenges involved in this work.

2.1. Visualization of ontologies

The current tool of choice for ontology visualization and edit-
ing is Protégé [Mus15] or its web-based alternative WebPro-
tégé [HGN*19] that allows collaborative editing. By default, Pro-
tégé provides an indented list of the concepts formalized in the on-
tology, and additional textual views of the metadata for each. More
specialized views are developed as plug-ins, which can be found
through the Protégé Plugin Library https://protegewiki.stanford.
edu/wiki/Protege_Plugin_Library. Most of the tools visualize the
whole ontology using its concept or subsumption hierarchy. In the
following, we refer to both plug-ins and other standalone tools in-
distinctly.

Fu et al. [FNS13] compared indented trees and graphs (the typ-
ical representations of ontologies), and found that the former are
more familiar to novices, while the latter are more intuitive and
controllable. OWLViz [Hor] and OntoGraf [Fal] visualize ontolo-
gies using node-link diagrams, but they struggle with large ontolo-
gies and have limited interaction possibilities. Force-directed lay-
outs are used by, e.g. WebVOWL [WLA18] to make efficient use
of the screen space, but the large size of ontologies, which contin-
ues growing, remains an unsolved issue. On the other hand, Jam-
balaya [SMS*01] and OWL-VisMod [GPNT12] use treemaps, but
these are typically not easy to navigate and clutter quickly when
relations between the ontology concepts are shown on superposed
views. OWLEasyViz [CSM09] represents concepts as ellipses, al-
lowing the user to reveal their sub-concepts by clicking on these
ellipses. This approach, however, is costly in terms of interaction,
and becomes disorienting as more elements come into view. Lastly,
and most relevant to our setting, is the work on explanation services.
In particular, there is the proof explanation plug-in [KKS17], which
shows proofs of entailments as indented trees. In the case of large
proofs, this visualization can lead to more cognitive load for users,
e.g. when keeping track of related proof statements that occur on
different branches.

For ontology editing, typical diagram editors for VOWL and
UML notations are used, as is the case with crowd [BGCF20] and
UnSHACLed [LDMH*21]. The same scalability issues mentioned
earlier are present here, since always the whole ontology is loaded

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://protegewiki.stanford.edu/wiki/Protege_Plugin_Library
https://protegewiki.stanford.edu/wiki/Protege_Plugin_Library

Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging 3 of 15

into these editors. Furthermore, these are general editing tools, and
do not provide guidance for users to find errors. In addition, there are
tools for supporting other aspects of ontology engineering such as:
(i) debugging inconsistencies (e.g. Swoop [PSK05, KPSG06] and
RepairTab [TSP*08]), (ii) inspecting information loss (e.g. Infer-
ence Inspector [MVJS18] for authoring, and ChImp [PSDB20]
for quantifying the impact of changes) and (iii) education and train-
ing (e.g. SIVA [PPH18] a tool for simulating reasoning by showing
a step-by-step application of a tableau algorithm). However, these
tools mostly use textual visualizations.

In order to support exploration and understanding of the under-
lying structures (in our case, of proofs and ontologies), interaction
plays a crucial role [LIRC12, EMJ*11, TS20]. In Evonne, we use
techniques for exploring trees [LPP*06, TM03, RBB02] and node-
link diagrams [CC07, CGH*19, MB19] that are well-known indi-
vidually, but had to be adapted to suit our constraints. We also em-
ploy a tailored version of general-use techniques such as linking
and brushing across multiple coordinated views [BC87, Rob07] and
overview + detail [CKB09, Mun14].

2.2. Notions from description logics

OWL is based on DLs, a family of logics targeted at describing con-
cepts and relationships between them. In DL context, a concept is
a syntactical entity that describes a class of objects (e.g. vehicles,
genomes, etc.) by combining basic terms (concept and role names)
using the logical connectives of the DL. A DL ontology is then a set
of axioms, which express relations between concepts (e.g. contain-
ment, equivalence, disjointness). Different DLs differ in the set of
operators that can be used to describe a concept or an axiom. The
pizza ontology [RDH*] is a toy ontology commonly used for teach-
ing OWL and DLs. In such an ontology, the following axiom in the
DL EL states that every pizza has a topping and a base:

Pizza � ∃hasTopping.PizzaTopping � ∃hasBase.PizzaBase

Here, Pizza, PizzaTopping and PizzaBase are concept names
describing sets of objects, and hasTopping and hasBase are
role names describing relations between those objects. Details
on the syntax and semantics of DLs and OWL can be found in
Refs. [BHLS17, HKP*09], respectively. A DL reasoner uses auto-
mated deduction to compute information that logically follows from
the axioms in an ontology [GHM*14, SLG14]. For instance, it could
infer that a Margherita is a VegetarianPizza by using the defini-
tions of Margherita, VegetarianPizza, and all involved ingredi-
ents in the pizza ontology. A typical deduction task is classification,
which computes all logically entailed axioms of the form A � B,
where A and B are concept names, stating that every A is also a B
(e.g. for A = Margherita and B = Vegetarian). Classification, thus,
computes the implied subsumption hierarchy between the concepts
defined in the ontology, which is the structure shown (using, e.g.
indented trees, as mentioned in Section 2.1) in most tools that visu-
alize ontologies.

Proofs and justifications: Currently, the most common way of ex-
plaining an entailed axiom α is to use justifications, which are min-

imal sets of axioms from the ontology that are sufficient for infer-
ring α [SC03, Hor11]. In contrast, a proof for α is a hypertree de-
scribing logical inference steps, where leaves are labelled with ax-
ioms from the ontology, internal nodes with derived axioms, and the
root corresponds to α [ABB*21]. The hyper-edges describe the in-
ference steps, stating how one axiom is derived from other axioms.
An example of such a proof can be seen in Figure 1(a). The advan-
tage of using proofs rather than justifications is that they do not only
show the ontological knowledge (axioms) that is used to infer the
entailment, but also show in detail how these axioms are interacting
with one another to create the entailment to be explained.

Diagnoses and repairs: While a proof explains why an axiom is
entailed by an ontology, a diagnosis describes how to eliminate the
entailment (in case it is erroneous). Specifically, for a given ontol-
ogy O and an entailed axiom α, a diagnosis for α in O is a min-
imal set of axioms such that removing them would break the en-
tailment of α. The result of removing these axioms is then called
a repair [MMV11]. Evonne supports users in finding the right di-
agnosis. Outside of Evonne, they may then choose to remove the
axioms in the diagnosis, or to modify them appropriately.

Modules and atomic decompositions: Different to other tools for
ontologies, Evonne makes use of the modular structure of an on-
tology. Modules [GHKS07] are subsets of the ontology that can be
used to organize its content. A module is specified by a signature—
a set of (concept or role) names—and contains all axioms of the
ontology that are needed for the entailment of axioms that only use
those names. There exist standard tools for computing such mod-
ules automatically [HB11, KLWW08, KC20]. The set of all possi-
ble modules for an ontology is captured by the AD, which consists
of a partitioning of the axioms in the ontology into atoms, together
with an acyclic dependency relation between those atoms [VHP*20,
HMP*14]. Every module of the ontology can be constructed by tak-
ing the union over a set of atoms and all atoms reachable from them
via the dependency relation. Intuitively, the dependency relation ex-
presses how the atoms influence each other in specifying knowl-
edge about the different subsets of the terminology defined by the
ontology, which can be used to visualize the impact of repair op-
tions [ABD*20].

When representing the AD graphically, atoms can be represented
more concisely using signatures. We here use a technique first intro-
duced by Alrabbaa et al. [ABD*20]. An atom that is not dependent
on other atoms is also a module, and is assigned the signature con-
taining all names in that module. If an atom depends on other atoms,
we assign to it the names that occur in the correspondingmodule, ex-
cluding the names that occur in the atoms it depends on. Intuitively,
its signature then refers to the new terminology that its axioms in-
troduce. It is possible for the signature assigned to an atom in this
way to be empty, in which case the atom does not introduce new
terminology, but only connects the terminologies of other atoms.

2.3. Summary of challenges

The two previous sections show, respectively, the state of the art
for visualization in ontology engineering tasks and the DL notions

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

4 of 15 Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging

that are used in our work to overcome major limitations of the
existing work. In Evonne, we explain entailments using proofs,
and visualize the relevant part of the ontology using its AD. In
particular, we represent proofs as hypertrees, and ADs as directed
acyclic graphs (DAG), using node-link diagrams. In a study com-
puting proofs for real-life ontologies from the well-known Bio-
Portal corpus [RMKM08], the largest proof observed had 140
nodes [ABB*20]. The largest AD we computed for our real-life
ontology examples has around 1624 atoms, the largest atom hav-
ing 2201 axioms. Visualizing ontologies is not a typical use case of
ADs [Ves13], the only exception being the relatively simple Pro-
tégé plug-in DeMoSt [DVKP*11]. The other approaches for visu-
alizing ontologies mostly make use of the subsumption hierarchy
instead. However, as argued by Alrabbaa et al. [ABD*20], the AD
may give deeper insights in the interactions of the relevant parts of
the ontology.

Our work constitutes a next step in providing explanation services
that are responsive to user preferences and to their domain exper-
tise, considering the limited support for explanations using proofs
for ontology entailments. One of the main challenges of adapting
visualization techniques for the domain of formal logic is to ensure
that the semantics of the visualized data are preserved in all visual
transformations. Note that, when developing solutions for these use
cases, one must avoid design choices that are too far away from the
current work environments of logicians. For instance, developing
an augmented reality solution would be unjustified given the still
limited visualization support in traditional 2D environments. This
is why Evonne remains a desktop application, but provides initial
features for use in multi-display environments.

3. Evonne: Interaction and Visualization Design

With Evonne, we aim to support logicians and ontology engineers
in understanding proofs, as well as in debugging erroneous entail-
ments. In this section, we describe our design rationale and spe-
cific concepts for our tool. Our development process consisted of
interdisciplinary ideation sessions and discussions between experts
in the fields of logics and visualization. In an iterative manner, we
(1) identified needs of the DLs community, (2) collected and pre-
sented the techniques that could be used, (3) developed concepts for
tailoring the general techniques to the existing needs and (4) evalu-
ated the realization of these concepts with respect to existing work-
flows. As a result of this, we identified a set of design goals, which
characterize our proposed visualization and interaction concepts.

3.1. Design goals

Our set of design goals (referred throughout the paper as DG-T1
to DG-G2) is distilled from our interdisciplinary conversations. Our
target users are logicians and ontology engineers at various levels of
expertise. Therefore, our goals address the needs of the DL commu-
nity, and foster novelty in their workflows beyond the required basic
visualization support. The list of goals is followed by our reasoning
to define them. The goals are related to the major Tasks we support
(DG–T), characteristics of ourUsers (DG–U) andGeneral usability
(DG–G) in dynamic scenarios.

DG-T1: Enable Interactive Exploration
Proofs lack visualization support and using ADs for visualization
is atypical, as mentioned in Section 2. We aim to enable self-
contained but also linked interactive visualizations for these.

DG-T2: Support Decision-Making
Towards debugging of ontologies through the selection of diag-
noses, our tool should organize the options to help users compare,
filter and select adequately.

DG-U1: Accommodate User Preferences
Wewant to provide configuration options, layout alternatives and
different view settings to allow tasks to be completed based on
individual preferences.

DG-U2: Support Different Levels of Expertise
We aim at an intuitive tool for users with less experience, that
remains non-intrusive for the more experienced users. This refers
to both tool and domain expertise.

DG-U3: Build on Familiar Representations
Our tool should build upon visual representations familiar to lo-
gicians (i.e. node-link diagrams). However, we learned that read-
ability and the semantic structure represent the most important
needs, and they must be balanced in our solution.

DG-G1: Improving Existing and Enabling Novel Workflows
Traditionally our target users have desktop environments with
command-line or simple visual tools. We want to improve
their work setting while also opening the possibility for new
workflows which might involve collaboration, multiple devices,
etc.

DG-G2: Minimize Setup Difficulties
We aim to provide a ready-to-use tool that is on par with the
setup complexity of other state of the art tools such as WebPro-
tégé [HGN*19], which can be executed locally or remotely due
to the potentially heavy computational load.

To define the goals, we selected existing workflows for explana-
tion of logical entailments, and translated them conceptually using
modern visualization approaches. Take, for example, the process of
reading a proof. Generally, it involves traversing the structure step
by step to understand the different inferences. Depending on the
length of the proof, the complexity of the axioms and inferences,
personal preferences (DG-U1) and expertise (DG-U2), one may ap-
proach the reading from different directions: (a) Top-down: Given a
conclusion, what are the premises that lead to it? (b) Bottom-up:
Given a set of premises, what is the inferred conclusion? Or (c)
a combination of both. The support for this workflow is reflected
in DG-T1. Another example of a major workflow is the process of
debugging unwanted entailments. Roughly speaking, given an un-
wanted entailment, the user needs to find out why this entailment
exists, and select a diagnosis that eliminates it while affecting the
ontology minimally. There are different measures to determine the
impact of a diagnosis, and the number of diagnoses can be exponen-
tial in the size of the ontology. This is mainly supported by DG-T2,
but DG-T1 also plays an important role here since the influence of
the ontology on the entailment and vice-versa should be clear to the
users. Several otherminor workflows are supported by our tool, such
as learning logical rules by examples, comparing proofs computed
by different reasoners, optimizing proofs w.r.t. different measures,
etc.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging 5 of 15

DG-U3 is applicable to all workflows, as the usage of screen
space must never obscure the readability of the axioms (details) nor
the semantic structure (local or global overview). In order to better
support their mental process, users should be allowed to dynami-
cally manipulate this balance, which results in sub-optimal screen
space usage. While we aim to fulfil the requirements of these work-
flows without overwhelming the users with big changes in their
workspaces, we are also interested in howmodern visualization sup-
port can improve the work of the DL community. With this in mind,
DG-G1 disallows design choices that are too far away from the cur-
rent work environments of logicians (e.g. immersive technologies).
Nevertheless, we want to provide features that make use of multiple
screens and devices, and can be used by multiple concurrent users.
Lastly, with DG-G2, we make sure that even the modern features do
not complicate the setup of our solution.

3.2. Overview of the user interface and general features

Addressing these design goals, we developed an interactive visual-
ization tool we call Evonne (see Figure 1). Its user interface con-
sists of two major views: the Proof View and the Ontology View.
Both use node-link diagrams, but they behave differently, according
to their semantic structure. The look-and-feel of the tool is tailored
towards desktop environments as this is themain environment of our
target community (DG-U1, U2, G1). Users may want to use either
only one view at a time, or both simultaneously, which can depend
on preferences, technical setups or the tasks at hand. For instance,
understanding an entailment is possible using only the Proof View,
without considering the related ontology (DG-T1). However, using
both views simultaneously (1) aims at enhancing the understand-
ing of a proof in the context of the ontology and (2) is better suited
for more complicated tasks such as repairing the ontology. Further-
more, the AD is constructed w.r.t. the entailment in the Proof View,
and therefore, the linked interactions that we provide are triggered
from the Proof View to inspect the context of the proof within the
Ontology View. When both views are shown together, we refer to
it as a split view, as depicted in Figure 1. Showing them separately,
e.g. on different screens or devices, is suitable for large structures
that need a lot of screen space.

Both views support independent zoom and pan navigation and
include a minimap feature (DG-T1), helping users to navigate the
details while being aware of the overall structure (see Figure 1(d)).
Looking at the various spatial configurations that proofs and ontolo-
gies may need, we designed settings to adjust the visual data distri-
bution more efficiently with the given space. These settings affect
the visualizations at three levels: textual, structural and behavioural.
For example, to deal with readability issues on both views (DG-U1,
U3), we provide two methods for shortening textual elements (e.g.
axioms and rule names), called fixed-length and camel case. The for-
mer limits the amount of characters in concepts. The latter removes
lower case letters from concept names (e.g. “SpicyIceCream” be-
comes “SIC”), while role names keep the first lower case letter and
otherwise are treated the same (e.g. “∃hasSpiciness.Hot” becomes
“∃hS.H”.). While fixed-length gives more control w.r.t. size, camel
case might produce better recognizable labels (DG-U3).

All of the settings are located in a sidebar on the right side of
the screen (Figure 1(c)). In addition, each view has more detailed

configurations and specific interaction modalities that are listed in
this sidebar (DG-U1). In the next two sub-sections, we will detail
the Proof View and Ontology View with all their functionalities. The
coloured underlines in these sub-sections refer to the colours that
are used in the tool, as shown in Figures 1–5.

3.3. Proof view

The first major view is the Proof View, and it can be self-sufficient
for understanding entailments (DG-T1). We indicate the used
colours with underlines. As introduced in Section 2.3, we present
proofs using hypertrees, where we distinguish the nodes as follows:

> Final conclusion: the entailment under inspection (root).
> Asserted conclusions: axioms from the ontology that constitute

a justification of the entailment.
> Inferred axioms: the intermediate conclusions computed for

each inference step, excluding the asserted conclusions.
> Fixed knowledge: (1) the DL inference rules (rule nodes) and

(2) known content (i.e. nodes that hide either axioms or entire
sub-proofs).

When we mention axiom nodes, we refer to both asserted and
inferred statements (including the root entailment). On the other
hand, when discussing traversal, we refer to the structure of the
tree: Top/up refers to the root, which in our tool is located at the
bottom of the view, while bottom/down refers to the leaves towards
the top of the view. Figure 1(a) shows the default layout of the Proof
View. Among the settings specific to the proof, we allow the users
to increase or decrease the space between nodes vertically and hori-
zontally using sliders, which is helpful to fine-tune space usage and
address readability issues (DG-U3). We learned in our design con-
versations (and confirmed in our study) that optimal space usagewas
not always desired because our users often look for a balance be-
tween readability and visualizing the whole structure—or as much
of it as possible. For users that immediately prefer the full structure
without any type of overlap, we also provide an option to automat-
ically distribute the nodes to avoid overlap entirely, instead of the
default setting that fits the tree to the available screen space.

Furthermore, the variousDL inference ruleswe show may not be
trivial to understand, considering the expertise of the users and their
familiarity with the naming convention we use (DG-U2). Thus, we
provide Rule Explanation tooltips (Figure 1(e)) that show an ab-
stract representation of a rule, and its instantiation using the axioms
in the proof. Some users will have sufficient knowledge about some
parts of the ontology, so that inferences from those parts do not need
to be explained to them. To reflect this, we allow users to mark con-
cept and role names as known by uploading a signature file. The
axioms and sub-branches that only use these names are hidden un-
der “known” nodes (DG-U2).

Hovering over axiom nodes reveals options to collapse branches
and to reveal inferences step by step. An example of these buttons
can be seen at the root node of the proof in Figure 1(a)). If a user
wants to explore the proof starting from the root, the Show Pre-
vious Step button () can be used to gradually reveal the tree to-
wards the leaves. Likewise, the user may use the Hide All Previ-
ous button () to mark sub-trees as checked and move from the
asserted conclusions towards the final conclusion. This action can

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

6 of 15 Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging

(a) (b) (c)

(d)

Figure 2: Linear Proof options: (a) Shows the optimized premise
distance, where edges intersect. (b) Avoids edge intersections at the
cost of premise proximity. (c) Shows the effect of the Highlight in-
ference button () the premise and conclusion are highlighted, and
(d) a Rule Explanation tooltip appears.

be undone with the Show All Previous button (). In addition, users
can click on an edge to cut a particular branch and inspect it sepa-
rately. Only outgoing links from axioms may be cut to ensure that
we always visualize a coherent inference tree. The resulting sub-
tree is presented with an indicator at its root which can be clicked
to restore the full proof. Double clicking any axiom node gives ac-
cess to actions coupled to the ontology view: The justification button
() reveals a justification of the corresponding axiom, and the repair
button () triggers the computation of the diagnoses for the selected
axiom. For both of these linked interactions, further details are dis-
cussed in Section 3.4, where Figure 5 depicts their effect. Besides
the default tree representation of the proof which we have described
so far, we designed two alternative behaviours for the layout of the
tree structure: Linear and Magic Mode. We describe these layout
modes in the following sections.

3.3.1. Linear mode: vertical layout

When writing a proof on a sheet of paper, a logician often uses a so
called “linear”, vertical organization of the axioms that are used to
infer new entailments until the final conclusion is reached (i.e. one
uses a line for each axiom and the inferences follow in new lines).
This way of organizing information is familiar to logicians (both
novice and experienced), as we learned in our interdisciplinary con-
versations. Inspired by that (DG-U2, U3), we provide a linear proof
layout as an alternative that can be activated from the settings side-
bar. The resulting layout can be seen in Figure 2. On paper, proofs
are easier to follow when axioms are used soon after they have been
introduced. Thus, we minimize the distance between premises by
default. However, this creates many intersections between the links.
We call this “optimized premise distance” (Figure 2(a)), but this can
be disabled to instead optimize for planarity, which shows the links
more clearly, but moves the premises further apart for some infer-
ences (Figure 2(b)). The nodes in this mode retain the same actions
as in the default tree mode (i.e. , and as well as the colour
coding. The main difference content-wise is that there are no nodes
for rule names. Instead, inferred axioms (nodes) have an additional
Highlight inference () button. This button shows the explanation of
the used rule and highlights the involved axioms in the proof. This
is showcased in Figure 2(c).

The linear proof can also present a partial solution to readability
issues of the default proof layout at the cost of losing the visually

Figure 3: Diagram of the Magic Mode actions, showing three
states of the same proof. The dashed lines indicate the interaction
flow of the reversible pull and push actions, triggered by clicking
the circled buttons from the nodes.

branching tree structure, which a portion of users finds preferable.
Another indirect advantage of this mode is that organizing the ax-
ioms vertically leaves a lot of space for the ontology in the split
view. The arrangement of the views is much simpler to achieve in
this mode than with the default tree that grows horizontally, as the
linear layout scales almost only vertically.

3.3.2. Magic mode: bidirectional layout

The reading order while traversing a proof (i.e. bottom-up, top-
down) comes down to personal preference and the understanding
process of each user. Therefore, we designed a mode that permits
users to explore proofs in both directions simultaneously (DG-T1,
U3). To achieve this, we allow users to expand and collapse parts
of the proof—in either direction—on demand. This mode is illus-
trated in Figure 3. We use special nodes that represent hidden parts
of (or entire) inference steps. We call these Magic Rules, or just
magic nodes for simplicity. The behaviour of the rest of the nodes
changes for this mode compared to the default and linear modes.
From a particular axiom, users can (1) request more details about a
hidden inference step by pulling nodes out of a magic node or (2)

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging 7 of 15

hide nodes from the inferences by pushing them into a magic node.
Our current solution uses a set of up to four buttons per node to
realize these movements (pull: , , push: ,). These buttons
appear on hovering, but only if the actions can be performed. This
can be seen in Figure 3. The pull and push actions can also be ac-
cessed from a context menu on the node, to familiarize users with
their meaning (DG-U2). They stand for (): pull conclusion of this
premise (up), (): pull premise(s) leading to this (down), (): push
premise(s) (upwards) and (): push conclusion (downwards). To
help distinguish between these actions we (1) used distinct icons,
(2) grouped the pull and push buttons at the sides of the node (pull
on the left, push on the right) and (3) placed the respective buttons
closest to the magic nodes that will be interacted with (up or down).

In order to always display a semantically correct proof, the
rule nodes (both magic and normal) must always connect a set of
premises to a conclusion, and thus cannot be connected to other rule
nodes. As a result, the tree can change structure in potentially unex-
pected ways. For example, when pulling for a conclusion, another
sub-tree can be consequentially revealed—affecting in total more
than just one inference. Furthermore, (1) magic nodes that represent
only one inference rule are automatically unravelled, (2) pushing a
node when no magic nodes surround it will create a magic node and
(3) pushing a node surrounded by magic nodes will merge the sur-
roundingmagic nodes into one.When a combination of these effects
are triggered in chain, the resulting tree structure may not be easy to
predict. This can be addressed by providing a preview of the result
as an animation, and by allowing users to easily undo their inputs.
For future versions, we want to investigate the feasibility of using
different interactions in this mode (e.g. dragging, gestures). Doing
so is not trivial because of the changing availability of the actions
at every state of the proof and the potentially unexpected structural
changes that the tree can go through.

As a last remark, the reason we chose the word “magic” to iden-
tify thismode is the quote “Magic is just science that we don’t under-
stand yet” (Arthur C. Clarke), which in our case refers more specif-
ically to science that we don’t show yet.

3.4. Ontology view

Commonly, ontologies are presented based on their subsumption hi-
erarchies [DLSP18], visualized using indented lists. In our Ontol-
ogy View, the second major view provided by Evonne, we instead
show an AD [VHP*20] using a node-link diagram (see Figure 1(b)),
where the nodes correspond to the atoms and the links represent the
dependency relation. As discussed by Flemisch et al. [FLAD20],
one could argue that the more traditional approach to visualize the
ontology (using subsumption hierarchies) better suits the familiarity
we strive for. However, the advantages of using the AD discussed by
Alrabbaa et al. [ABD*20] make it more precise for localizing justi-
fications and the impact of diagnoses, which in our case is preferable
(DGs T1, T2). To minimize complexity, instead of showing the en-
tire ontology, we visualize a module for the signature of the entail-
ment explained in the proof view. This substantially smaller subset
of the ontology contains all axioms that could be used for inferring
the entailment. Moreover, it is self-contained in the sense that any
information expressed using the terms used in the module can be de-
rived from the module alone. Thus, the module contains all axioms

(a)

(b)

Figure 4: Effect of the Signature Mode (Ontology View): (a) shows
a set of atom nodes with full-length axioms, (b) same atom nodes
with Signature Mode active.

relevant to the entailment and possible diagnoses of it. To accommo-
date for the semantic and structural complexity of the ADs, we use a
force-directed layout [GFV13] that makes effective use of the view-
port. Additionally, we allow manipulation of the flow of the layout
to create a sense of hierarchy. This is a compromise between the
full hierarchical structure that could be presented in a subsumption
hierarchy (DG-U3) and the benefits from our AD (DGs T1, T2).

In order to save space, the ontology view is first loaded in what
we call the Signature mode. The effect of this mode can be seen in
Figure 4(b). Instead of showing axioms in the atoms (nodes), we
show a list of names, i.e. the signature, relevant to these atoms (see
also end of Section 2.2). This mode gives an idea about what these
atoms talk about without actually showing the explicit logical state-
ments. The user can reveal the full axioms by turning off the sig-
nature mode from the settings sidebar (Figure 1(c)). Likewise, it is
important to compute an initial state of the graph with minimal or
no overlap, while also showing the links in reasonable proximity.
From the aforementioned sidebar, the shortening options described
in Section 3.2 (fixed-length and camel case) can be applied to the
ontology view as well. Additionally, we provide line-wrap to limit
the length of each line within a node and miscellaneous configu-
rations for the simulation of the layout. For instance, adjusting the
directional force horizontally or vertically allows the user to arrange
the AD as a hierarchy and to control the space given for each depth
level.

The colours in this view complement those of the Proof View:

> Atoms represent knowledge which was computed, similar to the
inferred axioms from the proof.

> Justification axioms match the asserted conclusions from the
proof, when highlighted using the justification button ().

> For diagnoses, we use contrasting colours to indicate the impact
of replacing axioms to repair the ontology ().

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

8 of 15 Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging

(a)

(b)

Figure 5: Effect of the linked interactions: (a) Justification of the
axiom from the Proof View on the Ontology View. (b) Preview of the
impact of the selected diagnosis from the sidebar on the right.

> Atoms and all their axioms can be marked as
trusted to be correct. This filters out all the diagnoses that
include any such axioms, extending the fixed knowledge
concept from the Proof View.

3.5. Justifications and diagnoses

As introduced in Section 3.3, the linked interactions (i.e. to highlight
justifications and compute diagnoses) are triggered from the axiom
nodes on the Proof View.

Justifications: The () button on axiom nodes from the proof trig-
gers the display of the justification for that axiom on the Ontology
View. This justification corresponds to the asserted conclusions oc-
curring in the sub-tree of the proof under the axiom. For the root,
this would be all the asserted axioms that appear in the Proof View.
In the Ontology View, the atom nodes are highlighted if they con-
tain any of the axioms of the justification. In addition, these axioms
are also highlighted within the nodes (see Figure 5(a)). The goal
here is to help users in assembling a mental picture to understand
the proof (DG-T1) and to potentially identify faulty axioms in the
ontology (DG-T2), especially for large and complex ontology and
proof pairs. To avoid confusion, only one justification can be high-
lighted at a time.

Diagnoses: The () button on each axiom node triggers the com-
putation of diagnoses for the selected axiom, that is, sets of axioms
such that removing them, or modifying them appropriately, prevents
the axiom from being deducible. This computation can be costly. In
fact, the expressiveness of the logic and the size of the ontology
influence the computation time, which can range between millisec-
onds and several minutes. Once they are computed, we show the
diagnoses grouped by size in the sidebar. The size of a diagnoses is
one criterion that can give an initial insight to howmuch of a change
the diagnosis proposes. However, it is not sufficient, because chang-
ing a small number of axioms can have a comparably larger impact
on the ontology. Which diagnosis is the “correct” one is in the end
something only the user can decide (DG-T2).

There are two challenges related to this process: (1) The impact of
a small diagnosis can be large enough to render the ontology useless,
while a larger diagnosis can have a more contained impact (2) us-

ing a diagnosis to repair the ontology will fix the ontology w.r.t.the
erroneous entailment at hand, but might leave other problems, if the
diagnosis is not properly analysed. To understand the impact of the
axioms of a diagnosis, we follow the idea introduced by Alrabbaa
et al. [ABD*20] to highlight not only the diagnosis itself in the on-
tology view, but also the dependent atoms, and thus the part of the
ontology that would be potentially affected by changing the axioms
that appear in the diagnosis. To show such impact on the ontology,
the user can hover over the diagnoses on the sidebar to preview the
impact, or click on them to select them and explore the view while
they are highlighted. The sidebar and highlighting are shown in Fig-
ure 5(b).

To help users in comparing different diagnoses, and under the
discussed challenges (DG-T2), we designed a filtering mechanism
where users can lock nodes of the AD to indicate that their axioms
must not be modified (i.e. marking these as known and trusted). In
doing so, the length of the list of diagnoses can be reduced signif-
icantly. Diagnoses with axioms from the locked nodes are hence
filtered out, but not the diagnoses that impact the locked nodes in-
directly. In future versions, we may consider more advanced ways
of filtering diagnoses using the ontology view.

4. Evonne: Technologies and Tools

Having the concepts of our tool explained in the previous section,
we address in this section the specifics of our implementation. In
particular, we describe the technologies we use, how we generate
the data we visualize, and the improvements of the tool since its
conception [ABD*20, FLAD20]. An online demo, local installation
instructions, test data, pre-computed examples and a video walk-
through can be found at https://imld.de/evonne. Furthermore, the
source code and documentation of Evonne are also publicly avail-
able at https://github.com/imldresden/evonne.

Evonne is a web-based application implemented with Node.js
and Express.js for the server. For the client, we use d3 (both
views) and WebCola for the force simulation and its settings in
the ontology view. The look-and-feel is adapted from the Mate-
rialize styling. Since the initial prototype presented by Alrabbaa
et al. [ABD*20], the majority of the visual characteristics of the
interface were substantially reworked and a thorough refactoring of
the original implementation took place to enablemaintainability and
extensibility of the tool. An example of this is the adjustment of the
front-end to include reusable templates using the library Sprightly.
The interface was adjusted to have a desktop application feel, which
was overwhelmingly preferred by the experts we consulted (DG-U1,
G1, G2). The visual rework includes an update to the styling of the
nodes and links, smoother interactions and animations, a navigation
bar with project identifier and several menus for both specific and
common features of the views, as described in Section 3.2.

The back-end uses a Java application which computes the fol-
lowing: (1) the AD of a given OWL ontology, using the algo-
rithm from Horridge et al. [VHP*20]; (2) various types of proofs
for a given entailment using the approaches described by Alrabbaa
et al. [ABB*22]; (3) all diagnoses for a given axiom, which are com-
puted based on INCA, a tool for navigating answer sets of ASP pro-
grams [ARS18]. In order to serve the data to multiple independent

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://imld.de/evonne
https://github.com/imldresden/evonne

Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging 9 of 15

Figure 6: Self-assessment of expertise from the participants from
Novice (lowest) to Expert (highest) in the topics of general Logic,
Description Logics (DL) and real-world Ontologies.

views, we establish socket connections using Socket.io. These con-
nections are identified by a project ID and additional metadata that
is required for the interactions, such as the origin of the interaction
and the intended goal (e.g. the axiom which must be justified and
the action name “highlight justification”). Combining this with the
restful server, we communicate the views across devices as long as
they are using the same project ID. This allows multiple sessions of
the same major view to be active and coordinated at the same time,
which can be used, for example, in a multi-window, a multi-device
and even in a collaborative setting (DG-G1).

5. Evaluation: Expert Feedback Sessions

In order to evaluate our concepts and tool, Evonne was tested in a
formal qualitative user study that we describe in this section. The
real-life ontologies that were used in the study were obtained from
a 2017 snapshot of BioPortal [MP17], a repository containing on-
tologies from the bio-medical domain [RMKM08]. We chose to use
BioPortal because the ontologies of this repository are often used for
evaluation purposes in theDLs community, and because biology and
medicine are central application domains of ontologies. Please note
that the purpose of the study is not to evaluate how Evonne can be
used to obtain new knowledge about the domain of an ontology, but
rather how it can be used to explain the phenomena entailed by the
modelling of the domain in the ontology.

5.1. Study design

Participants: We recruited 16 logicians (3 female, 13 male) from
the local university, with a mean age ofM= 32.28 (SD= 5.24) and
different levels of expertise in logics as detailed in Figure 6. Out of
the 16 participants, 11 teach or have taught logics and related topics.
We used a scale of low/mid/high to ask about their familiarity with
the topics. All participants had medium or high familiarity with the
notion of formal proofs (mid = 9, high = 7). The majority had at
least medium familiarity with the notions of justifications (low= 3,
mid = 7, high = 6) and diagnoses (low = 4, mid = 10, high = 2).

Methodology and goals: The sessions were conducted remotely
with a video conference and shared screen. Each participant was in-
terviewed individually for up to 90 min., with an average time of
approximately 68 min. The web application was hosted and the par-
ticipants were given links to access it. We recorded the video con-
ferences for further inspection, after getting the consent of the par-
ticipants. Two interviewers guided each session, one responsible for
introducing the tool and guiding the participants through the tasks,

the other taking notes about the reactions and answers of the partic-
ipants, but also asking complementary questions as the participants
followed a think-aloud protocol. Our goals were to assess the value
of our concepts and tool for understanding proofs of entailments
and for repairing ontologies, to collect qualitative feedback on the
implemented features, and to distil new requirements and ideas for
future work from the expectations of the participants.

Procedure and tasks: The sessions had three parts: First, a tutorial
of the tool using toy data (i.e. the Spicy Ice Cream example). Then,
a guided walk-through where the participants used various real-life
data (ontologies and proofs) that presented difficulties (e.g. a very
wide proof with long axioms, examples with complex concept and
role names without much meaning, large ontologies with varying
diagnosis impacts, etc.). The task of the participants would be to
walk through these examples in such a way that they felt comfort-
able exploring both views w.r.t. the available features (e.g. finding
an adequate layout for the wide proof, using a shortening mecha-
nism to hide “unnecessary” domain knowledge in the axioms, filter-
ing the diagnoses using our locking mechanism). Besides thinking
aloud, we asked participants to state opinions regarding the features,
to check against our estimations.

Lastly, the users were given a concluding offline questionnaire
with theUser Experience Questionnaire (UEQ, [HST18, SHT]) and
a few additional questions about the usage of Evonne as part of the
current tool sets for editing ontologies, whether the tool could be
used for teaching purposes, and open comments.

5.2. Results and reflection of design goals

The results of the UEQ assessment are shown in Figure 7. In the nor-
malized [−2, 2] scale used by the UEQ data analysis tool, Evonne
remained between 1 and 2 for all evaluated aspects. From lowest to
highest: perspicuity (1.27), efficiency (1.47), dependability (1.59),
attractiveness (1.66), stimulation (1.73) and novelty (1.72). To avoid
confusion, we decided to remove the security aspect from the UEQ
evaluation, since our scope did not include security features (e.g.
restricted or partial access to ontologies). We found that despite
their preferred method for traversing a proof, the users would switch
reading directions when the possibility was presented to them. “It
depends on what I want—if I want to understand the whole proof,
I would use the linear mode, but if I want to focus on a specific
part, I would use the Magic mode”. For example, users who pre-
ferred reaching the conclusion last while using the linear mode (i.e.
bottom-up), would then find the step-wise explanations useful (i.e.
top-bottom). Likewise, those who preferred starting from the root
of the default tree (i.e. top-bottom) would be pleased to know they
could collapse branches after all the nodes had been analysed (i.e.
bottom-up). Furthermore, the participants that explicitly approached
the proof from both directions simultaneously were pleased with the
Magic mode, though most of the participants agreed that the inter-
actions in this mode involved a learning curve. “This “push” and
“pull” (metaphor)—like with a door sign, I need to try both ways”.
Even though some participants grasped the interactions quickly, we
identify this as an area of improvement for our tool.

Our participants also answered positively on the value of our
tool for teaching purposes. They pointed out that even if some

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

10 of 15 Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging

Figure 7: Distribution of answers for the UEQ questionnaire; gen-
erated with the data analysis tool from the UEQ website [HST18].

interactions are complicated, our colour coding, features for sup-
porting explanations and the alternative layout options were very
helpful. For example, when asked about the usefulness of the Rule
Explanation tooltip: “It is definitely useful (…) for training pur-
poses. It is the first thing I clicked. It answers the question: what’s
going on here?” Because of the involvement of most of our partic-
ipants in teaching, this result is meaningful to us.

We identified other areas of improvement and potentially new fea-
ture concepts. As limitations, despite our multiple features to deal
with over-plotting and readability—which were well received by
our participants with varying preferences—no single configuration
suffices for all scenarios, and thus we wish to investigate smart au-
tomatic configurations based on the proof and AD sizes. Regarding
new features requested, some examples are (1) new levels of fil-
tering diagnoses, (2) more ways to manipulate the shown text and
(3) minor usability improvements. For instance, being able to hide
all the rule names in a proof is one of the suggested improvements
for the default tree layout. Most of the minor feedback was already
addressed in our development revisions.

With respect to our design goals (Section 3.1), we consider that
the feedback from the participants, both during the interviews and
in the UEQ assessment, reflects our intentions positively. For in-
stance, the innovative, inventive, supportive, valuable and leading
edge points from UEQ confirm our goal to not just provide support
for existing workflows, but also encourage new ways to fulfil the

tasks (DG-T1, T2, G1). The results for predictable, easy to learn,
understandable and clear are positive indicators of the fulfilment of
our DGs U1, U2, U3. These results also hint at areas where Evonne
can be improved, such as further optimization and more efforts to
communicate insights about how to use the tool and how to interpret
the visualized data. Furthermore, we are pleased to confirm that for
our general usability goals (DG-G1, G2), participants of our study
see a value in our tool for scenarios like teaching, where the flexi-
bility of our web implementation enables complex multi-device and
potentially multi-user setups.

6. Discussion and Future Directions

Evonne supports the processes of understanding proofs and debug-
ging ontologies at an axiom level. The integrated combination of
useful visualization and interaction concepts, with a focus on the
aforementioned needs of the DLs community, is what makes our
tool a valuable contribution, as confirmed by our feedback sessions
and user study.

Knowledge representation is an area of AI that is, at least in the-
ory, explainable by design, because decisionsmade by theAI system
are based on symbolic reasoning from explicitly stated information.
Tomake it also explainable in practice, there is a great need formore
visualization work in knowledge representation and symbolic AI,
because the (admittedly sound) existing explanations can be diffi-
cult to digest. Similar to our case with Evonne, the systematic com-
bination, application and adaptation of visualization techniques to
enhance the accessibility of this knowledge enables further research
to support the understanding of complex reasoning processes. In the
following, we discuss limitations of our tool and highlight future re-
search directions.

Integration into the ontology development environment. Explain-
ing entailments is only a part of the ontology development process,
and as such, it should be integrated into the development environ-
ment used by ontology engineers, which would include aspects such
as editing, versioning and documentation. Our web service architec-
ture allows for an integration into Protégé or WebProtégé, which
would provide an additional front-end to the editing capabilities of
those tools. The integration should be bidirectional: (1) visualizing
the effect of modifications to the ontology in Evonne and (2) us-
ing Evonne to directly lead the user to the axioms to modify in the
other tools.

Complexity of the diagnoses selection. The exponential number of
different diagnoses makes filter functionalities essential, especially
when users need to decide which one to adopt. By leveraging the
dependencies between the atoms in the AD, we provide users with
a visual representation of the potential impact of diagnoses, which
then supports them in selecting an appropriate diagnosis. The clas-
sical approach for repairing an erroneous entailment is to remove all
axioms in the diagnosis. A more gentle approach is to change these
axioms in a more fine-grained manner. In theory, there can be in-
finitelymanyways to perform these “gentle repairs” [BKNP18], and
we will look into supporting users in choosing the appropriate one.
With non-monotonic logics, such asDefeasible DLs [PT18, BPS20],
eliminating unwanted entailments can be achieved by adding

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging 11 of 15

knowledge instead of removing it. However, investigating this is out
of the current scope of Evonne.

Different logical formalisms. OWL ontologies are of course only
one area in which automated reasoning is used—at least regard-
ing proof visualization, our techniques can be used in other such
areas where proofs are already available or easy to generate: This
includes logic-based programming as with Prolog [Coh88] or An-
swer Set Programming [BET11], database reasoning with data-
log [CGT89] or existential rules [CGK13, BLMS09], and theorem
proving [BG01]. The rule set used in Evonne can be changed to
support different reasoners, though this requires adapting the format
of the proofs so that they can be read in our system. In fact, one of
the participants in our study asked whether Evonne is sufficiently
modular to integrate other reasoning systems to provide debugging
support for other types of logics. This shows that the interest is not
only on the OWL-specific computations used in our tool, but espe-
cially on the visual features that it provides.

Collaboration and multiple devices. Even though our prototype
is currently focused on single-user setups, real applications of on-
tologies almost always happen inmulti-user environments [SLR14].
Ontologies are usually developed in heterogeneous teams with dif-
fering expertise (domain experts, logic experts), in which proof vi-
sualizations could be used to explain the mechanics of an ontology
to others, or to explore in a team how to fix or extend an ontology.
We also envision collaborative settings in teaching. Proof visualiza-
tions could be used to explain logics to students, and students could
explore proofs together to better understand reasoning in OWL on-
tologies. Our prototype and its client–server architecture can serve
as a basis for enabling such use cases, for both co-located and re-
mote collaboration. As mentioned in Section 3.2, Evonne allows
the major views to be shown separately. While this does not make
our tool tailored towards co-located collaboration, it enables, for ex-
ample, a proof view to be displayed on a larger shared screen and
ontology views to be presented on the mobile devices (e.g. tablets,
laptops) of multiple team members.

7. Conclusion

We introduced Evonne, a web-based tool for explaining entail-
ments of OWL ontologies. Entailments are explained through an in-
teractive visualization of formal proofs, amain innovation being that
those proofs are not shown in isolation, but seamlessly linked to a
second view showing their context in the ontology. Both views come
with interactive components that allow the exploration of the proof
and the role of the involved axioms in the ontology. In addition to
just explaining entailments, Evonne supports ontology debugging
by showing users different ways to fix erroneous entailments dis-
covered during the exploration of the proof. Exploring those fixes is
supported by a visualization of their impact on other components of
the ontology. The proof view allows for different ways of displaying
and navigating a proof. In addition, the novel idea of themagicmode
gives the user control over the structure of the proof, by enabling a
bidirectional exploration. Evonne was very positively perceived by
logic experts in our qualitative study, motivating further research in
this direction. With this work, we hope to have paved the ground for

further work in the area of formal proof and ontology visualization
and, more broadly, of visual explanations in AI.

Acknowledgements

We thank Vincent Thiele and Tamara Flemisch for their contribu-
tions towards Evonne. This work was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Germany’s Excellence Strategy: EXC-2068, 390729961—
Cluster of Excellence “Physics of Life” and EXC 2050/1,
390696704—Cluster of Excellence “Centre for Tactile Internet”
(CeTI) of TU Dresden, by DFG Grant 389792660 as part of
TRR 248—CPEC (see https://perspicuous-computing.science), and
by the DFG Research Training Group QuantLA, GRK 1763 (https:
//lat.inf.tu-dresden.de/quantla).

Open access funding enabled and organized by Projekt DEAL.

References

[ABB*20] Alrabbaa C., Baader F., Borgwardt S., Koopmann
P., Kovtunova A.: Finding small proofs for description logic
entailments: Theory and practice. In Proceedings of the 23rd
International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR), EPiC Series in Computing
(2020), vol. 73, EasyChair, pp. 32–67. http://doi.org/10.29007/
nhpp

[ABB*21] Alrabbaa C., Baader F., Borgwardt S., Koop-
mann P., Kovtunova A.: Finding good proofs for description
logic entailments using recursive quality measures. In CADE,
Lecture Notes in Computer Science (2021), vol. 12699,
Springer, pp. 291–308. http://doi.org/10.1007/978-3-030-
79876-5_17

[ABB*22] Alrabbaa C., Baader F., Borgwardt S., Dachselt
R., Koopmann P., Méndez J.: Evonne: Interactive proof
visualization for description logics (system description). In
Automated Reasoning (2022), Springer International Publish-
ing, pp. 271–280. http://doi.org/10.1007/978-3-031-10769-6_
16

[ABD*20] Alrabbaa C., Baader F., Dachselt R., Flemisch
T., Koopmann P.: Visualising proofs and the modular structure
of ontologies to support ontology repair. In Proceedings of the
33rd International Workshop on Description Logics (DL) (2020),
vol. 2663, CEUR-WS.org. http://ceur-ws.org/Vol-2663/paper-2.
pdf

[ARS18] Alrabbaa C., Rudolph S., Schweizer L.: Faceted
answer-set navigation. In Rules and Reasoning. Lecture Notes
in Computer Science (2018), vol. 11092, Springer, pp. 211–225.
http://doi.org/10.1007/978-3-319-99906-7_14

[BC87] Becker R. A., Cleveland W. S.: Brushing scatterplots.
Technometrics 29, 2 (1987), 127–142. http://doi.org/10.1080/
00401706.1987.10488204

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

https://perspicuous-computing.science
https://lat.inf.tu-dresden.de/quantla
https://lat.inf.tu-dresden.de/quantla
http://doi.org/10.29007/nhpp
http://doi.org/10.29007/nhpp
http://doi.org/10.1007/978-3-030-79876-5_17
http://doi.org/10.1007/978-3-030-79876-5_17
http://doi.org/10.1007/978-3-031-10769-6_16
http://doi.org/10.1007/978-3-031-10769-6_16
http://ceur-ws.org/Vol-2663/paper-2.pdf
http://ceur-ws.org/Vol-2663/paper-2.pdf
http://doi.org/10.1007/978-3-319-99906-7_14
http://doi.org/10.1080/00401706.1987.10488204
http://doi.org/10.1080/00401706.1987.10488204

12 of 15 Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging

[BET11] Brewka G., Eiter T., Truszczynski M.: Answer set
programming at a glance. Communications of the ACM 54, 12
(2011), 92–103. http://doi.org/10.1145/2043174.2043195

[BG01] Bachmair L., Ganzinger H.: Resolution theorem prov-
ing. In Handbook of Automated Reasoning. Elsevier and MIT
Press, 2001, pp. 19–99. http://doi.org/10.1016/b978-044450813-
3/50004-7

[BGCF20] Braun G., Gimenez C., Cecchi L., Fillottrani P.:
crowd: A visual tool for involving stakeholders into ontology
engineering tasks. KI - Künstliche Intelligenz 34 (2020). http:
//doi.org/10.1007/s13218-020-00657-8

[BHLS17] Baader F., Horrocks I., Lutz C., Sattler U.: An
Introduction to Description Logic. Cambridge University Press,
Cambridge, 2017. http://doi.org/10.1017/9781139025355

[BKNP18] Baader F., Kriegel F., NuradiansyahA., Peñaloza
R.: Making repairs in description logics more gentle. In Princi-
ples of Knowledge Representation and Reasoning: Proceedings
of the Sixteenth International Conference, KR 2018, 30
October–2 November 2018 (Tempe, Arizona, 2018), M.
Thielscher, F. Toni and F. Wolter (Eds.), AAAI Press, pp. 319–
328. https://aaai.org/ocs/index.php/KR/KR18/paper/view/
18056

[BLMS09] Baget J., Leclère M., Mugnier M., Salvat E.: Ex-
tending decidable cases for rules with existential variables. In
Proceedings of the 21st International Joint Conference on Ar-
tificial Intelligence, IJCAI 2009 (2009), pp. 677–682. http://ijcai.
org/Proceedings/09/Papers/118.pdf

[BPS20] Bonatti P. A., Petrova I. M., Sauro L.: Defeasible
reasoning in description logics: An overview on DLN. In Ap-
plications and Practices in Ontology Design, Extraction, and
Reasoning. IOS Press, Amsterdam, 2020. http://doi.org/10.3233/
SSW200043

[CC07] Collins C., Carpendale S.: VisLink: Revealing rela-
tionships amongst visualizations. IEEE Transactions on Visual-
ization and Computer Graphics 13, 6 (2007), 1192–1199. http:
//doi.org/10.1109/TVCG.2007.70521

[CGH*19] Chen W., Guo F., Han D., Pan J., Nie X., Xia J.,
Zhang X.: Structure-based suggestive exploration: A new ap-
proach for effective exploration of large networks. IEEE Trans-
actions on Visualization and Computer Graphics 25, 1 (2019),
555–565. http://doi.org/10.1109/TVCG.2018.2865139

[CGK13] Calì A., Gottlob G., Kifer M.: Taming the infinite
chase: Query answering under expressive relational constraints.
Journal of Artificial Intelligence Research 48 (2013), 115–174.
http://doi.org/10.1613/jair.3873

[CGT89] Ceri S., GottlobG., TancaL.:What you alwayswanted
to know about datalog (and never dared to ask). IEEE Transac-
tions on Knowledge and Data Engineering 1, 1 (1989), 146–166.
http://doi.org/10.1109/69.43410

[CKB09] Cockburn A., Karlson A., Bederson B. B.: A re-
view of overview+detail, zooming, and focus+context inter-
faces. ACM Computing Surveys 41, 1 (2009). http://doi.org/10.
1145/1456650.1456652

[Coh88] Cohen J.: A view of the origins and development of
prolog. Communications of the ACM 31, 1 (1988), 26–36. http:
//doi.org/10.1145/35043.35045

[CSM09] Catenazzi N., Sommaruga L., Mazza R.: User-
friendly ontology editing and visualization tools: The owleasyviz
approach. In Proceedings of the 13th International Conference
on Information Visualisation, IV (2009), IEEE Computer Soci-
ety. https://doi.org/10.1109/IV.2009.34

[DLSP18] Dudás M., Lohmann S., Svátek V., Pavlov D.: On-
tology visualization methods and tools: A survey of the state
of the art. The Knowledge Engineering Review 33 (2018), e10.
http://doi.org/10.1017/S0269888918000073

[DVKP*11] Del Vescovo C., Klinov P., Parsia B., Sattler U.,
Schneider T.: DeMoST: A tool for exploring the decomposi-
tion and the modular structure of owl ontologies. In Proceedings
of the 10th International Semantic Web Conference (ISWC-11)
(2011), pp. 191.

[EMJ*11] Elmqvist N., Moere A. V., Jetter H.-C., Cernea D.,
Reiterer H., Jankun-Kelly T.: Fluid interaction for informa-
tion visualization. Information Visualization 10, 4 (2011), 327–
340. http://doi.org/10.1177/1473871611413180

[Fal] Falconer S.: Ontograf protégé plugin (2010). https:
//protegewiki.stanford.edu/wiki/OntoGraf, Accessed: 2022-12-
10.

[FLAD20] Flemisch T., Langner R., Alrabbaa C., Dachselt
R.: Towards designing a tool for understanding proofs in ontolo-
gies through combined node-link diagrams. InProceedings of the
5th International Workshop on Visualization and Interaction for
Ontologies and Linked Data (VOILA) (2020), vol. 2778, CEUR-
WS.org. http://ceur-ws.org/Vol-2778/paper3.pdf

[FNS13] Fu B., Noy N. F., Storey M.-A.: Indented tree or graph?
A usability study of ontology visualization techniques in the con-
text of class mapping evaluation. In The Semantic Web – ISWC
(2013), Springer, Berlin Heidelberg, pp. 117–134. http://doi.org/
10.1007/978-3-642-41335-3_8

[Gen04] Gene Ontology Consortium: The Gene Ontology (GO)
database and informatics resource. Nucleic Acids Research 32
(2004), 258–261. http://doi.org/10.1093/nar/gkh036

[GFV13] Gibson H., Faith J., Vickers P.: A survey of two-
dimensional graph layout techniques for information visualisa-
tion. Information Visualization 12, 3-4 (2013), 324–357. http:
//doi.org/10.1177/1473871612455749

[GHKS07] Grau B. C., Horrocks I., Kazakov Y., Sattler U.:
Just the right amount: Extracting modules from ontologies. In

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

http://doi.org/10.1145/2043174.2043195
http://doi.org/10.1016/b978-044450813-3/50004-7
http://doi.org/10.1016/b978-044450813-3/50004-7
http://doi.org/10.1007/s13218-020-00657-8
http://doi.org/10.1007/s13218-020-00657-8
http://doi.org/10.1017/9781139025355
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
http://ijcai.org/Proceedings/09/Papers/118.pdf
http://ijcai.org/Proceedings/09/Papers/118.pdf
http://doi.org/10.3233/SSW200043
http://doi.org/10.3233/SSW200043
http://doi.org/10.1109/TVCG.2007.70521
http://doi.org/10.1109/TVCG.2007.70521
http://doi.org/10.1109/TVCG.2018.2865139
http://doi.org/10.1613/jair.3873
http://doi.org/10.1109/69.43410
http://doi.org/10.1145/1456650.1456652
http://doi.org/10.1145/1456650.1456652
http://doi.org/10.1145/35043.35045
http://doi.org/10.1145/35043.35045
https://doi.org/10.1109/IV.2009.34
http://doi.org/10.1017/S0269888918000073
http://doi.org/10.1177/1473871611413180
https://protegewiki.stanford.edu/wiki/OntoGraf
https://protegewiki.stanford.edu/wiki/OntoGraf
http://ceur-ws.org/Vol-2778/paper3.pdf
http://doi.org/10.1007/978-3-642-41335-3_8
http://doi.org/10.1007/978-3-642-41335-3_8
http://doi.org/10.1093/nar/gkh036
http://doi.org/10.1177/1473871612455749
http://doi.org/10.1177/1473871612455749

Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging 13 of 15

Proceedings of the 16th International Conference on World Wide
Web, (WWW) (2007), ACM, pp. 717–726. http://doi.org/10.1145/
1242572.1242669

[GHM*14] Glimm B., Horrocks I., Motik B., Stoilos G., Wang
Z.: Hermit: An OWL 2 reasoner. Journal of Automated Reason-
ing 53, 3 (2014), 245–269. http://doi.org/10.1007/s10817-014-
9305-1

[GPNT12] García-Peñalvo F. J., Palacios R. C., Navarro J. F.
G., Therón R.: Towards an ontologymodeling tool. A validation
in software engineering scenarios. Expert Systems with Applica-
tions 39, 13 (2012), 11468–11478. http://doi.org/10.1016/j.eswa.
2012.04.009

[HB11] Horridge M., Bechhofer S.: The OWL API: A java API
for OWL ontologies. Semantic Web 2, 1 (2011), 11–21. http://
doi.org/10.3233/SW-2011-0025

[HGN*19] Horridge M., Gonçalves R. S., Nyulas C. I., Tudo-
rache T., Musen M. A.: Webprotégé: A cloud-based ontology
editor. In Companion Proceedings of the WWW’19 (2019), As-
sociation for Computing Machinery, pp. 686–689. http://doi.org/
10.1145/3308560.3317707

[HKP*09] Hitzler P., Krötzsch M., Parsia B., Patel-
Schneider P. F., Rudolph S.: Owl 2 web ontology language
primer.W3C Recommendation 27, 1 (2009), 123.

[HMP*14] Horridge M., Mortensen J. M., Parsia B., Sattler
U., Musen M. A.: A study on the atomic decomposition of on-
tologies. In The Semantic Web – ISWC (2014), Springer Interna-
tional Publishing, pp. 65–80. http://doi.org/10.1007/978-3-319-
11915-1_5

[Hor] Horridge M.: Owlviz protégé plugin (2010). https://
protegewiki.stanford.edu/wiki/OWLViz, Accessed: 2022-12-10.

[Hor08] Horrocks I.: Ontologies and the semantic web.Communi-
cations of the ACM 51, 12 (2008), 58–67. http://doi.org/10.1145/
1409360.1409377

[Hor11] Horridge M.: Justification Based Explanation in
Ontologies. PhD thesis. University of Manchester; 2011.
https://www.research.manchester.ac.uk/portal/files/54511395/
FULL_TEXT.PDF

[HSG15] Hoehndorf R., Schofield P. N., Gkoutos G. V.:
The role of ontologies in biological and biomedical research: a
functional perspective. Briefings in Bioinformatics 16, 6 (2015),
1069–1080. http://doi.org/10.1093/bib/bbv011

[HST18] Hinderks A., Schrepp M., Thomaschewski J.:
Ueq: User experience questionnaire. https://www.ueq-online.
org/ (2018), Accessed: 2022-12-10.

[IB14] Ivanovic M., Budimac Z.: An overview of ontologies and
data resources in medical domains. Expert Systems with Appli-
cations 41, 11 (2014), 5158–5166. http://doi.org/10.1016/j.eswa.
2014.02.045

[KC20] Koopmann P., Chen J.: Deductive module extraction for
expressive description logics. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2020
(2020), C. Bessiere (Ed.), ijcai.org, pp. 1636–1643. http://doi.
org/10.24963/ijcai.2020/227

[KK15] Kazakov Y., Klinov P.: Advancing ELK: Not only per-
formancematters. InProceedings of the 28th InternationalWork-
shop on Description Logics (DL) (2015), CEUR-WS.org. http:
//ceur-ws.org/Vol-1350/paper-27.pdf

[KKS14] KazakovY., KrötzschM., Simancik F.: The incredible
ELK—from polynomial procedures to efficient reasoning with
EL ontologies. Journal of Automated Reasoning 53, 1 (2014),
1–61. http://doi.org/10.1007/s10817-013-9296-3

[KKS17] Kazakov Y., Klinov P., Stupnikov A.: Towards
reusable explanation services in Protégé. In Proceedings of the
30th International Workshop on Description Logics (DL), CEUR
Workshop Proceedings (2017), vol. 1879. http://www.ceur-ws.
org/Vol-1879/paper31.pdf

[KLWW08] Konev B., Lutz C., Walther D., Wolter F.: Se-
mantic modularity and module extraction in description logics.
In Proceedings of the 18th European Conference on Artificial
Intelligence, ECAI 2008. Frontiers in Artificial Intelligence and
Applications (2008), M. Ghallab, C. D. Spyropoulos, N. Fako-
takis and N. M. Avouris (Eds.), vol. 178, IOS Press, pp. 55–59.
http://doi.org/10.3233/978-1-58603-891-5-55

[KPSG06] Kalyanpur A., Parsia B., Sirin E., Grau B. C.: Re-
pairing unsatisfiable concepts in OWL ontologies. In The Se-
mantic Web – ESWC 2006. Lecture Notes in Computer Science
(2006), vol. 4011, Springer, pp. 170–184. http://doi.org/10.1007/
11762256_15

[LdKLC13] Lee D., de Keizer N., Lau F., Cornet R.: Literature
review of SNOMED CT use. Journal of the American Medical
Informatics Association 21, e1 (2013), e11–e19. http://doi.org/
10.1136/amiajnl-2013-001636

[LDMH*21] Lieber S., De Meester B., Heyvaert P., Brück-
mann F., Wambacq R., Mannens E., Verborgh R., Dimou A.:
Visual notations for viewing RDF constraints with unshacled. Se-
mantic Web (2021), 1–36. http://doi.org/10.3233/SW-210450

[LIRC12] Lee B., Isenberg P., Riche N. H., Carpendale S.: Be-
yond mouse and keyboard: Expanding design considerations for
information visualization interactions. IEEE Transactions on Vi-
sualization and Computer Graphics 18, 12 (2012), 2689–2698.
http://doi.org/10.1109/TVCG.2012.204

[LPP*06] Lee B., Parr C., Plaisant C., Bederson B., Veksler
V., Gray W., Kotfila C.: Treeplus: Interactive exploration of
networks with enhanced tree layouts. IEEE Transactions on Vi-
sualization and Computer Graphics 12, 6 (2006), 1414–1426.
http://doi.org/10.1109/TVCG.2006.106

[MB19] Major T., Basole R. C.: Graphicle: Exploring units, net-
works, and context in a blended visualization approach. IEEE

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

http://doi.org/10.1145/1242572.1242669
http://doi.org/10.1145/1242572.1242669
http://doi.org/10.1007/s10817-014-9305-1
http://doi.org/10.1007/s10817-014-9305-1
http://doi.org/10.1016/j.eswa.2012.04.009
http://doi.org/10.1016/j.eswa.2012.04.009
http://doi.org/10.3233/SW-2011-0025
http://doi.org/10.3233/SW-2011-0025
http://doi.org/10.1145/3308560.3317707
http://doi.org/10.1145/3308560.3317707
http://doi.org/10.1007/978-3-319-11915-1_5
http://doi.org/10.1007/978-3-319-11915-1_5
https://protegewiki.stanford.edu/wiki/OWLViz
https://protegewiki.stanford.edu/wiki/OWLViz
http://doi.org/10.1145/1409360.1409377
http://doi.org/10.1145/1409360.1409377
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
https://www.research.manchester.ac.uk/portal/files/54511395/FULL_TEXT.PDF
http://doi.org/10.1093/bib/bbv011
https://www.ueq-online.org/
https://www.ueq-online.org/
http://doi.org/10.1016/j.eswa.2014.02.045
http://doi.org/10.1016/j.eswa.2014.02.045
http://doi.org/10.24963/ijcai.2020/227
http://doi.org/10.24963/ijcai.2020/227
http://ceur-ws.org/Vol-1350/paper-27.pdf
http://ceur-ws.org/Vol-1350/paper-27.pdf
http://doi.org/10.1007/s10817-013-9296-3
http://www.ceur-ws.org/Vol-1879/paper31.pdf
http://www.ceur-ws.org/Vol-1879/paper31.pdf
http://doi.org/10.3233/978-1-58603-891-5-55
http://doi.org/10.1007/11762256_15
http://doi.org/10.1007/11762256_15
http://doi.org/10.1136/amiajnl-2013-001636
http://doi.org/10.1136/amiajnl-2013-001636
http://doi.org/10.3233/SW-210450
http://doi.org/10.1109/TVCG.2012.204
http://doi.org/10.1109/TVCG.2006.106

14 of 15 Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging

Transactions on Visualization and Computer Graphics 25, 1
(2019), 576–585. http://doi.org/10.1109/TVCG.2018.2865151

[MMV11] Moodley K., Meyer T., Varzinczak I. J.: Root justifi-
cations for ontology repair. InWeb Reasoning and Rule Systems.
Lecture Notes in Computer Science (2011), vol. 6902, Springer,
pp. 275–280. http://doi.org/10.1007/978-3-642-23580-1_24

[MP17] Matentzoglu N., Parsia B.: BioPortal snapshot
30.03.2017. 2017. https://doi.org/10.5281/zenodo.439510, Ac-
cessed: 2022-12-10.

[Mun14] Munzner T.: Visualization Analysis and Design. A K Pe-
ters Visualization Series. CRC Press, Florida, 2014. http://doi.
org/10.1201/b17511

[Mus15] Musen M. A.: The Protégé project: A look back and a
look forward. AI Matters 1, 4 (2015), 4–12. http://doi.org/10.
1145/2757001.2757003

[MVJS18] Matentzoglu N., Vigo M., Jay C., Stevens R.: In-
ference inspector: Improving the verification of ontology author-
ing actions. Journal of Web Semantics 49 (2018), 1–15. http:
//doi.org/10.1016/j.websem.2017.09.004

[PPH18] Paulovics P., Pukancová J., Homola M.: SIVA: an ed-
ucational tool for the tableau reasoning algorithm. In Proceed-
ings of the 31st International Workshop on Description Logics
(DL) (2018), vol. 2211, CEUR-WS.org. http://ceur-ws.org/Vol-
2211/paper-29.pdf

[PSDB20] Pernischová R., Serbak M., Dell’Aglio D., Bern-
stein A.: Chimp: Visualizing ontology changes and their im-
pact in protégé. In Proceedings of the 5th International Work-
shop on Visualization and Interaction for Ontologies and Linked
Data (2020), vol. 2778, CEUR-WS.org, pp. 47–60. http://ceur-
ws.org/Vol-2778/paper5.pdf

[PSK05] Parsia B., Sirin E., Kalyanpur A.: Debugging OWL
ontologies. In Proceedings of the 14th International Conference
on World Wide Web (WWW) (2005), ACM, pp. 633–640. http:
//doi.org/10.1145/1060745.1060837

[PT18] Pensel M., Turhan A.: Reasoning in the defeasible de-
scription logic EL+ - computing standard inferences under ratio-
nal and relevant semantics. International Journal of Approximate
Reasoning (2018). http://doi.org/10.1016/j.ijar.2018.08.005

[RBB02] Rost U., Bornberg-Bauer E.: TreeWiz: interactive ex-
ploration of huge trees. Bioinformatics 18, 1 (2002), 109–114.
http://doi.org/10.1093/bioinformatics/18.1.109

[RDH*] Rector A. L., Drummond N., Horridge M., Rogers J.,
Knublauch H., Stevens R., Wang H., Wroe C.: OWL piz-
zas: Practical experience of teaching OWL-DL: Common errors
& common patterns. In Proceedings of the EKAW 2004. Lec-
ture Notes in Computer Science, vol. 3257, Springer, pp. 63–81.
http://doi.org/10.1007/978-3-540-30202-5_5

[RMKM08] Rubin D. L., Moreira D. A., Kanjamala P. P.,
MusenM. A.: Bioportal: A web portal to biomedical ontologies.
In AAAI Spring Symposium Series, Symbiotic Relationships be-
tween Semantic Web and Knowledge Engineering (2008), Stan-
ford University Press.

[Rob07] Roberts J. C.: State of the art: Coordinatedmultiple views
in exploratory visualization. In 5th International Conference on
Coordinated and Multiple Views in Exploratory Visualization
(CMV) (2007), pp. 61–71. http://doi.org/10.1109/CMV.2007.20

[SC03] Schlobach S., Cornet R.: Non-standard reasoning ser-
vices for the debugging of description logic terminologies. In IJ-
CAI’03: Proceedings of the 18th International Joint Conference
on Artificial Intelligence (2003), Morgan Kaufmann, pp. 355–
362. https://www.ijcai.org/Proceedings/03/Papers/053.pdf

[SHT] Schrepp M., Hinderks A., Thomaschewski J.: Applying
the user experience questionnaire (UEQ) in different evaluation
scenarios. In Proceedings of the DUXU 2014, Springer Inter-
national Publishing, pp. 383–392. http://doi.org/10.1007/978-3-
319-07668-3_37

[SLG14] Steigmiller A., Liebig T., Glimm B.: Konclude.: Sys-
tem description. Journal of Web Semantics 27-28 (2014), 78–85.
https://doi.org/10.1016/j.websem.2014.06.003

[SLR14] Simperl E., Luczak-Rösch M.: Collaborative ontology
engineering: A survey. The Knowledge Engineering Review 29,
1 (2014), 101–131. http://doi.org/10.1017/S0269888913000192

[SMS*01] Storey M., Musen M., Silva J., Best C., Ernst
N., Fergerson R., Noy N.: Jambalaya: Interactive visualiza-
tion to enhance ontology authoring and knowledge acquisition
in Protégé. In Proceedings of the Workshop on Interactive Tools
for Knowledge Capture (K-CAP) (2001). https://www.isi.edu/
∼blythe/kcap-interaction/papers/storey.pdf

[TM03] Teoh S. T., Ma K.-L.: Paintingclass: Interactive construc-
tion, visualization and exploration of decision trees. In KDD’03:
Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (2003), Association
for Computing Machinery, pp. 667–672. http://doi.org/10.1145/
956750.956837

[TS20] Tominski C., Schumann H.: Interactive Visual Data Anal-
ysis. CRC Press, Boca Raton, FL, 2020. http://doi.org/10.1201/
9781315152707

[TSP*08] Thomas E., Sleeman D. H., Pan J. Z., Reul Q., Lam
J. S. C.: The Aberdeen University ontology reuse stack. In Pro-
ceedings of the Symbiotic Relationships between Semantic Web
and Knowledge Engineering (2008), AAAI, pp. 83. http://www.
aaai.org/Library/Symposia/Spring/2008/ss08-07-013.php

[Ves13] Vescovo C. D.: The Modular Structure of an Ontology:
Atomic Decomposition and its Applications. PhD thesis, Univer-
sity of Manchester, UK, 2013.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

http://doi.org/10.1109/TVCG.2018.2865151
http://doi.org/10.1007/978-3-642-23580-1_24
https://doi.org/10.5281/zenodo.439510
http://doi.org/10.1201/b17511
http://doi.org/10.1201/b17511
http://doi.org/10.1145/2757001.2757003
http://doi.org/10.1145/2757001.2757003
http://doi.org/10.1016/j.websem.2017.09.004
http://doi.org/10.1016/j.websem.2017.09.004
http://ceur-ws.org/Vol-2211/paper-29.pdf
http://ceur-ws.org/Vol-2211/paper-29.pdf
http://ceur-ws.org/Vol-2778/paper5.pdf
http://ceur-ws.org/Vol-2778/paper5.pdf
http://doi.org/10.1145/1060745.1060837
http://doi.org/10.1145/1060745.1060837
http://doi.org/10.1016/j.ijar.2018.08.005
http://doi.org/10.1093/bioinformatics/18.1.109
http://doi.org/10.1007/978-3-540-30202-5_5
http://doi.org/10.1109/CMV.2007.20
https://www.ijcai.org/Proceedings/03/Papers/053.pdf
http://doi.org/10.1007/978-3-319-07668-3_37
http://doi.org/10.1007/978-3-319-07668-3_37
https://doi.org/10.1016/j.websem.2014.06.003
http://doi.org/10.1017/S0269888913000192
https://www.isi.edu/%7Eblythe/kcap-interaction/papers/storey.pdf
https://www.isi.edu/%7Eblythe/kcap-interaction/papers/storey.pdf
http://doi.org/10.1145/956750.956837
http://doi.org/10.1145/956750.956837
http://doi.org/10.1201/9781315152707
http://doi.org/10.1201/9781315152707
http://www.aaai.org/Library/Symposia/Spring/2008/ss08-07-013.php
http://www.aaai.org/Library/Symposia/Spring/2008/ss08-07-013.php

Méndez et al. / A Visual Tool for Explaining Reasoning with OWL Ontologies and Supporting Interactive Debugging 15 of 15

[VHP*20] Vescovo C. D., Horridge M., Parsia B., Sattler
U., Schneider T., Zhao H.: Modular structures and atomic
decomposition in ontologies. Journal of Artificial Intelligence
Research 69 (2020), 963–1021. http://doi.org/10.1613/jair.1.
12151

[WLA18] Wiens V., Lohmann S., Auer S.: Webvowl editor:
Device-independent visual ontology modeling. In Proceedings

of the ISWC-P&D-Industry-BlueSky (2018), vol. 2180, CEUR-
WS.org. http://ceur-ws.org/Vol-2180/paper-75.pdf

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Data S1

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

http://doi.org/10.1613/jair.1.12151
http://doi.org/10.1613/jair.1.12151
http://ceur-ws.org/Vol-2180/paper-75.pdf

