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Abstract
Diffusion magnetic resonance imaging (dMRI) tractography has the unique ability to reconstruct major white matter tracts non-
invasively and is, therefore, widely used in neurosurgical planning and neuroscience. In this work, we reduce two sources of
uncertainty within the tractography pipeline. The first one is the model uncertainty that arises in crossing fibre tractography,
from having to estimate the number of relevant fibre compartments in each voxel. We propose a mathematical framework to
estimate model uncertainty, and we reduce this type of uncertainty with a model averaging approach that combines the fibre
direction estimates from all candidate models, weighted by the posterior probability of the respective model. The second source
of uncertainty is measurement noise. We use bootstrapping to estimate this data uncertainty, and consolidate the fibre direction
estimates from all bootstraps into a consensus model. We observe that, in most voxels, a traditional model selection strategy
selects different models across bootstraps. In this sense, the bootstrap consensus also reduces model uncertainty. Either ap-
proach significantly increases the accuracy of crossing fibre tractography in multiple subjects, and combining them provides an
additional benefit. However, model averaging is much more efficient computationally.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) [LBL*86] is a non-
invasive imaging method for the human brain. It allows for unique
insights into the geometry and microstructure of major white mat-
ter tracts by measuring the Brownian motion of water molecules.
Since the fibre tracts impede their movement, molecules move along
the fibre tracts more freely than orthogonal to it. This has permit-
ted the reconstruction of many white matter tracts using tractog-
raphy algorithms, and has made dMRI an important tool for large
scientific studies [SJX*13, TSH*18] as well as surgery planning
[YYPC21].

The most popular and widely used tractography algorithms re-
cover the local orientation of fibre tracts from dMRI measurements.
Earlier approaches like diffusion tensor imaging (DTI) [BML94]
were just able to recover a single direction per voxel, which is not
sufficient to recover more complex geometries like fibre crossing,
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kissing, and bending. Newer approaches rely on high angular resolu-
tion imaging (HARDI), and typically lead to ill-conditioned inverse
problems. Popular mathematical models for the estimation of mul-
tiple local orientations include the ball-and-stick model [BBJ*07],
spherical deconvolution [TCC07], and the low-rank approximation
of higher-order fODF tensors [SS08], which can be seen as combin-
ing aspects of the first two [SWK10].

Tractography is affected by many sources of uncertainty
[SVBK14]. One of them is the model uncertainty that arises when
having to make an a priori choice of the number of fibres in a given
voxel. In models such as ball-and-sticks or low-rank tensor approx-
imation, this is a crucial step, since setting the number too low will
miss relevant directions, while setting it too high will introduce spu-
rious directions and increase variance in the remaining directions.

We recently introduced the first framework for the quantification
of this type of uncertainty, and a method for its reduction, which we
refer to as model averaging [GvdVS21]. Our current work reports a
refined implementation of that idea, and makes the following addi-
tional contributions:
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1. We study how the above-described model uncertainty interacts
with data uncertainty, which arises due to measurement noise
and is commonly estimated via bootstrapping [CLH06].

2. We design a new approach for the joint reduction of data and
model uncertainty based on a bootstrap consensus strategy, and
compare it to our previous model averaging technique.

3. We evaluate a combination of both ideas and compare it to re-
sults from a novel baseline, which simply estimates the maxi-
mum number of fibres everywhere.

The remainder of our paper is organized as follows: We first
provide the required background by discussing related work (Sec-
tion 2), and summarizing the crossing fibre model on which our
work is based (Section 3). We then introduce our two main ap-
proaches, model averaging and bootstrap consensus, in Sections 4
and 5, respectively, and describe an algorithm for dMRI tractogra-
phy that uses them in Section 6. We report and discuss our experi-
mental results in Section 7, before Section 8 summarizes our main
findings and concludes our work.

2. Related Work

There is a substantial body of literature on algorithms for diffu-
sion MRI tractography [JDML19], and many of them were first in-
troduced in visualization venues [WKL99, ZDL03, HS05, SS08].
The visualization and reduction of various sources of uncertainty
in the tractography pipeline has been a more recent focus of inter-
est [BVPtH09, BPtHV13, SVBK14, WSSS14, SHV21, GvdVS21].
These sources can broadly be categorized into measurement uncer-
tainty, model uncertainty, parameter uncertainty, and partial volum-
ing [SVBK14, SV19, GSWS21].

The impact of measurement uncertainty on the dMRI pipeline
has been widely estimated with probabilistic tractography, based on
Bayesianmodelling [BBJ*07] or bootstrapping [Jon08]. Instead of a
single streamline per seed, this recovers distributions, which can be
visualized using hyperstreamlines [JTE*05, JLT*12, WSSS14] or
confidence intervals [BPtHV13, SHV21]. Our work explores a dif-
ferent use of bootstrapping, which performs uncertainty reduction
by consolidating estimates from all bootstraps into a single consen-
sus that is used for tracking.

We refer to model uncertainty as the uncertainty which arises
from the choice between several mathematical models to extract di-
rections from the dMRI data [SVBK14]. There exists a wide range
of models to estimate fiber directions [PSS*12], and they might lead
to different results. Comparative visualization has been used to in-
vestigate such differences [VVL13, SSSS13]. There is no gener-
ally preferable model, since the suitability depends on the dMRI
acquisition scheme, as well as on the anatomical location [BKN04,
FÖK*07]. Our current work significantly extends a recent workshop
paper that investigated a special case of model uncertainty, focus-
ing on the aspect of selecting a suitable voxel-specific fibre direction
count [GvdVS21].

Another type of uncertainty arises from parameter choices within
the tracking algorithm itself, which for example control branching to
reproduce fibre spread, or the termination of individual streamlines.
Brecheisen et al. proposed a visual tool to systematically explore the
impact of such parameters [BVPtH09]. Since optimal settings de-

pend on the specific tract, Takemura et al. developed an ensembling
approach that selects streamlines from candidates that have been
generated with different algorithms and parameters [TCWP16].

Finally, the partial volume effect is an important source of uncer-
tainty in dMRI. It arises from the fact that the diameter of individual
axons is orders of magnitude smaller than the spatial resolution of
dMRI. Even when correctly accounting for cases in which axons
cross [AHL*01, BBJ*07] or spread [KKA07] at a voxel level, sit-
uations in which two distinct tracts become locally aligned pose a
fundamental difficulty for finding their correct continuation. This
has been referred to as the bottleneck issue [STR*22], and it con-
tributes to the fact that, even though dMRI tractography quite suc-
cessfully localizes true tracts in individual subjects, it tends to pro-
duce many false positives [MNH*17]. These have to be eliminated
using prior anatomical knowledge, which can be represented im-
plicitly using machine learning [WNM18], or explicitly by defining
regions of interest to include or exclude streamlines [WCP*07]. Our
work employs the latter approach.

3. Background on Low-Rank fODF Tensor Approximation

Earliest approaches for dMRI tractography used the diffusion tensor
model [MCCvZ99], and were, therefore, limited to a single domi-
nant fiber orientation per voxel. However, most white matter voxels
contain more than one fibre bundle [JLT*12], and it has been shown
that accounting for these more complex fibre geometries greatly im-
proves dMRI tractography [NDH*15].

Our work builds on a previously described low-rank approxima-
tion of fODF tensors to infer multiple fibre orientations per voxel
[SS08, ALGS17]. It first obtains a symmetric fourth-order ten-
sor representation T of the fibre orientation distribution function
(fODF) via constrained spherical deconvolution, which amounts to
solving the linear least squares problem

argmin
T

‖MT − S‖2, (1)

where M denotes a convolution matrix that is based on the dMRI
response from a single fibre compartment, vector S contains all
dMRI measurements in a given voxel. A set of r fibre directions
is then estimated as unit vectors vi ∈ R

3 with volume fractions λi
for i ∈ {1, . . . , r} via a rank-r approximation

T (r) =
r∑
i=1

λivi ⊗ vi ⊗ vi ⊗ vi, (2)

where ⊗ denotes the outer product. The approximation is formal-
ized as

argmin
λ1,...,λr ,v1,...,vr

‖T − T (r)‖F ,

where ‖ · ‖F denotes the Frobenius norm.
These steps represent a refinement of a more traditional approach

to spherical deconvolution, which is based on spherical harmonics,
a soft non-negativity constraint, and taking local fODF maxima as
fibre directions [TCC07]. It has been demonstrated that replacing
peak extraction with low-rank approximation reduces angular er-
rors, and increases angular resolution, evenwhen replacing themore
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Figure 1: Illustration of our model averaging strategy. For a given fODF T , low-rank approximations with ranks r ∈ {1, 2, 3} are computed.
The resulting directions are clustered, and a weighted average is taken within each group, with weights given by the posterior model probabil-
ities p(Hr | T ) from a Bayesian framework. This results in a combined model in which secondary and tertiary fibres fade in and out smoothly
in regions of model uncertainty, rather than vanishing abruptly, as when selecting the most likely model.

traditional spherical harmonics of degree eight with fourth-order
tensors, which have much fewer degrees of freedom, and greatly
improve the conditioning of the least squares problem [ALGS17].

The non-negativity constraint in spherical deconvolution is jus-
tified by the fact that the fODF represents the fibre fraction in any
given direction, which must be non-negative. In the tensorial frame-
work, it is implemented by imposing a positive semi-definiteness
constraint on T , which also ensures that all λi in Equation (2) will
be non-negative [ALGS17].

4. Model Averaging and Selection

Inmany voxels, it is unclear howmany fibre directions are supported
by the data, i.e., which rank r should be selected in Equation (2).
Selecting the most likely number incurs the risk of underestimating
r, which could lead to premature termination of a secondary tract.
On the other hand, overestimating r confounds the tracking with
spurious directions and increases the variance of the true fibre esti-
mates. The idea behind model averaging is that smoothly blending
betweenmodels, as it is illustrated in Figure 1, should reduce the risk
of missing an important fibre, while still relying on the more robust
single-fibre estimates in regions that clearly do not support a larger
number of directions. We implement this idea based on Bayesian
model comparison (Section 4.1), and derive specific model averag-
ing and model selection approaches in Section 4.2.

4.1. Model comparison in a Bayesian framework

In Bayesian model comparison, we are interested in the posterior
probability p(Hr | T ), where Hr denotes the hypothesis that ex-
tracting r fibres is optimal for a given fODF T . Using Bayes’ the-
orem of conditional probability, up to a common factor that we ac-
count for by a final re-normalization, the posterior probability can
be rewritten as

p(Hr | T ) ∝ p(T | Hr )p(Hr ), (3)

where p(Hr ) is our prior belief that rank r is suitable, without con-
sidering the fODF. Since literature values for the prevalence of dif-
ferent r over the white matter vary [BBJ*07, JLT*12, Sch12], we

use a non-informative prior that assigns equal prior probability to
the values of r ∈ {1, 2, 3}. The case r = 0 can be excluded since we
limit tracking to a white matter mask.

The factor p(T | Hr ) is the probability of the fODF T given a
rank r. In the context of Bayesian model comparison, it is referred
to as model evidence. It is derived from p(T | Hr, �r ), the posterior
probability of T given an r-fibre model with a specific parameter
vector �r. In our case, �r contains the variables from Equation (2),
that is, �r := (λ1, v1, . . . , λr, vr ).

The overall model evidence is obtained by marginalization over
parameter values,

p(T | Hr ) =
∫

p(T | Hr, �r )p(�r | Hr )d�r. (4)

Since a direct calculation of Equation (4) would require solv-
ing a high-dimensional integral, we use an approximation via the
Bayesian information criterion

BIC = k ln (n)− 2 ln
(
p
(
T | Hr, �̂r

))
,

where p(T | Hr, �̂r ) corresponds to the likelihood of the rank-r
with parameters �̂r that best fit the fODF T , k is the number of
parameters in �r, and n denotes the number of data points to which
the model was fitted [Sch78]. We note that k = 3r increases with r,
which penalizes the choice of multiple fibres, unless it leads to a suf-
ficient increase of p(T | Hr, �̂r ). Under certain conditions, the BIC
is related to the model evidence by Konishi and Kitagawa [KK08]

p(T | Hr ) ≈ exp

(
−BIC

2

)
. (5)

This allows us to compute the model evidence in a simple and
efficient way. However, we still need to provide an equation for
p(T | Hr, �̂r ). Therefore, we use the relative magnitude of the cor-
responding low-rank approximation residual

‖R̃(r)‖ = ‖T − T (r)‖
‖T ‖ ∈ [0, 1], (6)
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Figure 2: Relative frequency of selecting ranks {1, 2, 3} within a
white matter mask based on the Kumaraswamy PDFwith a = 1 and
different values of b. The lines indicate the mean over all subjects
from Section 7.1, the tubes the minimum and maximum.

since a smaller residual from a rank-r approximation should indi-
cate a higher probability of T being a perturbation of a rank-r ten-
sor. Since many factors contribute to the magnitude of this residual,
including measurement noise, fibre spread, and inaccuracies in the
convolution kernel, we pragmatically model p(T | Hr, �̂r ) with the
computationally efficient Kumaraswamy Probability Density Func-
tion (PDF) [Kum80]

f (x, a, b) := abxa−1(1− xa)b−1 for x ∈ (0, 1) and a, b > 0 (7)

which is defined on the correct interval (0,1), and can be tuned to
achieve the correct qualitative behaviour of monotonically decreas-
ing with increasing ‖R̃(r)‖ by setting a = 1, b > 2.

With increasing b, the probability decreases at steeper slopes. As
illustrated in Figure 2, this favours modelling larger numbers of fi-
bres, since that permits a reduction of fitting residuals. Thus, the
choice of b can be seen as determining how strong the support for a
secondary or tertiary compartment needs to be so that it will be used
for tracking. Having to make this decision is a source of uncertainty
in all methods for crossing fibre tractography, and has contributed
to the variability in literature values on the prevalence of two- and
three-fibre voxels [BBJ*07, JLT*12, Sch12]. In our experiments, we
set b = 20, which leads to values within the range of literature val-
ues.We expect that the normalization that results from deconvolving
with subject-specific response functions [JTD*14] and the normal-
ization in Equation (6) will allow for similar choices of b across
datasets. This is supported by the relatively narrow confidence in-
tervals across subjects in Figure 2.

4.2. Computing tracking directions from alternative models

As in our previous work [GvdVS21], we fuse the information from
tensor approximations with different ranks r ∈ {1, 2, 3} by taking
a weighted sum of the corresponding parameters v(r)i and λ

(r)
i with

weights given by the above-defined posterior probabilities. We refer
to this strategy as model averaging.

Before computing the weighted sum, we have to establish a cor-
respondence between the directions of the different r-fibre models.
In other words, we have to re-order the directions from each rank r
such that the first directions of the two- and three-fibre models are
matched with the direction from the single fibre model, and that the

second directions of the two- and three-fibre models match. This
leads to 2!× 3! = 12 possible assignments, from which we select
the one that minimizes the overall sum of angles between the result-
ing weighted means vi and their corresponding v

(r)
i .

A potential objection against the idea of model averaging is that,
in case multiple probable models should yield very dissimilar di-
rections, averaging them might produce spurious directions that did
not occur in any of the original models. Therefore, we computed
the smallest distances between the main direction of the average
model and the closest direction of the corresponding low-rank mod-
els within the white matter mask of a randomly chosen subject from
the experiment in Section 7.1. In 95% of all white matter voxels, that
angle was below 1.8◦. Since that is well below the angular resolution
of CSD [ALGS17], we conclude that, in practice, corresponding di-
rections are similar enough that it is reasonable to average them.

Previous tractography algorithms that were based on low-rank
tensor approximation [ALGS17] used a different strategy, that we
refer to as model selection: They determined an optimal rank r ∈
{1, 2, 3} in each integration step and used the resulting set of di-
rections vi for tracking. In cases where several ranks have non-
negligible probabilities, this introduces an uncertainty that model
averaging aims to reduce. We include this approach as a baseline
in our experiments. To enable a direct comparison, we select the
model with the highest probability p(Hr | T ) according to the same
Bayesian framework.

5. Bootstrapping for Uncertainty Estimation and Reduction

We describe the variability that arises from noise in the dMRI mea-
surement as data uncertainty. Taking measurements repeatedly is
a natural way to estimate it, but is usually not feasible in practice.
Therefore, different bootstrapping techniques have been established
to estimate data uncertainty based on a single DTI or HARDI acqui-
sition [CLH06, Jon08].

We summarize one such bootstrapping approach in Section 5.1,
and use it in two ways: In Section 5.2, we investigate the interaction
between data and model uncertainty, by studying the variance of
the selected model under bootstrapping. In Section 5.3, we define a
bootstrap consensus for the joint reduction of data and measurement
uncertainty. As a by-product, this allows us to investigate the effect
of model selection and averaging on the variability of fibre direction
estimates in Section 5.4.

5.1. Wild bootstrapping

We use wild bootstrapping to evaluate the impact of measurement
noise. It is a straightforward way to re-sample the original mea-
surements without repeating themeasurement process, and has been
used widely in the context of dMRI [Jon08, SSSS13, SHV21].

Wild bootstrapping uses model residuals to estimate noise. We
combine it with the fODF tensor framework from Section 3 by fit-
ting an initial fODF T̂ via Equation (1), and calculating the residual

ε̂ = S−MT̂ .

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



J. Gruen et al. / Model Averaging and Bootstrap Consensus Based Uncertainty Reduction in Diffusion MRI Tractography 221

Figure 3: Small differences between model selection without bootstrapping (a) and the most frequently selected model under bootstrapping
(b) indicate that data uncertainty also has a certain effect on the selected model. The stability of model selection under bootstrapping (d)
correlates well with the confidence derived from our Bayesian framework (c).

A new bootstrap realization is calculated by

y∗ = MT̂ + ε̂
v,

where v denotes a randomdraw from the n dimensional Rademacher
distribution

f (ki) :=

⎧⎪⎨
⎪⎩

1/2 if ki = −1
1/2 if ki = 1

0 otherwise

for i ∈ {1 . . . n}.

and 
 denotes component-wise multiplication.

This process is repeated m times to create a sample of m boot-
straps. For each bootstrap realization, we fit a new fODF and com-
pute its low-rank approximations.

5.2. Interaction between data and model uncertainty

We hypothesized that data and model uncertainty interact in the
sense that, in many voxels, the effect of measurement noise is suffi-
cient to change the selected fibre number. We were also interested in
the extent to which the frequencies with which different ranks are
selected under bootstrapping agree with the probabilities that are
assigned by our Bayesian model.

Therefore, we took 100 bootstraps and applied model selection to
all of them. Comparing the most likely number of fibres in the orig-
inal data (Figure 3a) to the number that is most frequently selected
over all bootstraps (Figure 3b) already reveals a certain amount of
variability: In 14.1% of the voxels within the white matter, the se-
lected rank differs by 1; in 0.8%, it differs by 2.

The probability of the most likely number of fibres according to
Equation (3) is shown in Figure 3c, next to the fraction of bootstraps
that agreed on the most frequently selected number in Figure 3d.
Visually, we find a remarkable agreement between the regions in
which our Bayesian framework has a high confidence in its choice
(high values in c), and the regions in which the choice is stable un-
der bootstrapping (high values in d). We believe that this provides
further empirical support for the framework proposed in Section 4.1.

5.3. Bootstrap consensus

In analogy to how the model averaging in Section 4.2 reduces model
uncertainty by fusing information from alternative models, we de-
rive a bootstrap consensus that fuses information from all boot-
straps. We emphasize that this differs from the traditional use of
bootstrapping in probabilistic tractography, where bootstrap sam-
ples produce a distribution of streamlines from a common seed
[Jon08, JLJ*11]. Instead of estimating data uncertainty, our boot-
strap consensus aims to reduce its effect. Due to the interaction be-
tween data and model uncertainty that was observed in Figure 3, it
can also be expected to jointly reduce model uncertainty.

The bootstrap consensus is formed by clustering the directions
from all bootstraps into groups, and taking the groupmeans as the fi-
nal tracking directions. Specifically, we assign the ni directions from
the ith bootstrap to m groups, where we set m = 3 as the maximum
number of fibres, we are willing to consider. Due to the large num-
ber of bootstraps, an enumeration of all possible assignments that
guarantees a global optimum, as it could be used in Section 4.2, is
no longer feasible.

Instead, we initialize the reference directions for each group with
a rank-3 approximation of the original data. Now, the directions
from each bootstrap are assigned to the groups such that the sum of
distances between the group reference and the directions are min-
imized over all possible assignments. Formally, we minimize the
objective function

T : Sym(n) �→ R+

Z →
∑

‖ sgn (〈vZ(i), v̄i〉)vZ(i) − v̄i‖, (8)

where Sym(n) denotes the symmetric group, v̄i denotes the refer-
ence direction, vi denotes the direction from the bootstrap.

5.4. Visualizing the uncertainty in fibre directions

Our main motivation for using model selection or averaging instead
of always extracting the maximum number of fibres is that we ex-
pect it to reduce variance in the true fibre estimates. The clustering
that we perform to compute the bootstrap consensus can be used to
quantify and visualize this effect. TheWatson distribution is defined
as [JM99]

f : S
2 −→ R+
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Figure 4: Mapping orientation dispersion of the principal fibre direction under bootstrapping confirms that the dispersion in the rank-3 result
is higher than with model selection or averaging, indicating their ability to decrease susceptibility to noise.

x �−→ 1

M
(
1
2 ,

3
2 , κ

) exp (
κ
(
μTx

)2)
,

where κ is the dispersion parameter, ‖μ‖ = 1 the mean direction,
and the normalizing factor involves the confluent hypergeometric
functionM [Kum37]. To estimate the dispersion κ , we used themax-
imum likelihood estimator [JM99], which allowed us to determine
κ via Newton optimization.

We use the Watson distribution for two reasons: First, it is an-
tipodally symmetric, which fits the fact that in Equation (2), direc-
tions ±v are indistinguishable. Second, its dispersion parameter κ

allows us to quantify the variability in the fibre directions within
each group. κ can be re-parameterized to obtain an orientation dis-
persion index

OD = 2

π
arctan

(
1

κ

)

that is normalized to (0,1) and indicates higher variability with
higher values [ZSGA12].

Figure 4 visualizes orientation dispersion of the primary fibre that
was estimated with model selection, model averaging, or a rank-3
approximation. In particular in the regions in which model selection
picks a single fibre (cf. Figure 3; this includes parts of the corpus cal-
losum (CC) and CST), this results in lower dispersion compared to
the rank-3 model, confirming our expectation that estimating a sin-
gle fibre direction is less susceptible to noise than estimating mul-
tiple directions from the same data. The same regions still have re-
duced dispersion after model averaging, confirming its effectiveness
for uncertainty reduction.

6. Crossing Fibre Tractography with Uncertainty Reduction

6.1. Probabilistic streamline-based tractography

Our work reduces the data and model uncertainty that affects local
fibre directions. Despite this, the fundamental uncertainty that arises
from partial volume effects remains, as discussed in Section 2: Even
if multiple fibre directions were estimated with perfect accuracy, it

remains uncertain which of them should be followed in each step
of the tracking. In regions where tracts fan out, there might even
be multiple valid ways to continue them. Previous work used deter-
ministic tracking with a branching mechanism to handle these situa-
tions [ALGS17]. In our work, we follow a probabilistic approach in-
stead. However, its probabilistic nature is limited to deciding which
of multiple fibre compartments should be followed next. Unlike
most other probabilistic tractography methods [BBJ*07, Jon08], it
does not sample a distribution of fibre directions within each fibre
compartment, since this type of uncertainty is reduced by our boot-
strap consensus.

Our tracking acts on multi-vector fields that are pre-computed us-
ing any of the methods proposed above. For a given seed point, the
streamline is grown iteratively in both directions using Euler inte-
gration, which was sufficient to reconstruct even the curved part of
the cingulum (CG) bundle at a step size of 0.9mm. The multi-vector
fields are interpolated to the current position. To keep computational
effort manageable, we use trilinear interpolation. It requires solving
another matching problem, since we have to decide which direc-
tions belong together during interpolation. Assuming smoothness
between the voxels, we use the r directions from the last interpola-
tion step as initial group means v̄i, i ∈ {1 . . . r} and assign the vec-
tors from all grid points that are involved in the current interpolation
by minimizing the same cost function as in Equation (8). If fewer
than three vectors are available due to model selection, zero vectors
replace the missing ones for the purpose of interpolation. After all
assignments have been made, we re-orient all vectors to have a non-
negative dot product with their current group mean, compute new
group means from them, and iterate the assignment once. To reduce
the computational expense, we cache the final assignments, so that
they only need to be computed once for each voxel through which
we are tracking.

To investigate how this matching step affects the stability of in-
terpolation results, we rotated all vectors at all voxels independently
and uniformly at random by up to 10º, and computed the resulting
change in tracking direction at 1000 randomly selected streamline
vertices, drawn from the experiment in Section 7.3. When interpo-
lating the perturbed directions, but keeping the original correspon-
dences, 95% of the deviations were below 5.5◦. Re-matching the
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perturbed direction increased this only slightly, to 6.3◦. We con-
clude that ambiguous correspondences contribute relatively little to
the overall uncertainty in tracking directions.

Given the interpolated directions vi at the current point, we re-
orient them to have a non-negative inner product with the cur-
rent tracking direction w. We select one of the r possible direc-
tions by assigning each unit direction vi with volume fraction λi
for i ∈ {1, . . . , r} a probability following the probability scheme

p(vi) :=
�{θi< 1

4 π}λi cos
((

9
2
√
2π

θi

)2)2

∑
j �{θ j< 1

4 π}λ j cos

((
9

2
√
2π

θ j

)2)2 , (9)

where θi denotes the angle between the possible direction vi and
the current direction w. The indicator function �{θi< 1

4 π} restricts the
maximum angle to 45º, to limit diversions into neighbouring tracts.
We note that the use of trilinear interpolation allowed us tomake this
threshold slightly stricter compared to our prior work [GvdVS21].
Equation (9) assigns almost the same probability to directions with
angles below 20º, which coincides with the limited angular resolu-
tion of spherical deconvolution [TCC07].

This iterative algorithm proceeds until we either reach a region
with an overall white matter volume fraction below 0.3, or the
summed angle over the last 30 mm is greater than 130º. This pre-
vents streamlines from going back and forth. In the latter case, the
entire streamline gets removed.

6.2. Postprocessing

While diffusion MRI is able to reconstruct most major white matter
tracts, it is known to yield many false positives, which have to be
removed according to anatomical knowledge [MNH*17].

Therefore, we define inclusion and exclusion regions for each
tract. If a streamline intersects with an exclusion region, or if it
does not intersect with all inclusion regions, the whole streamline
is discarded. All regions are set carefully for a reference subject ac-
cording to the protocols in Wakana et al. [WCP*07]. The remaining
subjects are linearly registered to the reference using FSL’s flirt
[JBBS02], and the transformation is used to transfer the regions au-
tomatically.

Moreover, we remove obvious outliers by creating a density map
for each streamline bundle. Therefore, we count the number of
streamlines intersecting each voxel. All streamlines are cut off at
the first intersection with a low density area starting from the seed.
The density threshold is defined for the reference subject and then
mapped to all other subjects according to the ratio of seed points.

7. Results

7.1. Data

We evaluate the proposed methods on data from the Human Con-
nectome Project (HCP) [VSB*13]. The diffusion MR images have
a resolution of 1.25 mm isotropic with 145 × 174 × 145 voxels
and have been acquired with 90 gradient directions each at b ≈

{1000, 2000, 3000} s/mm2. We compare our results to reference
tractographies which were published within the scope of the Tract-
Seg paper [WNM18]. This reference data have been created byman-
ually refining a segmented full brain fibre tractography. Similar to
TractSeg, we apply a variant of multi-shell multi-tissue deconvolu-
tion [JTD*14, ALGS17] that uses all available diffusion weighted
images. It also yields per-voxel estimates of white matter volume
fractions, whichwe threshold at 0.3 to obtain the white matter masks
used in our analyses.

All tests were performed on 12 randomly chosen subjects for
which such reference tractographies exist. For each tract, we cre-
ated seed points by intersecting the reference fibre bundle with a
plane and initialize the tracking process with the direction of the fi-
bre bundle at the seed point. This should mimic a directional region
of interest as it might be defined by an expert on brain anatomy
[GRNM16]. We then apply the tracking process until we have as
many streamlines as the reference tractography. This should guar-
antee a fair comparison between the different models.

Our comparison is between generic fibre tracking algorithms that
can track from any given seed region. In contrast, bundle-specific
approaches such as TractSeg are limited to reconstructing a pre-
defined set of bundles, but have the benefit of tract-specific anatom-
ical priors, which improve their accuracy.

7.2. Qualitative comparison

Wecompare results frommodel selection andmodel averaging, with
and without the additional use of the bootstrap consensus. Our pre-
vious work [GvdVS21] included results from standard constrained
spherical deconvolution as another baseline. However, this did not
achieve competitive results and its computational expense made it
difficult to combine it with bootstrapping. Therefore, we replaced it
by a new baseline, which uses low-rank approximation with rank 3
throughout the brain.

As a first experiment, we track the right corticospinal tract (CST).
We attempt to reconstruct the reference result, shown in Figure 5a,
from a seed region which is indicated with a dashed black line.
To provide further guidance for visual comparison, the outline of
the reference is overlaid on the remaining reconstructions as a
black contour.

The main risk of a model selection strategy (f) is premature tract
termination due to a local underestimation of the true fibre number.
It is obvious that this prevented full recovery of the lateral spread of
the CST. Model averaging (d) and bootstrap consensus (g) both lead
to more complete reconstructions. The bootstrap consensus leads to
an ever denser sampling of the spreading region even when combin-
ing it with model averaging or the rank-3 model. An important ad-
vantage of model averaging compared to the rank-3 model is the re-
duction of false positives. This is less obvious in the image, because
most of them have been filtered out successfully by the mechanisms
in Section 6.2. However, it is clear from running times, which will
be reported in Section 7.4.

Inspecting the multi-vector fields in Figure 6 provides further in-
sight. The most obvious difference between the average and selec-
tion models is that, in many voxels, model averaging (top left) leads
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Figure 5: Reconstruction of the right corticospinal tract. For a more direct comparison between the reference and the tractographies, we
overlaid the contour of the reference on each reconstruction with a black curve. The bootstrap consensus (bottom) leads to a much higher
ability to reconstruct the lateral spread compared to the base models (top). This is especially true for the selection model (right).

to a larger number of fibres compared to model selection (top right).
This explains the more complete reconstruction that was observed
in Figure 5. On the other hand, applying the bootstrap consensus
makes the results from averaging (bottom right) and selection (bot-
tom left) rather similar. The red circle highlights a voxel in which
results from model averaging and selection differ, but agree after
forming a bootstrap consensus. This illustrates that the bootstrap
consensus reduces not just data uncertainty, but also model uncer-
tainty when it is combined with model selection.

Figure 7 provides qualitative results on another bundle, the optic
radiation. Model selection (f) leads to an incomplete reconstruction
of the spread in the posterior part, which is again more fully sampled

with model averaging. The bootstrap consensus further improves
both models.

7.3. Quantitative comparison

For a quantitative evaluation, we reconstructed the corpus callo-
sum (CC), the cingulum (CG), the CST, the inferior fronto-occipital
(IFO) and the inferior longitudinal fasciculus (ILF), the optic radi-
ation (OR), and the superior longitudinal fasciculus (SLF). To keep
the analysis moremanageable, we combined the left and right tracts,
and merged the subtracts that were defined for CC and SLF in the
reference [WNM18].
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Figure 6: Reconstructed fibre orientations from the different models. The red box in the left image denotes the position within the brain. Both
consensus models (bottom row) agree quite well in most voxels, although results from model averaging (left) and model selection (right) differ,
for example, in the voxel highlighted by the red circle.

Table 1: Comparison of all models by a Nemenyi post hoc test. All p values below 0.05 are marked in bold if the top model is significantly better, else in italics.
Our model averaging strategy is significantly better than model selection and the rank 3 model. The bootstrap consensus further improves model selection and
averaging..

Consensus average model Selection model Consensus selection model Rank-3 model Consensus rank-3 model

Average model 0.001 0.001 0.002 0.001 0.063
Consensus average model 0.001 0.900 0.001 0.001
Selection model 0.001 0.900 0.494
Consensus selection model 0.001 0.001
Rank-3 model 0.494

We evaluated the reconstruction quality by the Dice score which
is defined as

DICE = 2|RD ∩ TR|
|TR| + |RD| ,

where RD denotes a binary mask that is derived from the reference
data, and TR a mask from the tracking results [SDM*19]. A high
Dice score is desired, as it denotes a high overlap and a low over-
reach. In Figure 8, results from the average, selection and low-rank
model with and without use of the bootstrap consensus are visual-
ized as box plots to show the tract-wise distribution (over subjects)
of the Dice scores. In most cases, we observe that model averaging
yields a more accurate reconstruction compared to model selection,
and that the bootstrap consensus increases Dice compared to the
corresponding strategy without bootstrapping.

To further quantify these findings, we compared all six models
with a Friedman test, to investigate whether differences between
models are statistically significant [Fri37]. Since that was the case
(p � 0.001), we applied a Nemenyi post hoc test to identify which
models differ significantly [Nem63].

According to the results of that post hoc test, which are shown
in Table 1, when comparing strategies without the bootstrap con-
sensus, model averaging is significantly better than either model
selection or the rank-3 model, while neither of the latter two are
preferable to the other overall. From this, we conclude that model
averaging as it was first described in our previous work [GvdVS21]
provides a significant advantage.

Concerning the bootstrap consensus that is introduced in our cur-
rent work, we observe in Figure 8 that, in six out of seven tracts,
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Figure 7: Reconstruction of the optic radiation (OR). Again, we overlaid the contour of the reference on each reconstruction with a black
curve. The bootstrap consensus increases the overlap with the reference both for model averaging (d) and selection (f). For the rank-3model (b),
it mostly reduces the false positives, even though that effect is less visible due to the streamline filtering during post-processing.

the consensus average model achieves a higher median Dice score
than model averaging by itself, that the consensus selection model
always beats model selection alone, and that the consensus rank-3
model has a higher median Dice in four out of seven tracts. Ac-
cording to Table 1, these improvements are significant for model
averaging and selection, but not for the rank-3 model. We believe
that this is due to the fact that the main advantage there is to reduce
false positive streamlines, most of which are, however, successfully
filtered out before computing the Dice.

Comparing the consensus models with each other, Figure 8 sug-
gests that the consensus average and selection models are quite
similar, and both are preferable compared to the consensus rank-
3 model. This is confirmed by the significance tests. In terms of
practical utility, it is relevant to put these results in context with the
computational effort of the different approaches.

7.4. Computational effort

All experiments were computed on an Intel i9 with 3.3 GHz and
64 GB RAM. The following durations are denoted in (h:)min:s.

The computation of a single bootstrap data sample took 1:10 on
a single core, multi-threaded fourth-order fODF tensor estimation
took 4:33, the computation of the multi-vector fields took 0:40 with
the rank-3 model, 1:10 with model selection, 1:30 with model aver-
aging. Therefore, the calculation of 100 bootstraps took 8:08:00, us-
ing all CPU cores to create the bootstrap data as well as the models.
This also includes the computation of the consensus model, which
on its own took 11:00.

Table 2: Comparison of the average time needed to reconstruct 1000 valid
streamlines of the right CST in Figure 5. Differences mostly result from the
number of successfully filtered false positive streamlines, which do not count
towards the valid ones..

Time per 1000 valid streamlines in seconds

Average model 27.51
Consensus average model 28.29
Selection model 23.70
Consensus average model 24.59
Rank-3 model 43.27
Consensus rank-3 model 35.90

Typical times for the tracking itself are reported in Table 2. Times
are averages for reconstructing 1000 valid streamlines in the CST.
Differences mostly reflect the time spent on tracking false positive
streamlines that are discarded by our filters, since those do not con-
tribute towards the valid ones. Here, the fact that the rank-3 base-
line generates considerably more false positives becomes even more
apparent than in our previous qualitative and quantitative results.
Tracking with model selection is fastest, but it is clear from the re-
sults above that this comes at the expense of the least complete re-
constructions.

8. Conclusion

In this work, we presented and evaluated two approaches to reduce
different types of uncertainty in diffusion MRI tractography. The
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Figure 8: Boxplots of the Dice scores of all subjects for all models.
In almost all cases, model averaging yields a higher median Dice
than model selection, and the bootstrap consensus improves upon
the results of the corresponding base model.

first one, model averaging, relies on Bayesian model comparison,
and reduces themodel uncertainty in crossing fibre tractography that
results from having to select the most suitable number of fibres in
each tracking step. The second one, bootstrap consensus, primarily
aims to reduce data uncertainty, but we observe that it also reduces
model uncertainty due to an interdependency of both. In either case,
we fuse information from multiple fibre estimates to obtain a more
reliable basis for fibre tractography.

Our experimental results demonstrate that each approach by it-
self makes dMRI tractography more accurate, as confirmed both
by qualitative results and a formal statistical analysis. Even though
combining both methods yields an additional benefit, it is worth
keeping in mind that the additional computational expense from
model averaging is marginal (in our experiments, it added 20 s to
the pre-processing), while the computational effort for bootstrap-
ping is substantial (in our experiments, more than 8 h per dataset).

We expect that, in many use cases, this will make model averag-
ing the more pragmatic choice. Despite this, bootstrapping also pro-

vided further insights, most importantly, on the interaction between
data and model uncertainty, and the effect of model averaging on
the uncertainty in fibre direction estimates.
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