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Abstract
Images sorted by similarity enables more images to be viewed simultaneously, and can be very useful for stock photo agencies or
e-commerce applications. Visually sorted grid layouts attempt to arrange images so that their proximity on the grid corresponds
as closely as possible to their similarity. Various metrics exist for evaluating such arrangements, but there is low experimental
evidence on correlation between human perceived quality and metric value. We propose distance preservation quality (DPQ)
as a new metric to evaluate the quality of an arrangement. Extensive user testing revealed stronger correlation of DPQ with
user-perceived quality and performance in image retrieval tasks compared to other metrics. In addition, we introduce Fast
linear assignment sorting (FLAS) as a new algorithm for creating visually sorted grid layouts. FLAS achieves very good sorting
qualities while improving run time and computational resources.

Keywords: interaction, user studies, visualization, information visualization, high dimensional sorting, assistive interfaces

CCS Concepts: • Human-centred computing → Visualization design and evaluation methods; Empirical studies in visualiza-
tion; • Information systems → Presentation of retrieval results; • Theory of computation → Sorting and searching

1. Introduction

It is difficult for humans to view large sets of images simultane-
ously while maintaining a cognitive overview of its content. As set
sizes increase, the viewer quickly loses their perception of specific
content contained in the set (Figure 1 left). For this reason, most
applications and websites typically display no more than 20 im-
ages at a time, which in many cases is only a tiny fraction of the
images available. However, if the images are sorted according to
their similarity, up to several hundred can be perceived simulta-
neously. It has been shown that a sorted arrangement helps users
to identify regions of interest more easily and thus find the im-
ages they are looking for more quickly [SA11, QKTB10, RRS13,
HZL*15]. The simultaneous display of larger image sets is par-
ticularly interesting for e-commerce applications and stock photo
agencies.

In order to be able to sort images according to their similarity, a
suitable measure of this similarity must be specified. Image anal-
ysis methods can generate visual feature vectors and image simi-
larity is then expressed by the similarity of their feature vectors.
While low-level feature vectors generated by classical image anal-

ysis techniques represent the general visual appearance of images
(such as colours, shapes and textures), vectors generated with deep
neural networks can also describe the content of images [BSCL14,
ZIE*18, RTC19, CAS20]. The dimensions of these vectors are on
the order of a few tens for low-level features, while deep learning
vectors generated with neural networks typically have up to thou-
sands of dimensions.

If the images are represented as high-dimensional (HD) vectors,
their similarities can be expressed by appropriate visualization tech-
niques. A variety of dimensionality reduction techniques have been
proposed to visualize HD data relationships in two dimensions. Of-
ten a distinction is made between methods that use vectors or pair-
wise distances. However, these methods can be converted from one
another; pairwise distances can be calculated from the vectors, and
the rows of a distance matrix can be used as vectors.

Numerous techniques (principal component analysis (PCA)
[Pea01], multi-dimensional scaling (MDS) [Sam69], locally linear
embedding (LLE) [RS00], Isomap [TdSL00] and others) are de-
scribed in Sarveniazi [Sar14]. Other methods that work very well
are t-distributed stochastic neighbourhood embedding (t-SNE)
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Figure 1: 1024 images tagged with “flower”. Left: grid in random order. Centre: t-SNE projection. Right: arranged with LAS.

[vdMH08], uniform manifold approximation and projection
(UMAP) [MH18] and subset embedding networks [XTL*21].

Visualization is achieved by projecting the HD data onto a two-
dimensional plane. However, all of the above techniques are of lim-
ited use if the images themselves are to be displayed. The centre of
Figure 1 shows a t-SNE projection of the relative similarity of 1024
flower images. Due to the dense positioning of the projected im-
ages, some overlap and are partially obscured. Furthermore, only a
fraction of the display area is used. Using techniques such asDGrid
[HMJE*21] would solve the overlap problem, but would still not
make best use of the available space.

To arrange or sort a set of images by similarity while maximizing
the display area used, three requirements must be satisfied:

1. The images should not overlap.
2. The image arrangement should cover the entire display area.
3. The HD similarity relationships of the image feature vectors

should be preserved by the 2D image positions.

Requirements 1 and 2 can only be met if the images are positioned
on a rectangular grid. For the 3rd requirement, the images have to
be positioned such that their spatial distance corresponds as closely
as possible to the HD distance of their feature vectors, despite the
given grid structure.

The self-organizing map is one of the oldest methods for organiz-
ing HD vectors on a grid [Koh82, Koh13]. Self-sorting maps [SG11,
SG14] are a more recent technique that orders images using a hier-
archical swapping method. Other approaches first project the HD
vectors to two dimensions, which are then mapped to the grid po-
sitions. Various metrics exist for assessing the quality of such ar-
rangements, but there is little experimental evidence of correlation
between human-perceived quality and these metrics.

In our paper, we first describe other existing quality metrics for
evaluating sorted grid layouts, then we give an overview of existing
algorithms for generating sorted 2D grid layouts.

The key contributions of our work are: 1. Inspired by the k-
neighbourhood preservation index [FFDP15], we propose distance
preservation quality (DPQ) as a new metric for evaluating grid-

based layouts. 2. We then propose linear assignment sorting (LAS),
an algorithm that very efficiently produces high-quality 2D grid lay-
outs. 3. We conducted an extensive user study examining different
metrics and show that distance preservation quality better reflects
the quality perceived by humans. We furthermore performed qual-
itative and quantitative comparisons with other sorting algorithms.
4. In the last section, we show how to generate arrangements with
special layout constraints with our proposed sorting method.

A preprint of this paper has been published in Barthel et al.
[BHJS22]. This paper is based on our previous work [BH19], in
which we proposed a predecessor of the arrangement quality metric
and a combination of SOM and SSM. The differences between this
paper and these previous approaches are described in Sections 3.2
and 4.1.

2. Related Work

2.1. Quality evaluation of distance preserving grid layouts

A high-quality image arrangement is one that provides a good
overview, places similar images close to each other and images be-
ing searched can be found quickly. An evaluation metric expresses
the quality of a sorted arrangement with a single number. This value
should highly correlate with the quality perceived by humans. We
review commonly used evaluation metrics and examine their prop-
erties and problems.

Grid-based arrangement of HD data X consists of finding a map-
ping (a sorting function) S : X �→ Y or S : xi �→ yi, where xi is the
ith HD vector, whereas yi is the ith position vector on the grid in
R

2. The distance between HD vectors is denoted by δ(·, ·) whereas
λ(·, ·) denotes the corresponding spatial distance of positions of the
2D grid.

Mean average precision. The mean average precision (mAP) is
the commonly used metric to evaluate image retrieval systems.

AP(q) = 1

mq

N∑
k=1

Pq(k)relq(k) mAP = 1

N

N∑
n=1

AP(n) (1)
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Figure 2: An example of two arrangements of colours with the same
mAP values, where people would rate the sorting quality unequally.

AP is the average precision, N the number of total images, mq the
number of positive images per class. Pq(k) represents the precision
at rank k for the query q, relq(k) is a binary indicator function (1 if
q and the image at rank k have the same class and 0 otherwise).

The mAP metric defines a sorting as ‘good’ if the nearest neigh-
bours belong to the same class. In most cases, the mAP cannot be
used because typically images do not have class information. An-
other problem is that mAP only considers images of the same class
and ignores the order of the other images (see Figure 2).

k-Neighbourhood preservation index. The k-neighbourhood
preservation index NPk(S) is similar to the mAP in that it evalu-
ates the extent to which the neighbourhood of the HD data set X is
preserved in the projected grid Y . It is defined as

NPk(S) = 1

N

N∑
i=1

|N HD
k,i ∩ N 2D

k,i |
k

(2)

where k is the number of considered neighbours, N HD
k,i is the set of

the k nearest neighbours of xi in the HD space, whereas N 2D
k,i is the

set of the k nearest neighbours to yi on the 2D grid.

The k-neighbourhood preservation index has several problems:
The quality of an arrangement is not described by a single value,
but by individual values for each neighbour size k. Because of
the discrete 2D grid, many spatial distances λ are equal, which
means that there is no unique ranking of the grid elements. How-
ever, the biggest problem is a high sensitivity to noisy or similar
distances.

Cross-correlation. The cross-correlation is used to determine
how well the distances of the projected grid positions correlate with
the distances of the original vectors:

CC(S) =
N∑
i=1

N∑
j=1

(λ(yi, y j ) − λ̄)(δ(xi, x j ) − δ̄)

σλσδ

(3)

The main problem of cross-correlation is that differences of large
distances have a higher impact than differences of small distances.
It may be problematic to assess the quality of an image arrange-
ment with cross-correlation as it is equally important to maintain
both small and large distances to keep similar images together and
prevent dissimilar images from being arranged next to each other.

Algorithm 1. SOM

1: Initialize all map vectors with random values,
set learning rate � (< 1) and neighbor radius

2: while not convergence do // convergence by reducing � and radius
3: for all high-dimensional input vectors xi do
4: Find the unassigned map position with most similar vector m j

5: Assign the vector xi to this position and
update the neighbor map vectors: m j = � · xi +(1−�) ·m j

6: Reduce � and the neighbor radius

Normalized energy function. The normalized energy function
measures how well the distances between the data instances are pre-
served by the corresponding spatial distances on the grid.

Ep(S) = min
c

( N∑
i=1

N∑
j=1

|c · δ(xi, x j ) − λ(yi, y j )|p∑N
r=1

∑N
s=1(λ(yr, ys))

p

) 1
p

E′
p(S) = 1 − Ep(S)

(4)

The normalized energy function has essentially the same properties
and problems as cross-correlation. The parameter p can be used to
tune the balance between small and large distances. Usually, p val-
ues of 1 or 2 are used. Throughout this paper, we use E′

p with a range
of [0,1] with larger values representing better results.

2.2. Algorithms for Sorted Grid Layouts

2.2.1. Grid arrangements

Since our new sorting method is based on both self-organizing map
and self-sorting map, we present them here in more detail.

A self-organized map (SOM) uses unsupervised learning to pro-
duce a lower dimensional, discrete representation of the input space.
A SOM consists of a rectangular grid of map vectors M having the
same dimensionality as the input vectors X . To adapt a SOM for im-
age sorting, the input vectors must all be assigned to different map
positions, since multiple assignments would result in overlapping
images. Algorithm 1 describes the SOM sorting process.

A self-sorting map (SSM) arranges images by initially filling
cells (grid positions) with the input vectors. Then for sets of four
cells, a hierarchical swapping procedure is used by selecting the
best permutation from 4! = 24 swap possibilities. Algorithm 2 de-
scribes the sorting process with a SSM. In [SJGE13], an alternative
to SSMs is described that uses more sophisticated swapping strate-
gies to achieve better global correlation, but at a much higher com-
putational cost.

Level-of-detail grid (LDG) is a recent method for creating hi-
erarchical grid layouts [Fre22]. A progressive optimization method
based on local search generates hierarchical grids. The method is
based solely on pairwise distances and jointly optimizes homogene-
ity within interior nodes and between grid neighbours.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



264 K. U. Barthel et al. / Improved Evaluation and Generation of Grid Layouts

Algorithm 2. SSM

1: Copy all input vectors into random but unique cells of the grid
2: Divide the grid into 4x4 blocks
3: while size of the blocks ≥ 1 do
4: Divide each block into 2x2 smaller blocks
5: for iteration = 1,2, . . .L do // L = maximum number of iterations
6: For each block its target vector (the mean vector of its cells

and adjacent blocks’ cells) is calculated
7: for all blocks do
8: for all cells of the block do
9: Find the best swapping permutation for the 4 cells from

corresponding positions of the adjacent 2x2 blocks by
minimizing the sum of squared differences between
the cell vectors and the target vectors of the blocks

2.2.2. Graph matching

Kernelized sorting (KS) [QSS08] and Convex KS [DGV12] gener-
ate distance-preserving grids and find a locally optimal solution to a
quadratic assignment problem [BK57]. KS creates a matrix of pair-
wise distances between HD data instances and a matrix of pairwise
distances between grid positions. A permutation procedure on the
second matrix modifies it to approximate the first matrix as well as
possible, resulting in a one-to-one mapping between instances and
grid cells.

IsoMatch also uses an assignment strategy to construct distance
preserving grids [FDH*15]. First, it projects the data into the 2D
plane using the Isomap technique [TdSL00] and creates a complete
bipartite graph between the projection and the grid positions. Then,
the Hungarian algorithm [Kuh55] is used to find the optimal assign-
ment for the projected 2D vectors to the grid positions. IsoMatch
uses the normalized energy function E1 trying to maximize the over-
all distance preservation.

Similarly, DS++ presents a convex quadratic programming re-
laxation to solve this matching problem [DML17]. KS, IsoMatch
and DS++ are not limited to rectangular grids. They can create
layouts of any shape. As with IsoMatch, any other dimensionality
reduction methods (such as t-SNE or UMAP) can be used to first
project the HD input vectors onto the 2D plane, and then re-arrange
them on the 2D grid. A fast placing approach can be found in Hi-
lasaca et al. [HMJE*21]. Any linear assignment scheme like the
Jonker–Volgenant Algorithm [JV87] can be used to map the pro-
jected 2D positions to the best grid positions. Many non-linear di-
mensionality reduction methods have been recently proposed, but
the question of their assessment and comparison remains open.
Methods comparing HD and 2D ranks are reviewed in Refs. [LV08,
LMBH11].

3. A New Quality Metric for Grid Layouts

Our goal is to develop a metric that better reflects perceived quality.
The quality is to be expressed with a single value, where 0 stands
for a random and 1 for a perfect arrangement. There are two ap-
proaches when designing a suitable quality function for grid layouts.
The first option would be to refer to the best possible 2D sorting that
can theoretically be achieved. However, this approach is not appli-
cable because the best possible sorting is usually not known. The

Figure 3: Two examples of best possible 2D arrangements for 64
colour samples. Left: The perfect HD (3D) order is preserved. Right:
Four different colours with 16 samples each, here the HD order can-
not be preserved. Colours adjacent to a different colour on the 2D
grid are not near their nearest HD neighbours.

only viable way is to refer to the distribution of the HD data. A per-
fect sorting here means that all 2D grid distances are proportional
to the HD distances. However, depending on the specific HD distri-
bution, it is usually not possible to achieve this perfect order in a 2D
arrangement (see Figure 3).

3.1. Neighbourhood preservation quality

Our initial approach towards a new evaluation metric was to com-
bine the k-neighbourhood preservation index values NPk(S) to a sin-
gle quality value. The NPk(S) values for a perfect arrangement Sopt
and the expected value for random arrangements Srand are

NPk(Sopt ) = 1 E[NPk(Srand)] = k

K
(5)

where k is the evaluated neighbourhood size, K is the maximum
number of neighbours which is the number of HD data elements−1.
The expected NPk value for a random arrangement is k

K , since more
and more correct nearest neighbours are found as k increases.

For a given 2D arrangement S, we define the neighbourhood
preservation gain �NP2D

k (S) as the difference between the actual
NPk(S) value and the expected value for random arrangements.

�NP2D
k (S) = max (NPk(S) − k

K
, 0) (6)

The maximum is taken because theoretically an arrangement can be
worse than a random arrangement. This happens very rarely, but if it
does, the negative values are very small. Since an optimal arrange-
ment preserves all HD neighbourhoods perfectly, we define

�NPHD
k = �NP2D

k (Sopt ) = 1 − k

K
(7)

Figure 4 shows an example of four different primary colours, each
used 64 times. All colours were slightly changed by some noise,
resulting in 256 different colours. On the left side, two arrangements
and the colour histogram are shown. The �NP curves are shown on
the right. Here the optimal HD order cannot be preserved in 2D.

We determine the vectors of neighbourhood preservation gains of
the actual 2D arrangement and of the perfect HD arrangement. We
define the neighbourhood preservation qualityNPQp(S) as the ratio
of the norms of these vectors. NPQp(S) is close to 0 for a random
and 1 for a perfect sorting.

NPQp(S) = ‖�NP2D(S)‖p
‖�NPHD‖p

0 ≤ NPQp(S) ≤ 1 (8)
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Figure 4: Left: A 3D RGB histogram of a set of 64× 4 colours, all
slightly modified by noise. Below two arrangements of this set with
sorted (S) and random positions (Srand). Right: The corresponding
curves of the neighbourhood preservation gain �NP. Although the
sorting S is rather good, �NP2D(S) is very low for small k values.

Each 2D grid position has several other positions with the same
spatial distance λ (e.g. the four nearest neighbours with a distance of
1). To determine NPk(S) for all k-values, the mean k-neighbourhood
preservation index values must be determined for equal spatial dis-
tances. This ensures that isometries (rotated or mirrored arrange-
ments) result in equal NPQ values.

To determine the neighbourhood preservation quality NPQp(S),
the value for the p-norm must be chosen. Higher values give more
weight to NPk values with smaller k, so the preservation of nearer
neighbours becomes more important. In the case of very large p
values, only the four adjacent positions are taken into account.

One problem with the proposed neighbourhood preservation
quality is its sensitivity to noisy distances in the HD data. This of-
ten occurs when using visual feature vectors. As image analysis is
not perfect, a feature vector can be considered as a ‘perfect’ vector
that is disturbed by some noise. This effect can be seen in Figure 4.
Although sorting S is rather good, the �NPk(S) values are very low,
especially for near neighbours. The top row of Figure 5 shows the
resulting order when ranking different arrangements of this data set

Figure 5: Arrangements in the order of NPQ2 (above) and DPQ2

(below). It can be seen that theNPQ order does not match the human
perception of sorting quality.

according to their NPQ values for p = 2. It can be seen that NPQ
does not reflect the perceived sorting quality well.

3.2. Distance preservation quality

The problem of the proposed neighbourhood preservation quality
consists of the fact that only the correct ranking of the neighbours is
taken into account. The actual similarity of wrongly ranked neigh-
bours is not considered. To address the noise-induced degradation
of the neighbourhood preservation quality, we propose not to com-
pare the correspondence of the closest neighbours, but to compare
the averaged distances of the corresponding neighbourhoods N HD

k,i

andN 2D
k,i . For this, the average neighbour distances for the k closest

neighbours are determined in HD and 2D:

DHD
k = 1

kN

N∑
i=1

∑
j∈NHD

k,i

δ(xi, x j ) D2D
k (S) = 1

kN

N∑
i=1

∑
j∈N 2D

k,i

δ(xi, x j ) (9)

It should be noted that the distances δ of the HD vectors are used
for both the HD and the 2D neighbourhoods. The only difference is
that the sets of the actual k nearest neighbours in HD and 2D are not
the same if the 2D arrangement is not optimal.

Similar to the neighbourhood preservation quality, we compare
the average neighbourhood distance with the expectation value
of the average neighbourhood distance of random arrangements,
which is equal to the global average distance D of all HD vectors
xi.

E[D2D
k (Srand)] = D = 1

N(N − 1)

N∑
i=1

N∑
j=1

δ(xi, x j ) (10)

Analogous to �NP2D
k (S), we define the distance preservation gain

�Dk as the difference between the average neighbourhood distance
of a random arrangement and the sorted arrangement.

�DHD
k = 1

D
(D − DHD

k ) �D2D
k (S) = max(

1

D
(D − D2D

k (S)), 0) (11)

Compared to�NP, the order of subtraction is reversed for�D, since
a higher distance is considered instead of a lower neighbour preser-
vation. Taking the difference between D and the average neigh-
bour distance ensures �D2D

k (Srand) is approximately 0 for random
arrangements. In theory, the division by D is not necessary, but lim-
iting the values to a range from 0 to 1 improves the numerical stabil-
ity when calculating the norm of the distance preservation gain for
larger p values. Figure 6 shows the�D curves of the previous exam-
ple. It shows that for the sorted arrangement S, the �D2D

k (S) values
are much higher for small neighbourhoods k, indicating that close
neighbours on the grid are similar. For neighbours with equal 2D
distances, the mean of the corresponding HD distances was used.

The distance preservation quality DPQp(S) is defined as the ra-
tio of the p-norms of the distance preservation gains of the actual
arrangement to a perfect arrangement:

DPQp(S) = ‖�D2D(S)‖p
‖�DHD‖p 0 ≤ DPQp(S) ≤ 1 (12)
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Figure 6: The same arrangements as in Figure 4. On the right side,
the curves show the distance preservation gain �D.

For a random arrangement, DPQp(Srand) will be approximately 0,
for a perfect arrangement, DPQp(Sopt ) will be 1. The influence of p
is evaluated in the user study in Section 5.

In Barthel and Hezel [BH19], we have proposed a predecessor
of this approach. For all vectors, the differences between the global
average distance and the weighted distances to their neighbourhood
vectors was determined in HD and in 2D. A projection quality was
obtained as the ratio of the means of these differences in HD and
2D. A GaussianN (0, σ 2) based on the normalized neighbour ranks
was used as the weighting function. The weighting of distances
for higher ranks could be controlled by σ . Both, the choice of the
weighting function and its parametrization were in some sense ar-
bitrary.

Again, the problem of equal spatial distances must be considered
when determining the average distances for the k nearest neighbours
on the grid. There are two ways to approach this: One is to use the
mean HD distance for neighbours with equal 2D distance. The other
possibility is to sort these neighbours by their HD distance. The
former would be a pessimistic estimate of D2D

k , whereas the latter
would be an optimistic estimate (see Figure 7). The use of mean

Figure 7: Three neighbour constellations for the blue colour in the
centre. The distance from blue to purple is equal to the mean of
the distances to red and blue. Here D2D

k for k = 1 . . . 8 is the same
when using the mean HD distances for neighbours with equal 2D
distances. Sorting these neighbours by their HD distance results in
lower D2D

k values. This would better describe human perception if
they preferred the right constellation to the left.

HD distances for equal 2D distances is denoted as DPQ−
p . Whereas

DPQp denotes the use of sorted HD distances. Figure 5 shows a bet-
ter ranking of arrangements when evaluated with DPQ quality than
with NPQ (for p = 2).

4. Our new Sorting Algorithm: Linear Assignment Sorting

First, we show how SOM and SSM can be optimized for speed and
quality, which in combination leads to our new sorting scheme.

4.1. Speed and quality optimizations of SOM and SSM

The SOM described in Section 2.2 assigns each input vector to the
best map vector and updates its neighbourhood. The map update
can be thought of as a blending of the map vectors with the spa-
tially low-pass filtered assigned input vectors, where the filter ra-
dius corresponds to the current neighbourhood radius. We propose
to replace this time-consuming updating process: First, all input vec-
tors are copied to the most similar unassigned map vector. Then, all
map vectors are spatially filtered using a box filter. It is possible to
achieve constant complexity independent of the kernel size by using
uniform or integral filters [Lew94, VJ01]. Due to the sequential pro-
cess of the SOM, the last input vectors can only be assigned to the
few remaining unassigned map positions. This results in isolated,
poorly positioned vectors.

The SSM avoids the problem of isolated, bad assignments by
swapping the assigned positions of four input vectors at a time. To
find the best swap, the SSM uses a brute force approach that com-
pares the four input vectors with the four mean vectors of the blocks
to which each swap candidate belongs. Due to the factorial number
of permutations, adding more candidates would be computationally
too complex. In order to still be able to use more swap candidates,
we propose optimizing the search for the best permutation by lin-
ear programming. Another problem of the SSM is the use of a single
mean vector per block, which incorrectly implies that all positions in
the block are equivalent when they are swapped. The usage of a sin-
gle mean vector per block can be considered as a sub-sampled ver-
sion of the continuously filtered map vectors. Therefore, in Barthel
and Hezel [BH19], we proposed using map filtering without sub-
sampling, as this allows a better representation of the neighbour-
hoods of the map vectors. The block sizes of the SSM remain the
same for multiple iterations, this can be seen as repeated use of the
same filter radius. We propose continuously reducing the filter ra-
dius.

4.2. Linear assignment sorting

Our proposed new (image) sorting scheme called linear assignment
sorting (LAS) combines ideas from the SOM (using a continuously
filtered map) with the SSM (swapping of cells) and extends this to
optimally swapping all vectors simultaneously. The principle of the
LAS algorithm can be described as follows: Initially all map vectors
are randomly filled with the input vectors. Then, the map vectors are
spatially low-pass filtered to obtain a smoothed version of the map
representing the neighbourhoods. In the next step, all input vectors
are assigned to their best matching map positions. This is done by
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Algorithm 3. LAS

1: Set r f = max(W,H) · fr0 // initial filter radius ( fr0 ≤ 0.5)
fr // radius reduction factor ( fr < 1)

2: Assign and copy all input vectors to random but unique map vectors
3: while r f > 1 do
4: Filter the map vectors using the actual filter radius r f

5: Find the optimal assignment for all input vectors (acc. to Eq. 13)
6: Copy all input vectors to the map vectors of their new positions
7: Reduce the filter radius: r f = r f fr.

finding the optimal solution by minimizing the cost C:

C =
N∑
i

N∑
j

ai jci j with ai j ∈ {0, 1}, ci j = ‖xi − mj‖q

subject to
N∑
j

ai j = 1,
N∑
i

ai j = 1 (13)

ai j is a binary assignment value, whereas ci j is the distance between
the input vectors xi and the map vectors mj. The power q allows
the distances to be transformed in order to balance the importance
of large versus small distances. Since the number of possible map-
pings is factorial, we use the Jonker–Volgenant linear assignment
solver [JV87] to find the best swaps with reduced run time com-
plexity O(N3) and memory complexity O(N2).

The actual sorting is achieved by repeatedly assigning the input
vectors and filtering the map vectors with a successively reduced
filter radius. The principle of the LAS sorting scheme for a grid of
size N =W · H is summarized in Algorithm 3.

The only parameters of the LAS algorithm are the initial filter ra-
dius and the radius reduction factor, which controls the exponential
decay of the filter radius and thus the quality and/or the speed of the
sorting. Examining different q values for transforming the distances
between the input and map vectors did not reveal much difference;
in the interest of faster computations, we use q = 2.

LAS is a simple algorithm with very good sorting quality (see
next section for results). However, for larger sets in the range of
thousands of images, the computational complexity of the LAS al-
gorithm becomes too high. However, with a slight modification of
the LAS algorithm, very large image sets can still be sorted. Fast
linear assignments sorting (FLAS) is able to handle larger quanti-
ties of images by replacing the global assignment with multiple lo-
cal swaps, as described in Algorithm 4. This approach allows much
faster sorting while having little impact on the quality of the ar-
rangement. Comparisons between LAS and FLAS are given in the
next section.

The selection of FLAS parameters allows the control of the qual-
ity and speed of the sorting process. In this way, we generated many
sorted arrangements of different quality, which were then used in
the user study in Section 5. For an example implementation of the
LAS and FLAS algorithms, the distance preserving quality DPQp

together with the images, and the feature vectors used in this paper,
see https://github.com/Visual-Computing/LAS_FLAS.

Algorithm 4. FLAS

1: Set r f = max(W,H) · fr0 // initial filter radius ( fr0 ≤ 0.5)
fr // radius reduction factor ( fr < 1)
nc // number of swap candidates
iterations = W ·H/nc

2: Assign and copy all input vectors to random but unique map vectors
3: while r f > 1 do
4: Filter the map vectors using the actual filter radius
5: for i = 1,2, . . . iterations do
6: Select a random position & select nc random swap candidates

(assigned input vectors) within a radius of max(r f ,
√

nc−1
2 )

7: Find the best swapping permutation
8: Assign the input vectors to their new map positions

9: Copy the input vectors to the map vectors of their assigned positions
10: Reduce the filter radius: r f = r f · fr

5. User Study

5.1. Experiment design

To evaluate the proposed DPQp metric and the new sorting schemes
(LAS and FLAS), an extensive user study was conducted. In a first
experiment, we determined the correlation between user preferences
and the quality metrics described in Sections 2.1 and 3.2. In a second
experiment, we examined the relationship between the time required
to find images in arrangements and the metrics’ quality scores and
the users’ ratings, respectively.

5.1.1. Image sets

Figure 8 shows the four image sets used in the experiments. The first
set consists of 1024 random RGB colours. The random selection
implies that there is no specific low-dimensional embedding that
can be exploited to project the data to 2D. While the RGB colour
set is a somewhat artificial set, we also used image sets.

In advance, we conducted tests with various image sets of differ-
ent sizes and colour distributions. It became apparent that some im-
age sets, regardless of the arrangement, were too difficult for users
to search. With smaller image sets, on the other hand, the arrange-
ment of the images had little effect on the speed of the search, as
the searched images could often be spotted immediately. The three
chosen image sets covered different scenarios, where a significant
difference in search performance between sorted and random ar-
rangements can be observed. The first set consists of 169 images of
traffic signs taken from Pixabay [BS10] in 2017, excluding photos
of real traffic signs and nearly identical images. This set contains
several groups of visually similar images as might be found when
searching for signs or logos. The second set consists of 256 images
of kitchen items crawled from the IKEA website in 2016. From a
total of 10,262 images, all images with kitchen items were selected.
Images with multiple or small objects, duplicates and many very
colourful images that are potentially easy to find were removed.
This set is an example of what one might find on e-commerce web-
sites. Some of these images are very similar, which makes it difficult
to find them. The last set consists of 400 images for 70 unrelated
concepts crawled from the Internet. This set was chosen because
the low-level feature vectors used in the experiment are capable of
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Figure 8: The four image sets used in the experiments. The arrangements shown are the ones that received the highest user scores.

Figure 9: Left: 256 images tagged with ‘food’sorted with low-level
feature vectors. Right: the same images sorted with feature vectors
from a neural network (MobileNetV3 small [HPA*19]).

describing images of the same class with similar feature vectors.
This ensures that a supposedly bad arrangement is not due to a poor
description by the feature vectors used. This set has an uncharac-
teristically high proportion of coloured images, but there are many
images that belong to different object categories despite similar ap-
pearance, potentially complicating visual retrieval.

5.1.2. Feature vectors

For the RGB colour set, the R, G and B values were taken directly as
vectors. Theoretically, the Lab colour space would be better suited
for human colour perception, but even the Lab colour space is not
perceptually uniform for larger colour differences. To ensure easy
reproducibility of the results, we kept the RGB values.

For images, onemight expect that feature vectors from neural net-
works would be best suited to describe them, which is definitely true
for retrieval tasks. However, when neural feature vectors are used
to visually sort larger sets of images, the arrangements often look
somewhat confusing because images can have very different appear-
ances even though they represent a similar concept (see Figure 9).
Since people pay strong attention to colours and visually group
similar-looking images when viewing larger sets of images, feature
vectors describing visual appearance are usually more suitable for
arrangements that are perceived as ‘well-organized’. For this rea-

son, in our experiment, we used 50 dimensional low-level feature
vectors describing the colour layout, the fuzzy YCoCg colour his-
togram and the MPEG-7 edge histogram of the images. However,
the choice of feature vectors has limited impact on the experiments
performed, since all sorting methods use the same feature vectors
and the metrics indicate how well their similarities are preserved.

5.1.3. Implementation

We organized the experiment as online user tests, where partici-
pants could take part in a raffle after completing the experiments.
It was possible to perform the experiment more than once, but it
was ensured that participants would not see the same arrangements
twice. In total, more than 2000 people participated in the experi-
ment. About half of them were employees and students of our uni-
versity, coming from different fields of study, and only a small pro-
portion was from the field of computer science. Little is known
about the other participants, as the experiment was advertised as
a raffle on various websites.

5.1.4. Investigated sorting methods and metrics

In our experiments, we used sorted arrangements generated with
the following methods: SOM, SSM, IsoMatch, LAS, FLAS and
the t-SNE 2D projection that was mapped to the best 2D grid po-
sitions (indicated as t-SNEtoGrid). Several of these generated ar-
rangements were then selected based on the range of variation in
sorting results per method. The UMAPmethod was not investigated
because in many cases, its KNN graph broke into multiple compo-
nents, which made an arrangement onto the 2D grid impossible. In
order to also have examples of low quality for comparison, some
sorted arrangements were generated with FLAS using poor param-
eter settings (indicated as Low Qual.).

The evaluated quality metrics were the Energy function E′
1 and

E′
2 (Equation 4) and the distance preservation quality DPQp (Equa-

tion 12) with different p values. As the normalized energy func-
tion E′

2 and cross-correlation provide an almost identical quality
ranking for different arrangements, we did not evaluate the cross-
correlation metric.
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Figure 10: User preferences. In this study, we ask users to choose
the arrangement they preferred.

5.2. Evaluation of user preferences

In the first experiment, pairs of sorted image arrangements were
shown. Users were asked to decide which of the two arrangements
they preferred in the sense that ‘the images are arranged more
clearly, provide a better overview and make it easier to find images
they are looking for’.

Figure 10 shows a screenshot of this experiment. All users had to
evaluate 16 pairs and decide whether they preferred the left or the
right arrangement. They could also state that they considered both
to be equivalent. To detect misuse, the experiment contained one
pair of a very good and a very bad sorting. The decisions of users
who preferred the bad sorting here were discarded. The number of
different arrangements were 32 for the colour set and 23 each for the
three image sets, (giving 496 pairs for the colour set and 253 pairs
for each image set). Each pair was evaluated by at least 35 users.

For each comparison of Si with Sj, the preferred arrangement gets
one point. In case of a tie, both get half a point each. Let vr(Si, Sj )
be the points received by Si in the rth out of R comparisons between
Si and Sj. Let

P(Si, Sj ) = 1

R

R∑
r=1

vr(Si, Sj ) (14)

be the probability that Si receives a higher quality assessment in
comparison to Sj, (P(Si, Sj ) + P(Sj, Si) = 1). The final user score
for Si is defined by

User Score(Si) =
∑
j

P(Si, Sj ) (15)

Because the number of comparisons per pair was quite high and
nearly constant, sophisticated methods for unbalanced pairwise
comparison such as the Bradley–Terry model [BT52, Hun04] were
not necessary since they provided an equal ranking.

The overall result of the user evaluation of the arrangements is
shown in Figure 11. Figures 12 and 13 show the relationship be-
tween user ratings and the values of the E′

1 and DPQ−
16 metrics for

the colour set and the three image sets. It can be seen that the Pearson
correlation is significantly higher for DPQ−

16 compared to E′
1. In the

case of RGB colours, users liked the LAS arrangements the best. For

Figure 11: User scores for the image sets. The user scores for the
colour set can be seen in Figure 12.

Figure 12: User scores correlated with energy function E′
1 (left)

and distance preservation quality DPQ−
16 (right) for the colour set.

Figure 13: User scores correlated with the energy function E′
1 (left)

andDPQ−
16 (right) for the three image sets: traffic signs ( ), kitchen-

ware ( ) and web images ( ). The correlation between users scores
and DPQ−

16 is higher than that of E
′
1.

the image sets, there is no clear winning method. The t-SNEtoGrid
method obtained rather low scores for the RGB colours, but much
higher ones for the image sets.

Figure 14 shows the degree of correlation between user scores and
quality metrics for different p values of the E′

p and the DPQp met-
rics. For all four sets, the correlation of DPQ with the user scores
is higher than that of E′

1 and E
′
2 for all p values. For predicting user

scores, DPQ−
p values (using mean HD distances for equal 2D dis-

tances) with higher p values give the best results (left of Figure 14).
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Figure 14: The correlation of user scores with the metrics E′
p and

DPQp with respect to the p values for the colour and image sets. For
equal 2D distances, the DPQ metric was computed using mean HD
distances (left) and sorted HD distances (right) (see Figure 7).

The high correlation for larger p values with the user scores could
indicate that users essentially pay attention to how well the imme-
diate nearest neighbours have been preserved.

5.3. Evaluation of user search time

In the second part of the user study, the users were shown different
arrangements in which they were asked to find four images in each
case. The four images to be searched were randomly chosen and
shown one after the other. As soon as one image was found, the
next one was displayed. Participants were asked to pause only when
they had found a group of four images, but not during a search. At
the beginning, users were given a trial run to familiarize themselves
with the task. Here, the time was not recorded. Figure 15 shows a
screenshot of the search experiment. The overall set of arrangements
was identical to those from the first part of the experiment, in which
the pairs had to be evaluated.

Obviously, the task of finding specific images varies in difficulty
depending on the image to be found. In addition, the participants
are characterized by their varying search abilities. However, a total
of more than 28,000 search tasks were performed, each with four

Figure 15: Image search. In this study, we ask users to quickly find
the images shown on the left.

Figure 16: Distribution of search times versus metrics for the three
image sets. The median search time (shown as coloured markers)
correlated with the energy function E′

1 (left) and the distance preser-
vation quality DPQ16 (right).

images to be found. This means that for each arrangement, more
than 400 search tasks were performed for four images each. This
compensated for differences in both the difficulty of the search and
the abilities of the participants.

The search times required for each of the 23 arrangements per im-
age set were recorded. It was found that the time distribution of the
searches is approximately log-normal. Search times that fell outside
the upper three standard deviations were discarded to filter out ex-
periments that were likely to have been interrupted. Figure 16 shows
the search time distribution of different arrangements for the three
image sets. The median values of the search times of the different
arrangements are shown as coloured markers. Again it can be seen
that the correlation of the median search times is higher with the
DPQ16 metric than with the E′

1 metric.
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Figure 17: The median search times for the three image sets. The
standard errors of the medians are indicated. The time axis is
clipped to better visualize differences of the median search times.

Figure 18: The correlation of median image search time with the
metrics E′

p and DPQ
−
p / DPQp with respect to the p values.

Figure 17 shows the median values of the search times for all
arrangements, sorted from the arrangement where the images were
found the fastest to the one where the image search took the longest.
The standard error of the median search times was determined by
bootstrapping with 10,000 runs. While the ranking order of the al-
gorithms is similar to the order of the user preferences, it occasion-
ally differs, suggesting that an apparently well-sorted arrangement
is only conditionally indicative of finding images quickly.

To evaluate the degree of correlation between search time and the
quality metrics, Figure 18 compares the normalized energy func-
tion (E′

1 and E′
2) with the distance preservation quality (DPQq and

DPQ−
q ). Again it can be seen that DPQp outperforms E′

p. Contrary to
the user preference evaluation, for image retrieval tasks, DPQq per-
forms slightly better than DPQ−

q . Both show maximum correlation
for high p values. This in turn indicates that it seems to be most im-
portant for people to locate similar images very close to each other
in order to find them quickly, as hypothesized in Figure 7.

We also investigated the use of the squared L2 distance instead of
the L2 distance to calculate the DPQ, the correlations remained sim-
ilar, but were slightly lower. Other distance transformations could be
investigated, but this is beyond the scope of this paper.

6. Qualitative and Quantitative Comparisons

6.1. Quality and run time comparison

To get a better understanding about the behaviour of FLAS and
other 2D grid-arranging algorithms using different hyperparameter

settings, we conducted a series of experiments. Since the run time
strongly depends on the hardware and implementation quality, the
numbers given in this section only serve as comparative values. In
the previous section, DPQ16 has shown high correlation with user
preferences and performance, we, therefore, use it when compar-
ing algorithms in terms of their achieved ‘quality’ and the run time
required to generate the sorted arrangement.

At this point, it is important to emphasize that LAS and FLAS,
and likewise SOM and SSM, do not optimize an objective qual-
ity function or metric, unlike many other dimensionality reduc-
tion methods. The only used methods that perform an optimiza-
tion in terms of a quality function or a metric are IsoMatch and
t-SNE. IsoMatch attempts to maximize the normalized energy func-
tion E′

1, while the t-SNE objective is to make HD and 2D similarity
distributions as similar as possible by minimizing their Kullback–
Leibler divergence.

Our test machine is a Ryzen 2700x CPUwith a fixed core clock of
4.0GHz and 64GBofDDR4RAM running at 2133MHz. The tested
algorithms were all implemented in Java and executed with the JRE
1.8.0_321 on Windows 10. Only the single-threaded sorting time
wasmeasured. Asmuch code as possible was re-used (e.g. the solver
of LAS, FLAS, IsoMatch and t-SNEtoGrid) tomake the comparison
as consistent as possible.

The Isomap and t-SNE projection implementation is from the
popular library SMILE [Li14] (version 2.6). The SSM code is an
implementation adapted from Strong and Gong [SG14] to match
the characteristics of our implementation of SOM, LAS and FLAS.
At startup, all data is loaded into memory. Then the averaged run
time and DPQ16 value of 100 runs were recorded. We ensured the
algorithms received the same initial order of images for all runs.

There are different hyperparameters that can be tuned. Some of
them affect the run time and/or the quality of the arrangement, while
others result in only minor changes. Figure 19 shows the relation-
ship between speed and quality when varying the hyperparameters.
For t-SNE, SSM and SOM, the number of iterations were changed,
the t-SNE learning rate (eta) was set to 200. For LAS and FLAS,
the radius reduction factor was gradually reduced from 0.99 to 0,
while the initial radius factor was 0.35 and 0.5, respectively. FLAS
used nine swap candidates per iteration. IsoMatch has only the k-
neighbour setting which does not influence the quality nor the run
time and therefore produces only a single data point in the plots.
For small data sets like the 256 kitchenware images, FLAS offers
the best trade-off between DPQ and computation time. LAS and t-
SNE can produce higher DPQ16 values but are 10–100 times slower.
There is no reason to use a SSM or SOM, since both are either
slower or generate inferior arrangements. For the 1024 randomRGB
colours, LAS and FLAS yielded the highest DPQ.

In order to compare the scalability of the analysed algorithms,
three data sets of different sizes were analysed, containing 256, 1024
and 4096 random RGB colours. The hyperparameters of the points
marked with a � in Figure 19 were used for all the tests shown in
Figure 20. It can be seen that FLAS and SSM have the same scaling
properties, while FLAS exhibits better qualities. Even higher DPQ
values can be achieved by LAS at the expense of run time. As the
number of colours increases, arrangements with smoother gradients
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Figure 19: Mean DPQ versus mean run time using different pa-
rameter settings (see the text for further information) for the 1024
RGB colours (top) and the 256 kitchenware images (bottom). The�
markers indicate the parameters used in the scalability experiments
shown in Figure 20.

Figure 20: Scalability of different algorithms. The mean DPQ16

and mean computation time for data sets of 256 ( ), 1024 ( ) and
4096 ( ) random colours using fixed hyperparameters.

become possible, resulting in better quality. Most approaches can
exploit this property, except for IsoMatch and t-SNEtoGrid. Both
initially project to 2D and rely on a solver to map the overlapping
and cluttered data points to the grid layout. Since the number of grid
cells is equal to the number of data points, it is difficult for the solver
to find a good mapping. This often results in hard edges, as can be
seen in Figure 21.

To summarize, LAS can be used for high quality arrangements,
while FLAS should be used if the number of images is very high
(several thousand) or if fast execution is important.

6.2. Visual comparison

While the quantitative qualities of the various algorithms are quite
similar in some cases, visual inspection reveals specific differences.

For the 1024 RGB colour data set, the run closest to the DPQ16

mean was selected from the 100 test runs used for Figure 20. The
corresponding arrangements are shown in the order of their dis-
tance preservation quality DPQ16 in the top of Figure 21. In addi-
tion, the normalized energy function value (E′

1) is given. LAS has
the smoothest overall arrangement, followed by FLAS and SSM.
The SOM arrangement is disturbed by isolated, poorly positioned
colours, while the t-SNEtoGrid approach shows boundaries be-
tween regions. This is due to previously separate groups of pro-
jected vectors being re-distributed over the grid, resulting in visible
boundaries where these regions touch. The noisy looking arrange-
ment of IsoMatch is caused by the normalized energy function try-
ing to equally preserve all distances. This leads to a kind of dithering
of the vectors respectively the colours.

Most of these effects are less visible when real images are used
instead of colours. The lower row of Figure 21 shows the arrange-
ments from our user study 5.3, which required searching images in
the web images set. The DPQ16 values and the E′

1 values are given.
The arrangements are ordered by the median time it took users to
find the images they were looking for (fastest on the left to slow-
est on the right). t-SNEtoGrid again shows some boundaries be-
tween regions, but this time the boundaries apparently help to better
identify the individual groups of images, reducing the time needed
to find them. The LAS, FLAS, SSM and SOM arrangements have
a similar appearance for this data set. The dithered appearance of
the IsoMatch arrangement apparently makes it difficult for users to
quickly find the images they are looking for.

7. Applications

In this section, we present a variety of applications that use our al-
gorithms introduced in Section 4.2 to efficiently manage or search
larger sets of images.

7.1. Image management systems

For browsing local images on a computer, a visually sorted display
of the images can help to view more images at once. Given user-
scrolling of a view tends to be in a vertical direction, it is important
that the images on one horizontal line are similar to each other, and
one perceives obvious changes in the vertical direction. This can be
achieved by using a larger filter radius for horizontal filtering. See
Figure 22 showing the PicArrange app [Jun21] as an example.

7.2. Image exploration

For very large sorted sets with millions of images, it may be useful
to use a torus-shaped map which gives the impression of an endless
plane. If one can navigate this plane in all directions, it is possible
to bring regions of interest into view. Such an arrangement can be
achieved by using a wrapped filter operation. This means part of
the low-pass filter kernel uses vectors from the opposite edge of the
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Figure 21: Comparison of different image sorting schemes. Top: Arrangements of the 1024 random RGB colours ordered by distance preser-
vation quality. Bottom: Arrangements of the web image set ordered by the median user search time (fastest on the left). For each algorithm,
the arrangement that provided the fastest search is shown (see the leftmost points in Figure 16).

Figure 22: For vertical scrolling in an image management system,
the images on horizontal lines should be similar to each other.

map. Figure 23 shows a (small) example of such a torus-shaped ar-
rangement. If zooming is possible, images of interest can be found
and inspected very easily. This idea can be combined with a hier-
archical pyramid of sorted maps that allows visual exploration for
huge image sets. The user can explore the image pyramid with an
interface similar to the mapping service (e.g. Google Maps). By
dragging or zooming the map, other parts of the pyramid can be ex-
plored. The online tool wikiview.net [Bar19] allows the exploration
of millions of Wikimedia images using this approach.

7.3. Layouts with special constraints

Although our algorithms work with rectangular grids, other shapes
can also be sorted. The map has the size of the rectangular bound-

Figure 23: An example of a wrapped (torus-shaped) grid arrange-
ment. Left: the entire collection, right: zoomed and dragged to cen-
tre on orange pots.

Figure 24: 2403 random RGB colours in a heart shape. Unsorted
on the left and sorted with linear assignment sorting on the right.

ing box of the desired shape, however, only the map positions within
the shape can be assigned. Figure 24 shows an example where the
colours to be sorted were only allowed within the shape of a heart.
The corresponding algorithm remains the same, the only difference
is that the vectors of the assigned map positions are used to fill
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Figure 25: Flags arranged by their similarity. Above, the American
flag was pinned to the middle of the left side. Below, it was pinned
at the centre of the bottom line.

the rest of the the map positions. Each unassigned map position
is filled with the nearest assigned vector of the map’s constrained
positions.

Sometimes it is desirable to keep some images fixed at certain
positions (see Figure 25). This is possible with twominor changes to
the algorithm: In a first step, the images or the corresponding vectors
are assigned to the desired positions. These positions are then never
changed again. Also, an additional weighting factor is introduced for
filtering, where the fixed positions are weightedmore. This results in
neighbouring map vectors becoming similar to these fixed vectors,
which in turn results in similar images also being placed nearby. The
rest of the algorithm remains the same.

8. Conclusions

We presented a new evaluation metric to assess the quality of grid-
based image arrangements. The basic idea is not to evaluate the
preservation of the HD neighbour ranks of an arrangement, but the
preservation of the average distances of the neighbourhood. Fur-
thermore, we do not weight all distances equally either, because for
humans, the preservation of small distances seems to be more im-
portant than that of larger distances. User experiments have shown
that DPQ better represents human-perceived qualities of sorted ar-
rangements than other existing metrics. If the overall impression of
an arrangement is to be evaluated, the DPQ−

p metric had a small
advantage. For predicting how fast images can be found for an ar-

rangement, DPQp was better. In general, however, these differences
are small and we recommend always using DPQp.

Large p values lead to the highest correlations with user percep-
tion. This implies that for a ‘good’ arrangement, it is essentially im-
portant that the sum of the distances to the immediate neighbours
on the 2D grid is as small as possible. The same is true for one-
dimensional sorting, which is ‘optimal’ only if the sum of the dif-
ferences to the direct neighbours is minimal. It remains to be inves-
tigated whether DPQ is a useful metric for evaluating the quality of
other, non-grid-based dimensionality reduction methods.

Furthermore, we have presented LAS which is a simple but at
the same time very effective sorting method. It achieves very good
arrangements according to the new metric as well as for other met-
rics. The FLAS variant can achieve better arrangements than exist-
ing methods with reduced complexity. In single-threaded execution,
a CPU can sort tens of thousands of data vectors in a fraction of a
second and over a million in less than 30 s. The FLAS algorithm is
fully parallel because different swappings do not interfere with each
other. Therefore, the algorithm can run efficiently on parallel hard-
ware.

The ideas presented in this paper can be developed in numerous
directions. Since the new DPQ metric allows a better prediction of
the quality of an arrangement, it also better predicts the expected
search time. If a sorting scheme were optimized in terms of DPQ,
searched images would also be found faster. In this context, it re-
mains to be investigated how a sorting algorithm can be optimized
directly in the sense of a high DPQ value.

The filtering approach used determines mean HD distances for
equal 2D distances. We will investigate whether further improve-
ment is possible by exploiting the fact that for equal 2D distances on
the grid, the sorted HD distances better represent the perceived qual-
ity.

Currently, our sorting method only supports regular grids. We
want to investigate how this approach can be extended to densely
packed rectangles of various sizes.
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