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Abstract

In this work, we present a novel approach for calibrating material model parameters for soft body simulations using real data.
We use a fully differentiable pipeline, combining a differentiable soft body simulator and differentiable depth rendering, which
permits fast gradient-based optimizations. Our method requires no data pre-processing, and minimal experimental set-up, as we
directly minimize the L2-norm between raw LIDAR scans and rendered simulation states. In essence, we provide the first marker-
[free approach for calibrating a soft-body simulator to match observed real-world deformations. Our approach is inexpensive as
it solely requires a consumer-level LIDAR sensor compared to acquiring a professional marker-based motion capture system. We
investigate the effects of different material parameterizations and evaluate convergence for parameter optimization in both single
and multi-material scenarios of varying complexity. Finally, we show that our set-up can be extended to optimize for dynamic

behaviour as well.
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1. Introduction

Selecting correct parameter values in material models is impor-
tant in a wide range of areas such as modelling soft tissue [BT07],
cloth [BTH*03, WOR11, MBT*12, MTB*13, YLL17, SNW20],
fabrication [BKS*12, STC*13, CLSM15, CLMK17, YLYWIS,
WWY*15, WDK*20], haptics [VC0O20, PKLD20] and robotics
[YL16, BCC17, BBPC19, BSB*20, HBBC19, SLK*20]. Our work
is inspired by the problem of producing a computer model of a
soft robot that visually matches reality. In the field of computer
graphics, many works have explored the field of material modelling
to achieve more realistic-looking animations [XSZB15, XB17,
XLCB1S5, BJ0S, LB15, MTGG11, SGK18, ITF04, WZB17]. In our
work, we use existing material models as these have been shown
to work well for the soft robotics cases we present. We use CAD
models directly in our work as we target soft fabricated objects, so
there is no need for scanning geometry. We match the simulation
to the real world without any need for complicated force measure-
ments. As our approach is markerless, there is no need for expensive

motion tracking equipment, nor do we need to deal with computer
vision problems which are common in marker-based methods.

Our work is no different from any other approach for calibration
of parameters in the sense that we are subject to the same funda-
mental challenges and pitfalls, i.e. changing boundary conditions
or different deformation modes always lead to different estimated
values. This is no surprise as data only shows one mode of de-
formation, and we optimize for that specific motion. This is not a
drawback when using simulation for predicting real-time motions
for control problems, where getting accurately simulated deforma-
tion is of crucial importance. The same requirement applies when
solving design problems. Hence, the true strength of our work is that
we offer a complete alternative technology that is far less sensitive
to the challenges of image capture or difficulties with markers. We
have created a simple yet versatile and robust approach for calibrat-
ing a simulator to the real world.

Theoretically, to estimate material parameters, one needs many
pieces of information: the boundary conditions, force measure-
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Figure 1: Simulations with elastic parameters reported by silicone
manufacturers (left) and fitted values (right). The depth camera im-
age is shown in colour and the simulated objects are in grey. For
Ecoflex-50, the nominal Young’s modulus is 83 kPa, which does not
match the real world when used with a coarse mesh simulation,
while the value of 65 kPa is calculated by our method for an op-
timal match.

ments, knowledge of the material model, the undeformed shape, a
sufficiently high mesh resolution so that numerical stiffness is negli-
gible and a large enough set of motion samples to capture sufficient
variations of possible deformations. Expecting such complete infor-
mation is unrealistic when working in the real world. For instance,
one never knows the undeformed coordinates because gravity al-
ways creates a bias. Objects have imperfections, thus, no true ho-
mogeneous solid exists. Running simulations at high resolutions are
impractical due to memory limitations. This last point has pushed us
to use a coarse mesh to match reality with our simulator, which un-
doubtedly results in different elastic values than those measured in
engineering laboratory settings. Similar to Hahn et al. [HBBC19],
we argue that plugging engineering measured parameters into a
coarse mesh simulator will fail to predict the real world. Figure 1
highlights this phenomenon with a didactic example. Consequently,
our focus in this paper has been more on reducing the reality gap
rather than, for instance, reaching the same elastic parameters listed
on data sheets as reported by silicone manufacturers.

The key ingredient in our work is to combine differential depth
rendering with differential physics and depth sensors. We create a
simple system that uses the chain rule to provide gradient informa-
tion directly from images, which can be easily integrated within ex-
isting optimization frameworks.

Differential rendering is related to inverse rendering and is
an active research field [ZJL20]. Approaches range from finite
difference-based approximate differential rendering [LB14], to ray
tracing [LADL18] and scan conversion [CLG*19]. In this work, we
apply a differentiable ray-tracer to emulate a LIDAR scanner.

The idea of using differentiable simulators for tuning parameters
is obvious. Many works estimate mass and friction of rigid bodies
[dABPSA*18, DHDw19, LLKL*20, KAMS20, SB20, MMG*21].
Most of these use synthetic data generated with simulators such as
Bullet or MuJoCo. Others tune material parameters such as stiff-
ness and density for cloth and soft bodies [LLK19, LL20, GHZ*20,
MMG*21]. As demonstrated in Chen et al. [CLMK17], simulated
behaviour depends heavily on the discretization of the soft object.
Thus, parameters need to be re-calibrated whenever the object, its
discretization or the simulator changes. Our work aims to create a
robust and efficient pipeline, which can significantly reduce time

spent setting up data capture and performing parameter tuning. Our
contributions in this work include the following:

¢ A robust marker-less approach to compare real and simulated
data;

A straightforward way to perform gradient-based optimization of
simulator parameters based on image similarity using a fully dif-
ferential pipeline;

¢ Multiple real-world examples of both homogeneous and hetero-
geneous soft bodies.

The code and the data including 3D models, images and videos
are publicly available at https://github.com/diku-dk/DiffCal.

2. Previous Work

Many works apply stereo-vision using multiple cameras in com-
bination with markers or feature point detection to track deforma-
tions of material samples [BBO*09, WOR11, BKS*12, CLMK17,
LLK19, HBBC19, LLKL*20, SB20, GHZ*20, LL20]. In some
cases, texture and optical flow are used to track a surface grid during
a controlled manipulation setup [MBT*12]. For cloth, there exists
single camera setups that exploit the 2D nature of a cloth sample
to create a simple way to measure cloth deformations [BTH*03,
WORI11]. Marker-less methods exist and often use a physics-based
probabilistic approach to track the deformation of the soft ob-
ject. This is quite robust to noise and occlusion [YL16, WWY*15,
WDK*20].

Our approach has no need for tracking markers or creating kine-
matic trajectories of known material positions. Instead, our method
minimizes the difference between rendered and captured depth im-
ages. Control of light conditions, colours and textures is important
for many works using stereo vision or cameras. Our work is less-
dependent on such conditions as we only need depth information
that can be captured by an inexpensive consumer-level LIDAR cam-
era. Other works have also used depth sensors such as Kinect or Intel
RealSense [WWY*15, GHZ*20, WDK*20] to capture depth data.
In these works, a point-correspondence between the point cloud and
a virtual model is created. This is used to determine the current
deformation of the object. We have no need for establishing point
correspondences, as we compare depth data directly. These works
typically need multiple cameras, as they are sensitive to occlusion
events. We show that by selecting camera angles carefully, we can
reproduce material behaviour from one camera.

Many works have explored optimizing simulation parameters by
minimizing the squared difference between tracked and simulated
positions [WWY*15, dABPSA*18, HBBC19, BBPC19, LLK19,
DHDw19, LLKL*20, KAMS20, GHZ*20, MMG*21]. Force equi-
librium constraints can be added to the minimization problem when
quasi-static problems are solved. This allows sensitivity analysis
to be applied to determine gradients for the objective function
[MBT*12,BCC17, YLYW18, HBBC19, BBPC19]. If the simulated
positions are known as a function of material parameters, one may
omit the force-equilibrium constraint [YLYW18].

Optimization methods that have been applied to find optimal
simulation parameters fall into two categories. One is gradient-
free approaches like the Nelder—-Mead algorithm [WWY*15] and
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CMA-ES [DHDw19]. The other category is based on gradient in-
formation and cover methods such as BEFGS [WORI11, HBBC19],
Levenberg—Marquardt [SLK*20], simulated annealing [BTH*03],
descent methods [YLYW18] and similar. Gradient-free methods are
inferior in terms of performance compared to gradient-based ap-
proaches [MMG*21]. Hence, our work uses a gradient-based ap-
proach. There is a sub-class of techniques that estimate gradients
using finite differences [WOR11], Gaussian processes [PKLD20]
and sampling [SLK*20]. However, these scale poorly and instead,
we use a differentiable simulator to obtain exact gradients.

Recently, many works have presented differentiable simula-
tors for rigid bodies, articulated rigid bodies, cloth and flu-
ids [dABPSA*18, SF18, LLK19, DHDw19, LL20, LLKL*20,
KAMS20, SB20, HMZS20]. Recent work addressed multi-body
simulations of both rigid and soft bodies [MEM*20, GHZ*20]. In
our work, we focus on hyper-elastic soft materials that are connected
to rigid fixed objects. Our approach is most similar to that of Murthy
et al. [IMMG*21]. The techniques used for providing gradient infor-
mation in differentiable simulators are many. Analytical gradients
can be computed for linear complementary problem, quadratic pro-
gramming models and staggered projections [dABPSA*18, LLK19,
LLKL*20, LL20, KAMS20, SB20]. Many works rely on reverse
mode auto differentiation [DHDw19, HMZS20, WAB20]. Recent
work combines the Adjoint method, source code transformation and
taping [GHZ*20, MMG*21]. A programming language for creating
differentiable simulators has even been proposed by Refs. [HLS*19,
HAL*20].

Wang et al. [IWOR11] and Miguel et al. [MBT*12] both address
cloth. In these works, a piece of square cloth is clamped on both
sides and subjected to buckling manipulation. Results show exam-
ples comparing the buckling of a piece of cloth side-by-side with a
real capture. Wang et al. [IWOR11] show impressive complex drap-
ing examples proving that their optimized parameters generalize to
simulations with complex geometry. It is difficult to assess how such
complex draping compares to real ground truth data. In contrast, in
our work, we focus on elastic solids and calibrate our simulations to
both simple beam-like geometries and more complex shapes, such
as soft robotic fingers and the XYZ Dragon model. In all our cases,
we include a quantitative comparison to real data including a study
of the variance. Furthermore, we use a relatively small number of
Dirichlet conditions. Comparing over-constrained cloth capture to
solid capture is not within the scope of our work because we in-
stead target soft bodies in the context of soft robotics, where soft
deformable fingers of various designs are often mounted on a fixed
base and made to move using cables or pneumatic activation. We
include an example showing a cable-driven soft-robot finger in our
results.

Chen et al. [CLMK17] focus on elastic solids and their compar-
isons to the real world include optimized geometric designs which
improve a user’s ability to produce the desired motion, such as hav-
ing a small jumping mechanism leap over an obstacle. Fast opti-
mizations are aided by coarse models with tuned mechanical pa-
rameters so as to avoid numerical stiffening. Our work addresses
numerical stiffening in coarse models in a similar manner.

Geilinger et al. [GHZ*20] are close to our work. The differences
are that we use semi-implicit Euler and support heterogeneous ma-

terials without the use of markers. Murthy e al. [MMG*21] were
the first to suggest using differentiable rendering in combination
with a differentiable simulator, gradSim. They use a loss function
on framebuffer pixels from synthetic examples only. To extend to
real data, this method will need to address colours, light conditions
and textures. We demonstrate that depth-based rendering works for
real-life data. To elaborate further, the gradSim approach requires
a photorealistic differentiable render that can reproduce images as
captured by a real camera. The DIB-R renderer used in this work
will compare poorly with real images captured from a vision sys-
tem. Thus, all gradSim examples only use simulated videos, and the
differentiable render relies on flat-shaded renderings of the anima-
tions. The work sheds no light on how to handle real-world bias and
imperfections. In contrast, our work takes data directly from the real
world as raw LIDAR images without any control of lighting condi-
tions. Our differentiable rendering approach is specially tailored to
work with depth rendering.

3. Method

We consider a soft body simulation of time ¢ as a differentiable func-
tion, S(¢; p), which depends on the material parameters p and re-
turns the simulation state, s,. Similarly, we define a depth-renderer
as a differentiable function, R(s;), that projects scene geometry to
an image, I,. Given a set of n target images, I* = {Ir*] R Ii;}, cap-
tured at times, t = {7, ..z}, we leverage the differentiability of our
pipeline to compute optimal material parameters, p*, such that

1
= in— ) p) =L 1
p’ =argmin - IR(SE: p) — Ll )]

tet

In other words, we choose parameters maximizing visual likeli-
ness between a set of real images I* and rendered simulation states.
The parameter-wise derivatives w.r.t. each target image is, therefore,
given by

AL~ _ ds oL aL —T s

= ?
ap ap aS; oI,

which we can use to perform gradient-based optimization of mate-
rial parameters. An overview of our method can be seen in Figure 2.

3.1. Differentiable rendering

Rendering is not inherently differentiable, as both ray-tracers and
rasterization-based graphics pipelines need to deal with discontinu-
ities in the scene. Rendering depth simplifies the problem of dif-
ferentiability, but problems like occlusion events can still occur.
In this work, we use the differentiable ray-tracer presented by Li
etal. [LADL18], which solves these problems by computing deriva-
tives using a Monte Carlo approach to estimate the pixel integral and
the Dirac delta terms at occlusion boundaries. Here, we will briefly
summarize the primary idea from Li ef al., but we refer the reader
to the original paper for a more rigorous description.

The general 2D pixel filter integral describes the pixel colour

I = / / S, y)L(x, y)dxdy 3
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Figure 2: The data flow of our differentiable pipeline. The simula-
tion function S produces a state s, using material parameters p. The
state, s,, is then projected to an image, I,, which we compare against
a target image, I, resulting in a scalar loss, £. The chain rule can
then be applied to compute the derivative of £ w.r.t. material param-
eters p.

for pixel filter f and radiance L, but as we will only be rendering
depth, we can ignore the radiance term. We are interested in com-
puting pixel-wise derivatives with respect to the simulation state,
s,, so we re-parameterize the pixel filter as f(x, y; s,), yielding the
state-dependent integral,

L= / / Fer,y: 8,)dxdy. @

In this work, we will only be rendering the surface of tetrahedral
meshes, which means discontinuities will occur only at triangle
edges. Each triangle edge can be seen as splitting the space into two
regions: inside and outside of the triangle. Referring to the inside as
T and the outside as 1, the space described by the ith edge can be
modelled as:

O(oi(x, y; SHfT(x, 33 8) + 0(—a;i(x, y; ) f (v, y38),  (5)

where 6 is the Heaviside step function and «; is the edge equation of
the ith edge. The integral from Equation (4) can therefore be trans-
formed into a sum of Heaviside step functions as

[ [ressay =3 [ [ ot yissice sy
©)

The derivative of this integral is written as a sum of two terms:

vy, / / 0@ (x, v $)) fi(x, y; s)dedy = ©)
Z//B(a,-(x,y;sr))w(ai(x,y; $O)fi(x, y; s)dedy+ - (7)

> / / Vfix, yi $)0(e;(x, y: 5,))dxdy, )

where § is the Dirac delta function. Here, V f;(x, y; s;) can be found
by automatic differentiation, but to estimate the gradient of the
first integral of Equation (7), we need to eliminate the discontin-
uous Dirac delta function. The Dirac delta function is 0 every-
where except at the edge dividing the space in half; that is, where
a;(x,y,s,) = 0. We can, therefore, perform a variable substitution

to re-write the integral as

Z//S(Otf(x, ¥ 8))VO(ai(x, 3 8)) filx, y; s)dxdy = (8)

Va;(x, y; s) .
Y [ omap sy, @

" oi(xyis)=0

where o (x, y) is the measure of the length on the edge. For an edge
with endpoints (ay, a,) and (b,, b,), the edge equation is given by

oe(x, y) = (a)' - by)x + (b\ - ax)y + (axb)' - bxay)s (9)

which means the edge equation derivatives are given by

da do
=b,—y, — =x—b, 10
da, y ) day * ’ (10)
da do (10)
=vVv—d,, — =d, — X.
b, 0 Y, "

We can now propagate the derivatives from the projected triangle
vertices as

Ja da day

_ da 8b;‘
as;

. 11
Bbk Bs, ( )

ketr) 8ak 85,
Finally, we can combine the Dirac delta estimated gradients with
the derivatives from the continuous term in Equation (7) to obtain
the pixel-wise derivatives of our rendered image, 1.

3.2. Differentiable physics

Our differentiable soft-body physics simulator is based on the work
of Murthy et al. [MMG#*21]. Our choice is not relevant to the differ-
entiable depth concept that we are introducing. Any differentiable
simulator can be used in principle, although the differences in time-
stepping are important when considering auto-differentiation. The
semi-implicit flavour of our choice can deplete memory and call for
taping techniques. Full-implicit can do larger time steps and has no
taping thanks to the adjoint method [GHZ*20]. It is a matter of prac-
tical trade-offs. Our simulator is simpler to implement and fits easily
into auto-diff tools but requires taping due to large GPU memory us-
age. We do note that it is likely that using the adjoint method could
improve the scalability of the method with respect to the number
of tetrahedral elements used so that the method could be applied to
more complex geometries.

We use the neo-Hookean constitutive model from Smith
et al. [SGK18], which defines the following elastic strain energy
density:

A
W= %UC ~3)+ 50U —ay - %1oguc+ . (12

Here X and p are the Lamé parameters, and « is a constant. The
scalar J = det(F) is the relative volume change, and I = tr(F7F) is
the first Cauchy invariant of strain. The matrix F is the deformation
gradient, which is a function of the physical state s of the system. In-
tegrating the energy density from Equation (12) and summing over
each tetrahedral element gives the total elastic potential. We allow
each element to have a unique Young’s modulus, so each contributes
one additional variable to the material parameters p. This allows us
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to optimize for heterogeneous materials. We model damping using
a strain-rate dissipation potential [SBO18] of W, = W(F), where F
is the time-derivative of the deformation gradient. We control how
much damping we want in the system by a scaling parameter S,
which we also add to p.

Forces are derived from the energy gradient analytically and inte-
grated using a semi-implicit Euler. To compute gradients of the state
with respect to material parameters, we use a source-code trans-
formation approach that generates parallel GPU kernels for reverse
mode auto-differentiation [HAL*20]. The use of semi-implicit in-
tegration places some time-step size restrictions on our method that
can lead to large memory requirements when simulating long time
spans. To alleviate this, we use checkpointing [GWO08], which re-
plays some computations from snapshots of the state, trading addi-
tional computation for reduced memory use.

Conceptually, our physics simulator provides a forward mapping
from some initial state to the final state s at a time ¢ in the future. In
addition, it provides a reverse mapping for the gradients by evaluat-
ing the following:

ot 09s oL

— == (13)

ads adp Jp
Combining this with our differentiable renderer, we can use the
chain rule to compute gradients of our entire pipeline with respect
to material parameters as follows:

a¢ 9l o9s oL

S o= (14)
al ds Jdp dp

where £ is a scalar loss. This allows us to use gradient-based op-
timization to minimize ¢ and fit simulated material parameters to

real-world data.

4. Experiments and Results

We validate our method on a set of real silicone test objects. For
all objects, we design and 3D-print multi-part moulds. Small dow-
els are added to each mould part and clamps are used to decrease
the likelihood of leakage. For silicone, we use Ecoflex-50 and
MoldStar-15, which we colour red and blue to make the materials
more distinguishable.

We place our test objects in a cube test environment similar to the
set-up of Holsten et al. [HENDE19] and force them into desired con-
figurations using 3D-printed clamps. We capture data using a single
Intel L515 LIDAR scanner. See Figure 3 for an example of how the
soft objects were placed in the cube. The clamps are mapped directly
to Dirichlet boundary conditions, similar to Hahn et al. [HBBC19].
To match the rendered scene to the physical set-up, we estimate the
camera pose using ArUco [GIMSMCMJ14] markers and construct
our projection matrix using the intrinsic parameters of the L515
camera. We place the ArUco marker on the robot clamp, such that
we can easily place the soft object in the virtual scene.

For all experiments, we use the Adam optimizer with decaying
momentum [CWLK22] using parameters 8, = 0.9, f, = 0.999 and
a learning rate, 7, scaled such that the sensitivity of the input pa-
rameters and the output loss is similar. In other words, we select n
to ensure that the updated parameters produce an observable visual

Ecoflex spine.

MoldStar spine.

Figure 3: The physical set-up for the simple homogeneous soft body
experiments. Camera angles were chosen arbitrarily, with the only
requirement that the ArUco markers had to be visible.

change in the rendered image. For all experiments, the goal of the
optimization is to minimize the L2 norm of the difference between
target and rendered images. As we compare the rendered images to
the raw depth data, the optimal material parameters might not re-
sult in a loss of 0, but instead a constant value related to the amount
of non-zero background pixels in the target image. We implement
the loss function and optimizer using PyTorch [PGM*19] to benefit
from its automatic differentiation framework. For each object, we
show the mean convergence rate of 10 repeated experiments with
initial Young’s modulus chosen randomly within £35-45% of the
minimizer. For simplicity, we assume that our materials have a Pois-
son’s ratio of 0.49 for all of our experiments. In principle, one can
optimize for the Poisson ratio too. It is worth noting that calibration
is often a pre-process and not a run-time system. Hence, we do not
worry about absolute timings but nevertheless, report on iteration
counts and convergence behaviours. Table 1 provides an overview
of our experiments and results.

Passive deformation. We start by demonstrating that our differen-
tial depth pipeline applies to the simple homogeneous objects from
Figure 3 in passive set-ups subject only to gravity. For this experi-
ment, the material model is parameterized by a single Young’s mod-
ulus, which is used to compute the Lamé parameters of our neo-
Hookean model. We expect to see convincing convergence towards
solutions that match real-depth images. Our cases include variation
in camera angles, lighting conditions, shape diversity and materials.
The convergence plot of the loss functions can be found in Figure 4.
As expected, the optimizer converges in a few iterations for all of
the randomly initialized runs. Figure 5 shows a visual comparison
between sample starting iterates and minimizers for the MoldStar-
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Table 1: Summary of experimental setup and results. Row numbers 1-10 and 11-12 correspond to passive deformation and viscosity estimation experiments,
respectively. All experiments are repeated 10 times with random initial parameters. Gravity is applied in all of the experiments. We use silicone in all experiments

and keep the Poisson’s ratios fixed at 0.49.

# Corresponding Figures Silicone Material Shape Deformation Optimized Parameters Leaming Rates | # Iterations | Mean Optimal Parameters
1 (3 and 4) top left Cantilever le6 | 50 65 kPa
2 (3 and 4) bottom left Ecoflex Spine le3 50 44 kPa
3 12 XYZ RGB Dragon Hanging Global Young’s modulus Se3 ‘ 25 95 kPa
4 (3 and 4) top right, 5 top row MoldStar Cantilever le6 30 149 kPa
5 (3 and 4) bottom right, 5 bottom row © Spine 1e3 | 5 110 kPa
6 (6 and 7 top row) Hangi Global Young’s modulus for each material 1e3 42 (77, 170) kPa
7 8 top row anging Tetrahedron-wise Young’s moduli led | 7 —
8 (6 and 7) bottom row Ecoflex+MoldStar Cantilever Twistin: Global Young’s modulus for each material 1e3 23 (119, 217) kPa
9 8 bottom row 8 Tetrahed: Young’s modul 1e7 ‘ 26 —
10 9 Hanging+Twisting Tetrahedron-wise Young’s modulus le6 | 50 —
11 11 right ; Coarse cantilever T N N . o - (1e3, le-1,1) 8 223 kPa, 11.1, 1050 kg/m*
12 10 11 left MoldStar Fine cantilever Oscillating Young’s modulus, damping factor, mass density (163, 1e-1. 1) ‘ 10 277 kPa, 8.8, 1057 kg/m?
206 Ecoflex-50 Cantilever 204 MoldStar-15 Cantilever
204 203
2 202 0 202|
S So01|
200
200
198
199 —=
0 10 20 30 40 50 0 10 20 30 40 50
# Iterations # Iterations
163.2 Ecoflex-50 Spine 193 —— MoldStar-15 Spine
163.0 192
9 8191
S 1628 8
190
162.6
189
162.4 188
0 10 20 30 40 50 0 10 20 30 40 50

# Iterations

# Iterations

Figure 4: Convergence for the cantilever and spine fabricated us-
ing Ecoflex-50 and MoldStar-15. For all four soft objects, we used
10 random initial parameters. The mean of the loss function is
shown in bold and its one standard deviation as shaded regions.

15 cantilever and spine experiments. Here, we show the depth image
captured by the L515 camera with the rendered starting iterates and
minimizers imposed on top in grey. The digital cantilever consists
of 1750 elements, while the spine model has 1327 tetrahedra. For
the Ecoflex-50 experiments, we found the mean Young’s modulus
of the minimizers to be 65 and 44 kPa for the cantilever and spine,
respectively. The mean Young’s modulus of the minimizers for the
MoldStar-15 experiments was given by 149 kPa for cantilever and
110 kPa for spine model.

Heterogeneous materials. Our method easily extends to heteroge-
neous materials and can also be applied to larger deformations. We
fabricate a two-part cantilever and subject it to the same set-up as
its homogeneous counterparts. We then force it into a more stress-
ful deformation by twisting the previously free-hanging part 180°.
The two set-ups can be found in Figure 6. For both experiments,
we parameterize the elastic material model by two Young’s modu-
lus values instead of one, such that each half of the cantilever has
its own parameter. The outcome of running 10 experiments from

Figure 5: A visual comparison between starting iterates (left) and
minimizers (right) for the MoldStar-15 cantilever and spine. In all
images, the simulated cantilever is rendered in grey.

different initial values for the hanging and twisted cantilever can
be observed in Figure 6. For all 10 experiments, the two material
parameters were initially assigned the same value. In Figure 7, vi-
sual inspections of sample starting iterates and minimizers can be
found for each experiment. The same digital model of the cantilever
was used for both experiments and consisted of 3414 elements. The
mean minimizer of the hanging cantilever was found to be 170 and
77 kPa for the MoldStar-15 and Ecoflex-50 parts, respectively. For
the twisted cantilever, the mean minimizer was given by 217 and
119 kPa.

In many fabricated objects, where materials have been mixed
unevenly or contain internal structures, manually designing cor-
rect material distributions is infeasible. Our method handles this
problem by optimizing directly for tetrahedron-wise material pa-
rameters. We repeat the 2-material cantilever experiments, but this
time optimizing for the tetrahedron-wise parameters. For both ex-
periments, we use a digital model of the cantilever consisting of
3414 tetrahedra. In Figure 8, we show an example of a distribution
of Young’s modulus for minimizers of both experiments as well
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Figure 6: Physical set-up for the 2-material composite cantilever
experiments and their respective material parameter convergence
plots. Notice that plots show 10 experiments with random initial
parameters; the bold lines show the mean of the loss function and
shaded regions show one standard deviation.

Figure 7: A visual inspection of the 2-material experiments. In the
top row, we visualize a starting iterate and minimizer for the hang-
ing cantilever, and in the bottom row, we visualize a starting iterate
and minimizer for the twisting experiment. For both experiments,
the simulated cantilever is rendered in grey.

as the convergence plots. The aim of our experiment is not to get
smooth real-world parameter fields. The point of our twist experi-
ment is to demonstrate that we can handle heterogeneous solids. A
regularizer could be used as a model to achieve smoother solutions,
or the tet-wise values could be interpolated from some coarse sam-
pling to add more model semantics to the solution. Such extensions

Loss
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Hitorafions Young's modulus (kPa)

Figure 8: The result of optimizing the material parameters of each
tetrahedron for the hanging and twisted cantilever. The result-
ing tetrahedron-wise distribution of Young’s modulus for randomly
picked minimizers has been visualized next to the convergence plots.
Observe the very small standard deviation (shaded regions) of our
10 experiments.

can be added as an extra penalty term to our loss function, or as an
extra derivative term to our pipeline. The fact that we get a more
speckled distribution underlines that one can not expect to throw
real-world values into a fast simulator to match the real world.

From Figures 6 and 8, we note that optimizing for tetrahedron-
wise parameters results in a similar minimum function value as
the low-parameter counterparts. For both cases, we also observe a
less noisy optimization for the tetrahedron-wise experiments, which
indicates that the optimizer benefits from having more tunable
parameters.

Generalizing to different deformation modes and boundary
conditions. In our experiments, so far we have optimized for only
a single deformation mode. We obtain different results for the same
models and materials depending on the changes in the setup. This is
to be expected because the observed individual deformations make
us fit the simulator to different principal deformation modes of the
physical models. Changing the experimental setup or boundary con-
ditions will lead to different results as we are fitting to different de-
formation modes. This insight is related to how subspace modelling
approaches work. One seeks a subset of individual modes from a
general model, each mode has its own ‘stiffness’ given by a singular
value or similar. When calibrating a simulator, we have the reverse
scenario. We should expose the simulator to data examples—aka de-
formation modes—that span the general behaviour one wishes the
simulator to cover with high fidelity. This feat is shared by all pa-
rameter estimation methods regardless of them being marker-based
or not.
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Figure 9: Optimizing for both bending and twisting deformations
simultaneously. On the left, the convergence plot of each loss func-
tion and the combined one is shown. On the right, we have the final
distribution of tet-wise Young’s modulus values. As expected, we ob-
tain a different solution from that of Figure 8, which is optimized on
single modes.

Our approach does allow for an easy combination of different
modes by simply adding loss functions from the individual mod-
els to obtain a combined loss function. We demonstrate this by
combining the bending and twisting cantilever beam examples into
one where we optimize for the shared tet-wise Young’s modulus
to make the simulator match both modes at the same time. Note
that both boundary conditions and deformations are different in the
two examples. Figure 9 shows the convergence plots as well as the
final distribution of the Young modulus. The undeformed coordi-
nates are used for the visualization of Young’s modulus solution.
As expected, we obtain a different solution from those of the single-
mode optimizations.

Viscosity estimation. We wish to show that our method can also be
applied to calibrate the viscous behaviour of soft objects. To handle
the calibration of a dynamic motion, we need data on the soft object
in motion. During optimization, we then continuously render the
state of our simulation, corresponding to the captured frames of the
motion. We use a similar set-up to the one we used to capture static
deformations, but add a small ledge that can be removed by pulling
a trigger. This allows us to match the beginning of our simulation to
the frame where the ledge was removed.
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204.8 205.612\
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o018 S 202,612
201.612
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# Iterations # lterations

Figure 10: The convergence of the viscosity calibration experiment
for the fine (left) and coarse (right) cantilever models. Experiments
were repeated 10 times with initial random parameters. The mean of
the loss is in bold, and shaded regions show one standard deviation.

We calibrate for correct viscous behaviour by allowing the op-
timizer to change Young’s modulus of the material, the damping
parameter described in Section 3.2 and the density of the material.
We estimate these three parameters for the MoldStar-15 cantilever
and run the experiment 10 times using randomly initialized parame-
ters. The loss is the mean of the L2-norms of the difference between
target images and rendered simulation states. For this experiment,
12 images were captured at 30 Hz, resulting in roughly 0.4 s of mo-
tion. We perform this experiment for two differently discretized can-
tilever models; one consisting of 1750 elements and one consisting
of 3414. We show the mean convergence of 10 randomly initialized
experimental runs in Figure 10, and perform a visual inspection of
arandomly selected starting iterate and minimizer pair in Figure 11
for the coarsest mesh. For the coarse mesh, the mean minimizer had
Young’s modulus of 223 kPa, a damping factor, S8, of 11.1 and a
density of 1050 kg/m?>. On the other hand, the mean minimizer of
the fine mesh was given by Young’s modulus of 277 kPa, a damping
factor of 8.8 and a density of 1057 kg/m>.

Complex shapes. So far, the soft bodies in our experiments have
consisted of simple symmetric designs. As our method relies on op-
timizing for visual likeness between rendered states and captured
images, we expect our method to work at least as well for more
complex objects. This is an important feature of the differentiable

t = 0.06s

t=0.12s

t=0.18s

t =0.24s t =0.30s

Figure 11: Visualizations of simulations of a starting iterate (top) and minimizer (bottom) for the dynamic motion experiment.
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—— Ecoflex-50 Dragon

5 10 15 20 25
# Iterations

Figure 12: The XYZ RGB Dragon set-up and the convergence of
the material parameter optimization, above an example of a start-
ing iterate and minimizer of the optimization. We show the mean of
the loss function in bold and its one standard deviation as shaded
regions over 10 random initial parameters.

pipeline, as it will otherwise be unsuited for performing simulator
calibration for real fabricated objects. We explore this robustness
towards complex shapes with potential self-occlusions by calibrat-
ing a simulation of an Ecoflex-50 version of the XYZ RGB Dragon
subject to gravity. The set-up and the results can be found in Fig-
ure 12. Note that while the loss function only decreases by a small
amount, we still observe a noticeable change in the deformation of
the dragon. The mean Young’s modulus of the minimizer for the
XYZ RGB Dragon experiment was 95 kPa.

Numerical coarsening. The differentiable depth approach can be
applied to fit coarse meshes suffering from numerical stiffness to
the behaviour of high-resolution meshes. We use a rendered image
of a high-resolution XYZ RGB Dragon to replace the LIDAR depth
image and apply our technique to the coarsened versions of the
Dragon. Dirichlet boundary conditions are placed on the Dragon
from the hind legs to the tip of the tail, and the target image was
generated using Young’s modulus of 65 kPa. We anticipate our
approach to decrease Young’s modulus of the coarser meshes, in
order to counteract the increasing numerical stiffness. The com-
putational footprint should increase w.r.t. the number of elements,
which will reflect on both the computational time of the simulator
and the optimizer. The convergence behaviour should be indifferent
to the coarseness of the Dragon as the gradient is largely given
by the difference between the rendered target and the iterate. The
resulting deformations and minimizers can be found in Figure 13.
As seen from the listed results, there is a good agreement between
the measurements and our hypotheses.

Effect of different material models. The choice of the material
model can have a huge influence on the material parameter values.

In general, material parameters are not universal constants but rather
depend on the material model, i.e. the constitutive equation used.
Hence, one cannot simply swap a Young’s modulus value from a
linear material model into a non-linear one and expect to get the
same material behaviour.

Our framework optimizes the parameters of any material
model to make the simulated deformations as close as possi-
ble to the observed deformations from the depth images. We
note that the silicone we use has a material behaviour that
corresponds well with the stable neo-Hookean material model.
To demonstrate the influence of the choice of the material
model, we have compared results with Mooney—Rivlin and lin-
ear elasticity models. Figure 14 shows that the obtained defor-
mations are as close to the observations as the models allow
but will have different material parameter values depending on
the model choice. The optimized Young’s modulus for the neo-
Hookean, Mooney—Rivlin and linear elastic models are 57, 95 and
150 kPa, respectively. As expected, we obtained quite different
values.

The deformations obtained from the simulation can be different
if one uses different models. The choice of model essentially dic-
tates the feasible sub-space of motions that can be achieved. As a
result, a poor choice of model may cause the optimization not to re-
produce the observed deformation very well, as seen in the middle
and bottom row of Figure 14 to varying degrees.

Beyond elasticity. Lastly, we examine how our approach extends
to optimize for parameters other than elasticity. We focus on ca-
ble control for soft robotic fingers, and therefore, we have added
cables to a soft finger suspension. We expect our method to visu-
ally achieve similar configurations as the real finger by optimizing
for cable rest length. Figure 15 shows the target configuration, the
minimizer and the convergence of the optimization for three increas-
ingly difficult cable pulls. We observe a good match between sim-
ulated and real robot fingers. Further, we notice the optimization
problem becomes more difficult for smaller cable lengths. This is
expected, due to the larger deformations, but our method still han-
dles the challenge gracefully.

5. Limitations and Discussion

In our experiments, it was sufficient to use a single off-the-shelf LI-
DAR camera. LIDAR is active light, and therefore, the reflectance
of dissipative media can create noise near the silhouette of objects.
Further, the inexpensive equipment has limitations in focal length
which are important for getting sufficiently high-resolution data.
Our setup was robust towards these potential limitations in hardware
and worked well under different light conditions. Alternatively, one
may apply object coating if reflectance noise is a huge concern or
apply another type of depth sensor technology such as stereo vision
with specialized lens systems. The benefits of our choice are its in-
expensiveness and straightforwardness.

All our experiments take full advantage of standard optimization
software on simple L2-norms of depth images and differential depth
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# Elements 7913 2415 1023
Single simulation 145.1 seconds 74.71 seconds 19.45 seconds
Optimization runtime 65.3 minutes 31.13 minutes 9.4 minutes
# Function evaluations 27 25 29
Young’s modulus 46.19 kPa 42.84 kPa 37.74 kPa

Figure 13: The XYZ RGB Dragon deformed under gravity for a set of meshes with varying coarseness. The Dragon is kept in place by
Dirichlet conditions placed on the left part of the abdomen, feet and tail. In the left-most column, a mesh of 17,827 elements can be found,
which was used to render a target depth image. The target dynamic simulation has Young’s modulus of 65 kPa, and was run until it reached
static equilibrium after 293.18 s. The Young’s modulus of the material was optimized for each of the coarser meshes in order to minimize the
Li-norm between the target image and the final rendered simulation state. All mesh resolutions arrived at a minimizer within a small number
of function evaluations and as expected, arrived at lower optimal material parameters due to numerical stiffness.
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Figure 14: Comparison of various constitutive models for the
hanging Ecoflex cantilever experiment. Top row: stable neo-
Hookean model; middle row: Mooney-Rivlin model; bottom row:
linear elasticity model. The depth images shown in colour and ren-
dered object is overlaid in white. Clearly, one must choose a model
which is well-matched to the type of material being simulated. Hav-
ing said that our framework brings the rendered image as close
to the depth image as the chosen model allows it to. In doing so,
one would obtain different values for material parameters in each
model.
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Figure 15: Convergence of the soft robotic finger actuated by a ca-
ble. From top to bottom the cable was pulled 18, 31 and 46 mm.
Minima are marked by black squares. The soft finger was fabricated
using MoldStar-15. The visual accuracy of our method is verified by
the depth rendered versions of the finger, actuated according to the
minimizer of the objective function.

render differences. This makes markers and point correspondences
unneeded and thus does not require large data sets for visual appear-
ance models. In this work, the calibration of the depth sensor and
renderer was handled using ArUco markers, but any other solutions
to camera pose estimation can easily be integrated into our pipeline.

Our cost function is fully differentiable. As we used PyTorch,
Adam was a straightforward choice as an optimizer, but other line-
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search strategies could also be applied. Unlike the depth images, the
rendered images contain only the object and not the background,
meaning the loss cannot be minimized to zero. The larger this back-
ground noise, the more difficult it would be to reduce the cost func-
tion. Further, the pixel resolution will affect results too, as we opti-
mize until the pixel difference is small enough.

The depth information provides a lot of extra information for han-
dling complex geometries as evidenced by our dragon and twisting
cantilever examples. This, combined with the use of a physical sim-
ulator, addresses occlusion challenges to a certain extent, which are
known limitations in point cloud or image/video-based approaches.
One classical remedy to occlusion is to add more cameras. We re-
mark that our approach is not technically limited to a single depth
camera and can easily be extended to multiple cameras in future
work by rendering from multiple angles.

We exploit that all our silicone objects are fabricated and that the
reference shapes for all our experiments are known. An interesting
result from our heterogeneous experiments is that the same defor-
mation can be reached by very different material distributions. Es-
pecially for the twisting cantilever, we observed an unexpected ma-
terial distribution in the tet-wise optimization experiment. We also
note that the material parameters depended heavily on the discretiza-
tion of the soft objects. These results emphasize the need for a fast
way to re-calibrate material parameters, as we cannot rely on values
obtained from traditional parameter estimation set-ups to translate
to correct simulated behaviour.

In our dynamic calibration experiment, we had to restrict the time
span of the motion due to GPU memory constraints. In future work,
we would like to solve this issue, such that we can apply our method
to longer motions, for instance by using the adjoint method. The
time span of the captured data has an obvious effect on the number of
iterations needed to calibrate parameters. However, the convergence
rate of the optimizer should be independent of the number of tar-
get frames, as long as the build-up of errors from the semi-implicit
solver remains sufficiently small. If calibration of mass density and
damping is less relevant, then static simulations could be considered
to improve performance.

6. Conclusion

We have demonstrated a differentiable depth calibration method that
is inexpensive and easy to set up and use. It is built on the simple
principles of back-propagation to evaluate gradients. The method
relies on image-based loss functions, avoiding the need for textures,
markers or point correspondences. This novel differentiable depth
estimation method allows for a vast class of gradient-based optimiz-
ers. Our example cases range from passive homogeneous set-ups to
more complicated shapes and heterogeneous objects. We robustly
estimate elasticity, density and viscous behaviour. We investigated
the impact of numerical coarsening on the estimated values. Finally,
we used our framework to optimize a cable length of a soft robotic
finger. The resulting workflow allows for a very agile and robust
approach to simulator calibration for fabricated objects.
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