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Abstract
In this paper, we propose a learning-based test-time optimization approach for reconstructing geometrically consistent depth
maps from a monocular video. Specifically, we optimize an existing single image depth estimation network on the test example
at hand. We do so by introducing pseudo reference depth maps which are computed based on the observation that the optical
flow displacement for an image pair should be consistent with the displacement obtained by depth-reprojection. Additionally, we
discard inaccurate pseudo reference depth maps using a simple median strategy and propose a way to compute a confidence map
for the reference depth. We use our pseudo reference depth and the confidence map to formulate a loss function for performing
the test-time optimization in an efficient and effective manner. We compare our approach against the state-of-the-art methods
on various scenes both visually and numerically. Our approach is on average 2.5× faster than the state of the art and produces
depth maps with higher quality.
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1. Introduction

Depth estimation from a video sequence plays an important role
in many computer graphics and vision applications, such as view
synthesis [TS20, ZTF*18, PZ17], video stabilization [LGJA09],
scene understanding [GGAM14, QLW*17, SLX15], special video
effects [LHS*20] and augmented reality [VKB*18]. However, accu-
rate and consistent depth estimation from casually captured videos
is still challenging because of higher noise level, motion blur and
rolling shutter deformations. With decades of studies in this field, a
great number of techniques have been developed to approach depth
estimation from videos.

Recently, several hybrid approaches [LHS*20, KRH21, ZCT*21]
propose to combine the strength of the learning-based and tradi-
tional techniques. These approaches use a pre-trained single im-
age depth estimation network and fine-tune its weights through a
test-time optimization process. By doing so, the network learns to
satisfy the geometry of the scene through test-time optimization,
while relying on the learned priors in the regions with weak con-
straints. Unfortunately, the test-time loss requires forward and back-
ward evaluation of a complex reprojection process. Furthermore,

the loss in these approaches equally enforces all the geometric con-
straints, even the inaccurate ones. As a results, these methods are
computationally expensive and produce sub-optimal results in chal-
lenging cases, as shown in Figure 8.

We address these issues by proposing a novel test-time loss func-
tion. The key contribution of our work is to compute pseudo ref-
erence depth maps for each frame by analytically minimizing the
distance between optical flow and depth-reprojected correspon-
dences. Furthermore, we propose a simple strategy using the me-
dian operation to discard the inaccurate depth maps and generate
a single pseudo reference depth at each frame. The pseudo refer-
ence depth maps are essentially optimal depth at each frame ac-
cording to pairwise optical flows. Since the optical flows are not
always accurate, the estimated pseudo reference depth maps in cer-
tain regions may be unreliable. Therefore, we also propose a method
to compute a confidence map indicating the reliability of the com-
puted pseudo reference depth. During the test-time optimization, we
enforce the estimated depth using the neural network to be simi-
lar to the pseudo reference depth according to the confidence map.
Moreover, we ensure the consistency of the estimated depth in the
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neighbouring frames by enforcing the 3D projected corresponding
pixels in the consecutive frames to be similar.

We demonstrate the superiority of our method through extensive
comparisons against the state-of-the-art algorithms on a variety of
scenes, including publicly available datasets such as TUM RGB-
D [SBC12], KITTI [GLU12] and NYU Depth [NSF12]. Our ap-
proach is visually and numerically better than the state of the art
and is on average 2.5× faster than Luo et al.’s method [LHS*20].
In summary, we make the following contributions:

• We introduce ‘pseudo’ reference depth maps to accelerate the
test-time optimization process.

• We propose a method to discard inaccurate pseudo depth maps
along with a confidence map to ensure only the consistent geo-
metric constraints are used during optimization.

• We demonstrate that our approach outperforms the state of the art
on several datasets both numerically and visually.

2. Related Work

Single image depth estimation. In recent years, significant
progress has been made on supervised learning-based single im-
age depth estimation [EPF15, LSL15, LRB*16, EF14, FGW*18].
However, the major challenge is acquiring diverse images with
their corresponding ground truth depth maps for training the net-
works. Many approaches address this issue through the use of syn-
thetic datasets [MIH*16], relative depth annotations [CFYD16],
3D movies [RBK21, WLPW19] and depth maps obtained by
structure-from-motion (SfM) andmulti-view stereo [LS18, CQD19,
LDC*19]. Another set of methods propose to address this prob-
lem through self-supervised loss functions using monocular videos
[DPH*20, QLL*18, QLL*20, RJB*19, VRS*17, YS18, ZBSL17,
ZLH18] or stereo pairs [GLY*18, GMB17, GLJA19]. However, the
major problem with all of these approaches is that they are specif-
ically designed for single image depth estimation, and generate re-
sults with severe temporal flickering on videos.

Video depth estimation. A couple of approaches [LGK*19,
ZJ20] propose to estimate depth of a video by training a network
using multi-view loss functions. However, these methods are in-
herently designed for static scenes. Several approaches [PGDG20,
WPF19, ZSL*19] propose to implicitly enforce temporal coherency
through recurrent neural networks. Yoon et al. [YKG*20] propose
to fuse the estimated depth from a single image and multi-view
stereo through a learned combiner module. However, these ap-
proaches do not explicitly enforce the final depthmaps to be geomet-
rically consistent. Finally, Li et al. [LLZ*21] propose to fine-tune
a single-image depth estimation network using unlabelled video
dataset by enforcing a set of geometric and temporal constraints.
While this approach produces reasonable results for videos that are
similar to their fine-tuning dataset, it often struggles to generalize to
unseen videos.

Test-time optimization. A few recent techniques propose to gen-
eralize the neural radiance field method [MST*20] to dynamic
scenes [LNSW21, PSB*21]. While these approaches aim to syn-
thesize novel views, their estimated opacity field can be used to re-
construct the depth at each frame. Unfortunately, these approaches

Figure 1: Given an input video, we fine-tune the parameters of an
existing single image depth estimation network, gθ , to produce con-
sistent depth estimates. We do so by minimizing an objective func-
tion, consisting of two loss terms, shown with the red lines. Specif-
ically, we compute a pseudo reference depth map for each frame
D∗
i (discussed in Section 3.2) and minimize the error between the

estimated and pseudo reference depth maps. Note that, we weight
this error using a confidence map Mi to suppress the loss in regions
where the pseudo reference is unreliable. Additionally, we use the
estimated depth maps to project the corresponding pixels (shown
with green and blue circles) in a pair of consecutive frames into 3D
and minimize the loss between the projected 3D points. We suppress
this loss in the occluded regions using a mask Mi→i+1, computed
through optical flow forward backward consistency test.

are extremely expensive and can only be used for short video se-
quences. A couple of methods [CPMA19, CQD19] propose to fine-
tune a single image depth estimation network on the test scene.
However, these approaches focus on increasing the quality of the
single image depth. To ensure that the estimated depth maps are
geometrically consistent, Luo et al. [LHS*20] propose a test-time
loss based on global geometric constraints. Their approach, how-
ever, has two major issues. First, they require forward and backward
evaluation of a complex loss requiring pixel reprojection. More-
over, they assume that all the geometric constraints are equally
reliable and ignore the inaccuracies of the optical flows. There-
fore, their method is computationally expensive and produces sub-
optimal results in challenging cases. Kopf et al. [KRH21] and Zhang
et al. [ZCT*21] extend Luo et al.’s method [LHS*20] to optimize
the camera poses and improve its performance on scenes with large
motion, respectively. However, they have the same drawbacks of
Luo et al.’s method [LHS*20] since they utilize the samemajor test-
time loss functions.

3. Algorithm

Given a set of N frames, I1, . . . , IN , of a monocular video, we esti-
mate geometrically and temporally consistent depth for each frame.
We do this by first obtaining an initial depth estimate from each
frame using an existing deep single image depth estimation network,
gθ (Ii). Our goal is then to improve these depth estimates by updat-
ing the network parameters θ through a novel test-time optimiza-
tion process. We show the overview of our algorithm in Figure 1. In
the following sections, we first describe the pre-processing step and
then discuss our test-time optimization process.
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3.1. Pre-processing

We pre-process the data by following the proposed strategy by
Luo et al. [LHS*20]. Specifically, we first use COLMAP [SF16,
SZPF16], an off-the-shelf SfM software, to obtain the camera poses.
These parameters are later used to obtain our geometric losses. Fur-
thermore, we use an existing single image depth estimation method
[LDC*19, GAFB19] to obtain an initial depth for each frame. To
fix the scale mismatch between these depth estimates and SfM, we
scale the camera translation of each frame using the average of the
median of the ratio between the learning-based depth estimates and
the ones from SfM. Moreover, we compute forward and backward
flows, using FlowNet2 [IMS*17], between frames Ii and Ij where
the neighbouring frames are selected according to the power of 2
rule, proposed by Luo et al. [LHS*20]. For each pair (i, j), we use
the forward backward consistency to obtain a binarymaskMi→ j rep-
resenting the occluded areas and regions with inconsistent flows.

3.2. Pseudo reference depth

The main challenge for an optimization system is designing an ap-
propriate loss function. Our key contribution is to compute a pseudo
reference depthmapwith its corresponding confidencemap for each
frame. During test-time optimization, we minimize the confidence
weighted distance between the network’s output and the pseudo ref-
erence depth. Additionally, we introduce a loss to ensure that the es-
timated depth maps in neighbouring frames are consistent. In sum-
mary, our objective consists of the following two terms:

L = L∗
pseudo + λLcons (1)

where L∗
pseudo and Lcons are defined in Equations (8) and (9), respec-

tively. Moreover, λ is a parameter that controls the balance between
the two terms. We set this parameter to 0.3 in all the experiments,
unless otherwise stated. Next, we explain these two terms in detail.

Per-pair pseudo reference depth. The goal here is to obtain a
pseudo reference depth for frame i considering frame j. To do this,
we rely on the observation that the displacement computed using op-
tical flow between a pair of images should match the displacement
obtained by depth reprojection. Specifically, let pixel q in camera i
correspond to pixel p in camera j, as shown in Figure 2. Using the
depth, di, we can project pixel q in the 3D world and back to camera
j to obtain the depth reprojected pixel qi→ j. The distance between
pixel p and the reprojected pixel q, known as spatial loss in pre-
vious approaches [LHS*20, KRH21, ZCT*21], indicates how well
the depth di matches the optical flow.We then obtain the pseudo ref-
erence depth d∗

i→ j in camera i considering camera j by minimizing
this distance as follows:

d∗
i→ j = argmin

di
‖p− qi→ j‖, (2)

where qi→ j depends on di and the optimal di corresponds to the re-
projected pixel qi→ j that is closest to pixel p.

Fortunately, the optimal solution to this objective function can be
analytically computed as follows (see Appendix for derivation):

d∗
i→ j = (oj − oi) · �vq − (�vo · �vq) (oj − oi) · �vo

1 − (�vq · �vo)2 ‖cos(θ )‖, (3)

Figure 2: Using an initial depth di, the pixel q from camera i can be
projected into the 3D world (xi(q)) and back into camera j to obtain
the reprojected pixel qi→ j . This reprojected pixel always lies on the
epipolar line shown in purple. The distance between this reprojected
pixel qi→ j and the optical flow correspondence p indicates how well
the depth and optical flow match. The pseudo reference depth d∗

i→ j

is the one resulting in smallest distance.

where oi and oj are the centre of projection of cameras i and j, re-
spectively. Furthermore, �vq is the unit vector that points to pixel q
from oi (see Figure 2). Moreover, �ve is a unit vector defined as

�vo = norm(e j − oi + ((p− e j ) · �ve) · �ve), (4)

where e j is the epipole corresponding to pixel q on camera j and
�vo is the unit vector defining the direction of the epipolar line. Fur-
thermore, norm is the vector normalization operator. See Figure 3
(bottom) for examples of per-pair pseudo reference depth maps.

Note that for accurate optical flow and camera calibration, the
line from the centre of camera j (oj) to pixel p intersects with the
line connecting the centre of camera i (oi) and pixel q. In this case,
the projected distance between this intersection point and oi is the
‘ground truth’ depth at pixel q. However, in practice, optical flow
and camera calibration are not accurate, and thus the two lines do not
intersect. Therefore, we define the depth minimizing the objective
in Equation (3) as the ‘pseudo’ reference depth for pixel q.

Using this approach, we can compute a set of pseudo reference
depth maps for frame i considering a set of neighbouring frames j.
We can then define the pseudo reference loss in Equation (1) as the
weighted summation of the loss between the estimated depth by the
network and all the pseudo reference depth maps as follows:

Lpseudo =
∑
i

∑
j Mi→ jL(gθ (Ii),D∗

i→ j )∑
j Mi→ j

, (5)

whereMi→ j is a binarymask indicating the regions with inconsistent
flows based on the forward backward flow test. Moreover, gθ (Ii) is
the estimated depth map at frame i using the single image depth
estimation network. Finally,D∗

i→ j is the pseudo reference depth map
at frame i considering frame j (d∗

i→ j for all pixels).

Themajor problemwith this loss is that it ignores the inaccuracies
of the optical flow and considers the pseudo reference depth from all

© 2023 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



198 L. Zeng and N. K. Kalantari / Test-Time Optimization for Video Depth Estimation Using Pseudo Reference Depth

Input Per-frame Depth Confidence Map

Per-pair Depth

Figure 3: On the bottom, we show a set of per-pair pseudo refer-
ence depth for the input image (top left) considering a set of neigh-
bouring frames. Because of the inaccuracies of the optical flow,
these per-pair pseudo reference depth are not always accurate. For
example, the depth for the person standing behind the board is in-
correctly estimated to be close to the camera in some of the depth
maps. By computing the median of these per-pair depths, we discard
the inaccurate depth values and generate amore accurate per-frame
pseudo reference depth (top middle). The confidence map (top right)
indicates the reliability of the per-frame pseudo reference depth.

the frame pairs (i, j) as ground truth. Note that even thoughwemask
out the regions with inconsistent forward and backward flows using
Mi→ j, many inaccurate flows would still pass this consistency test.
Therefore, the pseudo reference depth maps computed using these
flows are consequently inaccurate. Next, we address this problem
by proposing a simple, but effective strategy.

Discussion—Existing techniques [LHS*20, KRH21, ZCT*21]
also utilize the distance between the depth reprojected pixel q and
pixel p, but they directly use it along with other loss functions to op-
timize the network parameters. Our approach of computing pseudo
reference depth maps has two main advantages. First, our approach
is more efficient as we compute the pseudo reference depth maps by
analytically optimizing Equation (3) prior to optimization. In con-
trast, the existing methods require forward and backward (for gra-
dients) evaluation of the distance in Equation (3) in every iteration
of the optimization. Second, by directly using this distance in op-
timization, existing methods ignore the inaccuracies of the optical
flows. However, as discussed below, computing the pseudo refer-
ence depth allows us to discard the depth maps computed with in-
accurate flows.

Per-frame pseudo reference depth. As discussed, the inaccu-
racies in the pseudo reference depth maps negatively impact the
quality of the results. To mitigate this issues, we make an obser-
vation that all the computed per-pair pseudo reference depth maps
for a particular frame (D∗

i→ j where j is the index of a set of neigh-
bouring frames) should have similar the depth values. Therefore, the
ones that do not agree with the majority are computed using inaccu-
rate flows and should not be taken into account during optimization.
Based on this observation, we propose to compute per-frame pseudo

reference depth by obtaining the median of all the per-pair pseudo
reference depth maps at each frame as follows:

D∗
i = median

j
(D∗

i→ j ) (6)

Note that the median operation is robust to outliers, and thus the
depth values computed from inaccurate flows are automatically dis-
carded with this simple strategy, as shown in Figure 3.

This per-frame pseudo reference depth D∗
i can be used as the tar-

get to optimize the single image depth estimation network. How-
ever, every depth value in D∗

i is not equally reliable. For example,
the values that are in agreement with all the per-pair pseudo refer-
ence depth maps are more reliable than the ones that only match a
few per-pair depth maps. To account for this, we compute a confi-
dence map by summing the binary maskMi→ j for the per-pair depth
maps that are in agreement with the per-frame depth as

Mi =
∑
j

s jMi→ j, s j =
{
1 ‖D∗

i − D∗
i→ j‖ ≤ 0.1D∗

i

0 otherwise
(7)

We use this confidence map Mi along with the per-frame refer-
ence depth D∗

i to formalize our pseudo loss.

3.3. Test-time loss

Pseudo reference loss. We define our final pseudo reference loss as
the weighted distance between the estimated and pseudo reference
depth maps:

L∗
pseudo =

∑
i

Mi‖ log(1 + gθ (Ii)) − log(1 + D∗
i )‖. (8)

Note that we compute the loss in the logarithmic domain to put
more emphasis on the smaller depth values.

Consistency loss. The loss in Equation (8) is applied to each indi-
vidual frames, and thus, does not guarantee that the estimated depth
at different frames are consistent. To ensure such a consistency, we
enforce the 3D points from the corresponding pixels of two consec-
utive frames to be similar. Specifically, we do this by minimizing
the following loss:

Lcons =
∑
q

∑
i

Mi→i+1‖xi(q) − xi+1( fi→i+1(q))‖, (9)

where xi(q) is the projected pixel q in frame i to the 3D world (see
Figure 2) and fi→i+1(q) is the pixel in frame i+ 1 that corresponds
to pixel q in frame i according to the optical flow.

Note that existing techniques [LHS*20, KRH21, ZCT*21] use a
similar loss, called disparity loss, to enforce consistency between
neighbouring frames. However, their loss only enforces the similar-
ity of the projected 3D points across one dimension. In contrast, our
consistency loss considers all the three dimensions when enforcing
the similarity of the projected 3D points.
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Table 1: Quantitative comparisons against the other approaches on the TUM RGB-D dataset.

Error metric ↓ Accuracy metric ↑

Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

MC [LDC*19] 0.3112 0.1038 0.2461 0.3898 0.5671 0.7680 0.8814
WSVD [WLPW19] 0.2923 0.0900 0.2373 0.3796 0.5387 0.7819 0.8939
CVD [LHS*20] 0.1455 0.0587 0.1441 0.2142 0.8173 0.9323 0.9690
RCVD [KRH21] 0.1723 0.0658 0.1524 0.2418 0.7824 0.8733 0.9277
TCM [LLZ*21] 0.2514 0.0804 0.2172 0.3305 0.5432 0.7703 0.9026
Ours 0.1339 0.0335 0.1222 0.1872 0.8262 0.9394 0.9809

As shown in bold values, our approach is considerably better than the other methods across all metrics.

4. Results

We implement our approach in PyTorch and use ADAM [KB15]
to perform the test-time optimization with the default parameters.
We fine-tune the network for 15 epochs with a batch size of 3
and a learning rate of 3 × 10−5 to produce all the results, un-
less otherwise stated. Throughout this section, we compare our
approach against the base single image depth estimation methods
of Li et al. [LDC*19] (MC) or Clément et al. [GAFB19] (Mon-
odepth2), as well as the video depth estimation methods of Wang
et al. [WLPW19] (WSVD), Luo et al. [LHS*20] (CVD), Kopf
et al. [KRH21] (RCVD) and Li et al. [LLZ*21] (TCM). For all the
approaches, we use the source code provided by the authors. We ex-
tensively evaluate our approach numerically on three publicly avail-
able datasets: TUM RGB-D [SBC12], NYU Depth [NSF12] and
KITTI [GLU12]. We also provide visual comparisons on scenes
from these three datasets, as well as several casually captured
dynamic scenes. For all the optimization-based methods (CVD,
RCVD and ours), we use the same approach as the base single image
depth estimation network.

Numerical comparisons. We first show quantitative comparison
against the other approaches on the TUM RGB-D dataset [SBC12]
for the 11 scenes in the ‘3D Object Reconstruction’ category. We
strictly follow the protocol presented by Luo et al. [LHS*20] for
these comparisons. Specifically, we use the ground truth camera
poses provided by the dataset for CVD and our approach. RCVD
optimizes the camera poses, while the remaining methods do not
perform test-time optimization, and thus do not use the ground truth
camera poses. We use every other five frames of each sequence and
resize the images so the longer dimension has a resolution of 384.
Here, we use the approach by Li et al. [LDC*19] (MC) as the base
single image depth estimation network. Because of the scale am-
biguity, we align all the generated depth maps to the ground truth
using per-image median scaling. We evaluate the errors in the dis-
parity space and report the average error across various metrics in
Table 1. As seen, our approach is considerably better than all the
other methods across all the metrics. Note that we fine-tune CVD
for the recommended 20 epochs, while using only 15 epochs for our
approach as it converges faster.

Next, we evaluate our method on the NYU Depth Dataset
V2 [NSF12] using the 694 frames from 234 test scenes based on
the official train/test split. We downsample each sequence to around
200 frames and calculate the camera poses of these frames using
COLMAP [SF16, SZPF16]. As the base network, we use the sin-

Figure 4: Quantitative comparison of Monodepth2, CVD and our
approach on Eigen test split of the KITTI dataset. We illustrate
the sorted absolute relative error and accuracy (σ < 1.25) metrics
for all testing frames. Our approach outperforms other methods in
about 90% of the test frames.

gle image depth estimation method of Li et al. [LDC*19] (MC).
We compute the average errors of all 694 test frames in the dispar-
ity space. As shown in Table 2, our method outperforms the other
algorithms across all the metrics.

We also numerically evaluate our approach on the KITTI
dataset [GLU12] by utilizing the Eigen test split [EF14]. Follow-
ing Luo et al. [LHS*20], we use COLMAP [SF16, SZPF16] to esti-
mate the camera poses for the test sequences. Moreover, we use the
FlowNet2 model, fine-tuned with KITTI training sets (FlowNet2-ft-
kitti), to generate dense correspondence between frame pairs. Fol-
lowing Luo et al.’s approach [LHS*20], we only sample frame pairs
with larger than 50% forward-backward flow consistency. More-
over, to be consistent with Luo et al.’s evaluation protocol, we uti-
lize Monodepth2 [GAFB19] as the base network on this dataset.
Note that we use the same base network for all the optimization-
based methods (CVD, RCVD, and ours). We fine-tune the network
with λ = 1 and a learning rate of 4 × 10−5. As shown in Table 3,
our results are better than WSVD [WLPW19], CVD [LHS*20],
RCVD [KRH21] and TCM [LLZ*21] across all the metrics. Com-
pared to the base single image system [GAFB19], our approach pro-
duces comparable results. However, as shown in Figure 4, our ap-
proach outperforms Monodepth2 in about 90% of the test frames.

Visual comparisons. We begin by comparing our approach
against the other methods on three scenes from the TUM RGB-D
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Table 2: Quantitative comparisons against the other approaches on the NYU Depth Dataset V2.

Error metric ↓ Accuracy metric ↑

Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

MC [LDC*19] 0.1920 0.0311 0.1235 0.2484 0.6825 0.9101 0.9744
WSVD [WLPW19] 0.2207 0.0383 0.1309 0.2914 0.6155 0.8701 0.9540
CVD [LHS*20] 0.1875 0.0274 0.1233 0.2289 0.7003 0.9136 0.9758
RCVD [KRH21] 0.1884 0.0263 0.1345 0.2213 0.7045 0.9188 0.9790
TCM [LLZ*21] 0.2041 0.0329 0.1252 0.2529 0.6033 0.8942 0.9687
Ours 0.1795 0.0232 0.1159 0.2034 0.7184 0.9279 0.9845

As shown in bold values, our method outperforms the other algorithms across all the metrics.

Table 3: Quantitative comparisons against the other approaches on the KITTI dataset.

Error metric ↓ Accuracy metric ↑

Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Monodepth2 [GAFB19] 0.1382 0.9714 5.1642 0.2232 0.8403 0.9432 0.9756
WSVD [WLPW19] 0.1579 1.9890 5.3272 0.2481 0.8024 0.9143 0.9577
CVD [LHS*20] 0.1501 1.8954 5.2192 0.2358 0.8365 0.9253 0.9665
RCVD [KRH21] 0.1483 1.732 5.2037 0.2380 0.8336 0.9187 0.9604
TCM [LLZ*21] 0.1496 1.8448 5.1753 0.2421 0.8383 0.9295 0.9642
Ours 0.1443 1.2543 4.9061 0.2034 0.8517 0.9393 0.9740

Best results are denoted as bold values.
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Figure 5: Comparisons against several state-of-the-art methods on three scenes from the TUM RGB-D dataset.

dataset in Figure 5. While MC [LDC*19] and WSVD [WLPW19]
are able to distinguish different objects, their estimated depth maps
are not geometrically consistent and do not match the ground truth
as they are not globally optimized. In contrast, CVD [LHS*20] per-
forms test-time optimization (similar to ours) and produces con-
sistent depth maps. However, they produce sub-optimal results in
challenging cases as all the geometric constraints (even the inac-
curate ones) equally contribute to their test-time loss. For exam-
ple, their method is not able to properly reconstruct the person in
the Flower scene and the top of the cabinet in the Cabinet scene.
Our formulation discards the depth values generated based on inac-
curate geometric constraints and produces considerably better re-

sults in these regions. RCVD [KRH21] builds on CVD’s formu-
lation and additionally optimizes the camera poses, but struggles
to properly estimate the poses on these textureless scenes, pro-
ducing results with severe artifacts. Finally, TCM [LLZ*21] pro-
duces over-smoothed results as the fine-tuned network is not able
to generalize to these scenes. We also show visual comparisons
on several scenes from the NYU Depth and the KITTI datasets
in Figures 6 and 7, respectively. Overall, our reconstructed depth
maps are more consistent, contain finer details, and better match
the ground truth. In particular, note that CVD has difficulty han-
dling the scenes in the KITTI dataset because of their significant
motion.
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Figure 6: Comparisons against several state-of-the-art methods on three scenes from the NYU Depth Dataset V2.

Input OursCVD [LHS*20]WSVD [WLPW19]Monodepth [GAFB19] TCM [LLZ*21]RCVD [KRH21]

Figure 7: Comparisons against several state-of-the-art methods on four scenes from the KITTI dataset. Both WSVD and Monodepth struggle
to correctly estimate the depth of the shadowed areas and reflective materials. Moreover, CVD is not able to properly handle these scenes
because they typically contain large moving objects. RCVD performs slightly better than CVD, but is not able to properly handle reflective
surfaces. Moreover, TCM produces blurry depth maps. In the contrast, our approach handles shadowed areas, reflective materials and the
moving objects with a reasonable accuracy.
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Figure 8: Comparisons against several state-of-the-art methods on casually captured dynamic scenes. See the full videos in the supplementary
video.

Next, we show comparisons on four casually captured dynamic
scenes in Figure 8. The full videos are provided in the supplemen-
tary video. We capture the two scenes at the bottom, but the scenes
at the top are from CVD [LHS*20]. Note that the ground truth depth
maps for these scenes are not available. Overall, our approach is able
to estimate depth maps with higher quality and sharper features in
both static and dynamic regions. For example, other methods have
difficulty estimating the boundaries of the moving dog (Dog scene),
hand (Waving scene) and Jam (Jam scene).

Timing.We evaluate the timings on aGeForce RTX 2080 Ti GPU
with 11 GB of memory for the scenes in TUM RGB-D dataset with
images of resolution 384 × 244 (or 244 × 384). On average, our
method takes around 4.6 s (1.1 s for computing the pseudo refer-
ence depth and 3.5 s for optimization) to generate the depth map
for each frame. In comparison, CVD [LHS*20] is 2.5× slower and
takes around 11.6 s per frame. Our speed up slightly depends on the
number of pairs used during the optimization, where larger num-
ber of pairs results in more speed up. In the best case scenario, we
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Table 4: Evaluating the effect of different design choices on the TUM RGB-D dataset.

Error metric ↓ Accuracy metric ↑

Abs Rel Sq Rel RMSE RMSE log σ < 1.25 σ < 1.252 σ < 1.253

Ours w/o pseudo loss 0.4864 0.2474 0.3268 0.5479 0.5026 0.6593 0.7786
Ours w/o consistency loss 0.1747 0.0908 0.1554 0.2638 0.7776 0.9099 0.9577
Ours using disparity loss 0.1891 0.0906 0.1639 0.2830 0.7532 0.8939 0.9505
Ours w/o median operation 0.1613 0.0438 0.1538 0.2221 0.7687 0.9224 0.9741
Ours w/o confidence map 0.1398 0.0439 0.1325 0.1962 0.8271 0.9358 0.9740
Ours λ = 0.1 0.1652 0.0536 0.1623 0.2133 0.7942 0.9325 0.9531
Ours λ = 0.9 0.2114 0.0802 0.1918 0.2405 0.7507 0.8535 0.9248
Ours 0.1346 0.0345 0.1240 0.1879 0.8317 0.9414 0.9788

As shown in bold values, our final carefully designed algorithm gives best results.

achieve a 2.8× speed up, while our speed up in the worst case sce-
nario is around 1.9×.

4.1. Ablation study

We perform several experiments to evaluate the importance of the
design choices in our algorithm. For these experiments, we numeri-
cally evaluate the results on the TUM RGB-D dataset [SBC12] and
report the values in Table 4. We first evaluate the effect of each loss
in our system, i.e. the pseudo reference and consistency losses. As
seen, both of these losses are important to achieve high-quality re-
sults. Specifically, the pseudo loss is the more important term as it
encodes the geometric constraints into the pseudo reference depth
maps. We also experimented with replacing our consistency loss
with the disparity loss from CVD [LHS*20]. As seen, our full ap-
proach using the consistency loss produces considerably better re-
sults than the one using the disparity loss. This is mainly because
the disparity loss onlyminimizes the distance between the 3D points
across one dimension, while the consistency loss considers all the
three dimensions.

Next, we show the effectiveness of our approach for generating
the per-frame pseudo reference depth and confidence maps. Spe-
cially, without the median operation and using Equation (5) as the
pseudo reference loss, our method produces considerably worse re-
sults demonstrating the effectiveness of the median operation in dis-
carding the inaccurate depth maps.

Then, we show the effect of our test-time optimization process in
Figure 9. Here, we compare the estimated per-frame pseudo depth
maps with the result of our system after test-time optimization on
three scenes. As shown, our optimization is highly effective in im-
proving the inaccuracies in the per-frame psuedo depth maps spe-
cially in the dynamic regions.

Finally, we evaluate the effect of λ in Equation (1) by setting ex-
tra experiments on TUMRGB-D dataset [SBC12] with λ as 0.1 and
0.9, respectively. As shown in Table 4, smaller or larger weight of
consistency loss in our objective function would generate inferior
numerical results. Moreover, we also evaluate it on casually cap-
tured dynamic Waving scene, the corresponding visual results show
that the smaller λ, 0.1, introduces flickering artifacts in the estimated
video depths while the larger λ, 0.9, generates over-smoothed re-
sults, which are shown at the end of our supplementary video.

Input Per-frame Fine-tuned

Figure 9: We show the impact of our test-time optimization process.
Per-frame pseudo reference depths suffer from severe artifacts in
the moving regions. Our test-time optimization is highly effective in
improving the results and producing consistent depth maps.
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4.2. Limitations and future work

Although we demonstrated that our approach produces high-
quality depth maps, it has several limitations. First, similar to
CVD [LHS*20], our method assumes that the camera calibration
can be performed accurately. However, in challenging cases with,
for example, limited camera translation, it may not be possible to
obtain accurate camera poses using COLMAP. Such inaccuracies
could potentially negatively affect the quality of our results. It would
be interesting to address this problem by investigating the possibil-
ity of optimizing the camera poses similar to the approach by Kopf
et al. [KRH21].

Moreover, our geometric constraints are designed based on the
assumption that the scene is static. For moving areas, the geomet-
ric constraints are weak and our method, similar to CVD, relies on
the learned priors. While our approach produces considerably better
results than CVD in dynamic regions, we could benefit from explic-
itly modelling the motion. An interesting future research would be
to address this issue by incorporating the scene flow estimation net-
work with temporal losses, as proposed by Zhang et al. [ZCT*21],
into our system. Finally, currently all the test-time optimization ap-
proaches [LHS*20, KRH21, ZCT*21], including ours, rely on opti-
cal flows to enforce the geometric constraints. Although the forward
backward consistency tests and our median depth strategy mitigate
the problem caused by inaccurate flows, our method would strug-
gle to produce high-quality results in cases where the optical flows
are highly inaccurate. We believe improving the quality of the opti-
cal flow through test-time optimization is an interesting avenue for
future research.

5. Conclusion

We present a novel test-time optimization approach for estimating
geometrically and temporally consistent depth from a monocular
video. Specifically, we use an existing single image depth estima-
tion network and optimize its parameters on the test example at
hand. Our main contribution is to compute pseudo reference depth
by matching optical flow and depth-reprojection displacements. We
propose a strategy to discard the erroneous pseudo reference depth
maps computed from pairs of images to obtain a per-frame pseudo
reference depth.We also propose a simplemethod to compute a con-
fidence map for each per-frame pseudo depth. Our test-time loss en-
sures that the estimated depth and the pseudo reference depth at each
frame are similar and the estimated depth for neighbouring frames
are consistent. We demonstrate the efficiency and effectiveness of
our approach through comparisons against the state-of-the-art tech-
niques both visually and numerically.
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Appendix A: Derivation of Pseudo Reference Depth

Here, we derive the closed form solution to Equation (2). To do
this, we first find the reprojected pixel qi→ j that minimizes the ob-
jective in Equation (2). Once this pixel is found, we can obtain the
optimal depth corresponding to this reprojected pixel. Since qi→ j is
the depth reprojected pixel q, as shown in Figure 2, it can only lie
on the epipolar line corresponding to pixel q. This epipolar can be
easily calculated [HZ04] and represented using the epipole e j and a
unit direction vector �ve. To calculate the optimal reprojected pixel
q∗
i→ j, we find the point on the epipolar line with smallest distance to
pixel p. This can be obtained as

q∗
i→ j = e j + ((p− e j ) · �ve) · �ve, (A1)

This point is projected from a 3D point that lies on the line
originating from oi in unit direction �vq. To obtain this point and
consequently the optimal depth, we intersect this line with the one
originating from oi in unit direction �vo = (q∗

i→ j − oj )/‖q∗
i→ j − oj‖.

Representing these two lines as l = oi + t �vq and m = oj + s�vo, we
can use the fact that at the intersection point, the dot product of the
vector connecting these two lines with the unit direction vector of
each line should be equal to zero. This provides us with the follow-
ing system of equations:

(oi − oj ) · �vq + t − s(�vo · �vq) = 0

(oi − oj ) · �vo + t(�vq · �vo) − s = 0 (A2)

where t and s are the two unknowns. The solution to t, scaled by
‖cos(θ )‖, is the optimal depth given in Equation (3).
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