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Abstract
We propose a technique for efficient storage and importance sampling of fluorescent spectral data. Fluorescence is fully described
by a re-radiation matrix, which for a given input wavelength indicates how much energy is re-emitted at other wavelengths.
However, such representation has a considerable memory footprint. To significantly reduce memory requirements, we propose
the use of Gaussian mixture models for the representation of re-radiation matrices. Instead of the full-resolution matrix, we
work with a set of Gaussian parameters that also allow direct importance sampling. Furthermore, if accuracy is of concern,
a re-radiation matrix can be used jointly with efficient importance sampling provided by the Gaussian mixture. In this paper,
we present our pipeline for efficient storage of bispectral data and provide its extensive evaluation on a large set of bispectral
measurements. We show that our method is robust and colour accurate even with its comparably minor memory requirements
and that it can be seamlessly integrated into a standard Monte Carlo path tracer.
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1. Introduction

Traditionally, rendering pipelines mimic the human visual system
and rely on RGB or tristimulus values to compute light transport.
This approach, however, is insufficient if high colour accuracy or re-
production of spectral effects is required. Resolving the wavelength
domain with additional bands, and thus performing spectral ren-
dering, allows handling of such cases at the expense of increased
computational demands. However, due to the increase in computa-
tion power and algorithmic efficiency [WND*14], spectral render-
ing is becoming increasingly popular even in production [PBC*18].
In this paper, we focus on the reproduction difficulties of one par-
ticular spectral effect: fluorescence.

Fluorescence is a phenomenon often found in natural elements
and chemical compounds. It has a significant impact on howwe per-
ceive an object’s colour in terms of hue, saturation and luminance
because it transfers a part of non-visible or near-visible light into a
different part of the visible range. Therefore, the inclusion of fluo-
rescence can enhance material brightness, making the colour appear

more vivid compared to a pure reflection. While the importance of
this effect for appearance modelling in computer graphics has been
known for years, it has not been used much in practice, as adding it
to graphics workflows—both on the side of user interfaces, as well
as within rendering software proper—is a demanding problem.

An issue preventing a more widespread adoption of fluorescence
is the significant memory footprint of its representation. To fully
describe fluorescent spectra, one typically uses re-radiation ma-
trices [Don54], also called Donaldson matrices, representing re-
emission distributions for a given set of wavelengths. Although ex-
plicitly storing these data is manageable for a few fluorescent ele-
ments, this does not scale for fine-grained material definitions such
as fluorescent textures.

In recent years, there has been an increasing interest in
fluorescence in the research community. For example, Jung
et al. [JWH*19] used fluorescence to enlarge the colour gamut
during spectral uplifting in a fashion analogous to the use of optical
brighteners in real-world materials. However, due to the lack of
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Figure 1: In this scene, we use a near-UV light for illumination. While non-fluorescent materials only reflect shades of the illumination colour
(left), fluorescent surfaces also re-emit a portion of the absorbed energy from incident light as a light at additional wavelengths, leading to
the colourful appearance of other objects in the scene. To represent fluorescent materials in a renderer, we typically use re-radiation matrices
(centre), which have a significant memory overhead. Instead, we propose a more efficient representation of these matrices using Gaussian
mixture models (right – eight Gaussians). Although compact, this representation also provides compelling results even with such challenging
illumination.

better alternatives, their method had to store a full re-radiation
matrix for every texel, which in practice limited its usage to
low-resolution input images.

We have proposed a method for efficient storage and importance
sampling of re-radiation matrices using a Gaussian mixture model
(Figure 1) in Hua et al. [HFW21]. This preliminary work was eval-
uated on three measured fluorescent materials. In this revision, we
present an extended evaluation using an additional database of mea-
sured materials [GF00]. Further, we compare the previously pro-
posed weighted Expectation–Maximization (EM) method with the
weighted Bayesian approach of Gaussian mixture fitting. Finally,
we provide additional evaluation metrics to assess the fidelity of the
fitted re-radiation matrices.

2. Previous Work

2.1. Bispectral rendering

Although not widely used, the concept of fluorescence in com-
puter graphics is not new. Glassner [Gla95] introduced fluorescence
and phosphorescence to the computer graphics community and pro-
posed a method to support those effects in a Whitted ray tracer.
Wilkie et al. [WTP01] proposed a path tracing system capable of
rendering both fluorescence and polarization effects, but they relied
on a defined number of spectral bands, the wavelength not being part
of the (MC) integration. Mojzík et al. [MFW18] made the wave-
length domain part of the integrand and adapted Hero Wavelength
Spectral Sampling (HWSS) [WND*14] to their method capable of
handling fluorescent media in a Monte Carlo (MC) path tracer.

2.2. Colour gamut enlargement

One of the challenges when using a spectral renderer is the require-
ment of spectrally defined assets. Assets are commonly defined in

a tristimulus space (e.g., RGB, XYZ) and cannot be used directly
as the input of a spectral renderer. To allow the usage of RGB as-
sets in a spectral renderer, the original RGB data needs to be ‘up-
lifted’ to a spectral form. A wide range of work addresses non-
fluorescent spectral uplifting, assuming smooth spectra [Smi99,
[JH19], or data-driven from measured spectra [OYH18, TWF21].
Recently, Jung et al. [JWH*19] proposed an uplifting pipeline that
additionally uses fluorescent spectra to enhance the colour gamut. A
significant drawback of this bispectral uplifting method is its mem-
ory requirement. In the worst case, when dealing with texture up-
lifting, each pixel needs to be stored as a full re-radiation matrix.
However, this is not an intrinsic drawback of the uplifting method,
but an indicator that the representation of fluorescent data in render-
ing technology required improvement.

2.3. Bispectral measurements

Bispectral reflectance measurements are not as widespread as
BRDF measurements because their acquisition is a lengthy process
requiring expensive equipment. Additionally, with the limited num-
ber of renderers supporting fluorescence, there is little incentive to
take bispectral material measurements for computer graphics ap-
plications. However, few exceptions are noteworthy. Gonzalez and
Fairchild [GF00] offer a database of re-radiation matrices of nu-
merous materials, mainly papers and inks. They used a Labsphere
BFC-450 bispectral fluorescence colorimeter for the measurements.
We use this database to consolidate our earlier published evalua-
tion on the three re-radiation matrices from Labsphere distributed
in ART [ART18] measured with the same device.

2.4. Bispectral material models

Wilkie et al. [WWLP06] proposed one of the early bispec-
tral models adapted to current rendering techniques. This model
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uses a layered BRDF with a diffuse fluorescent component.
Hullin et al. [HHA*10] proposed an efficient acquisition setup to
capture bispectral bidirectional reflectance and re-radiation distri-
bution functions (BRRDF). They guided their acquisition by a prin-
cipal component analysis to lower the acquisition time. Based on
this work, Jung et al. [JHMD18] derived a new BRRDF. They ex-
ploited Kasha’s rule to represent their distribution with three 1D
distributions (absorption and emission spectra and non-fluorescent
reflectance) and two ratios (emitted to absorbed energy and re-
radiation to non-fluorescent reflectance).

2.5. Gaussian representations in rendering

Gaussian distributions are often used in rendering practice, as their
sufficiently large combination can approximate distributions of any
shape. Jakob et al. [JRJ11] represent radiance using a Gaussian
mixture and applied it to the rendering of volumetric media. Her-
holz et al. [HEV*16] and Vorba et al. [VKŠ*14] employ Gaussian
mixtures to represent importance sampling distributions for path
guiding. Herholz et al. [HES*18] used Gaussian mixtures to sample
analytic BRDF models and measured BRDF data.

3. Background

In this section, we review the core concepts used in the remainder of
this article. We explain the fluorescent effect, its properties and the
typical representation of fluorescent data in a bispectral renderer.We
also review the basic notation of Gaussianmixture models (GMMs),
which we employ to represent re-radiation matrices.

3.1. Fluorescence

Fluorescence is an effect where a fluorophore absorbs energy from
incident photons, causing excitation of its molecules which, during
their return to the ground state, may re-emit part of this energy as
photons with lower energy. In contrast to phosphorescence, where
emission can transpire over a long time period, fluorescence occurs
in a few nanoseconds (10−9 to 10−7s) and, as such, is considered to
be instantaneous in the context of computer graphics.

Fluorescence produces noticeable visual effects and is commonly
used to increase the brightness and saturation of pigments and dyes.
This works by shifting light from the barely visible ultra-violet re-
gion to longer wavelengths, where the human eye is more sensitive.

A fluorophore can be characterized by its absorption and re-
emission spectrum (Figure 2a). The first defines which incident
wavelengths are absorbed and lead to re-emission events, with mag-
nitudes representing the total intensity of the re-emissions. The sec-
ond describes the amount of re-emission across all incident wave-
lengths.

According to Kasha’s rule, the re-emission spectrum shape can
be considered independent of the specific incident wavelength that
caused the excitation (re-emission intensity scales). The difference
between the spectral positions of the band maxima of absorption
and re-emission arising from the same electronic transition is called
a Stokes shift [MW97]. In practice, this shift usually corresponds to

Figure 2: (a) If Kasha’s rule holds, the shape of a re-emission spec-
trum is the same regardless of the incident excitation wavelength,
and absorption with re-emission spectrum form a sufficient repre-
sentation of a fluorophore. (b) Otherwise, a re-radiation matrix pro-
viding precise information about the re-emission spectrum given an
incident wavelength has to be used at the cost of its significant mem-
ory footprint.

a difference between the rightmost local absorption maximum and
the re-emission maximum.

However, there are exceptions to Kasha’s rule, leading to the need
for re-radiation matrices (Figure 2b), which characterize, for each
incident wavelength (λi), a distribution of re-emission wavelengths
(λi �= λo) and surface reflectance (λi = λo).

In the context of path tracing, a normalized re-emission spectrum
(column excluding λi = λo) can be seen as a PDF of the wavelength
shift of an irradiation λi and a normalized absorption spectrum (row
excluding λi = λo) can be seen as a PDF of absorption of a wave-
length λi for a given outgoing radiation λo.

To preserve energy conservation, the sum of each column of the
re-radiationmatrix never exceeds 1. The resulting value corresponds
to the total albedo of thematerial at a given incident wavelength, that
is, the sum of surface reflectance and fluorescence re-emission.

But, while re-radiationmatrix is more flexible and suited for com-
puter graphics applications, it has a significant memory footprint.

3.2. Gaussian mixture model

A GMM is a parametric probabilistic model representing a dataset
as a linear superposition of Gaussian distributions. This linear su-
perposition is represented by

p(x) =
K∑
k=1

πkN (x | μk, �k ) (1)

where:

p(x) is the density of mixture of Gaussians,
N (x | μk, �k ) is a single Gaussian density,
πk is the mixing coefficient (weight) of each Gaussian,
K is the number of Gaussians.
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Figure 3: Fluorescence rendering pipeline employing our tech-
nique. We model a re-radiation with a GMM in the fitting phase,
and then during the rendering phase, we importance sample wave-
length shifting events according to the GMM.

In this article, we model re-radiation matrices as mixtures of two-
dimensional multivariate Gaussian distributions:

N (x | μ, �) = 1

2π
√|�| e

− 1
2 (x−μ)T�−1(x−μ) (2)

where:

μ is the mean,
� is the covariance matrix.

4. Method Overview

Our technique consists of two related but distinct operations that
form an efficient fluorescence rendering pipeline (Figure 3):

1. Fitting, where the re-radiation matrices are fitted to GMMs (5).
2. Rendering, where the GMM representation is used to impor-

tance sample wavelength-shifting events (6).

The pipeline starts with a fitting preprocessing step. Here, the re-
radiation matrices representing fluorophores are filtered to remove
invalid values and fitted to GMMs. During the rendering phase, we
use these GMM representations for fluorescent wavelength-shifting
events, where a conditional GMM is importance sampled. Depend-
ing on the path direction, we either sample based on absorption or
re-emission wavelengths.

Using a GMM to represent a bispectral reflectance drastically re-
duces its memory footprint in the renderer, as instead of relying on a
tabulated re-radiationmatrix, we only need to store a few parameters
of the mixture. This reduction is even more pronounced when the
rendering technique relies on random sampling, as additional tabu-
lated CDFs are necessary for efficient sampling of re-radiation ma-
trices.

5. Fitting Phase

In the fitting phase, we apply parametric density estimation to fit
a re-radiation matrix into a GMM. Later, we show that we can ac-
curately re-construct the re-radiation matrix information from the
GMM on the fly.

5.1. Dataset filtering

Some measurements in the dataset include a significant amount
of noise, potentially lowering the accuracy of the fit. To mitigate
this problem, we filtered the re-radiation matrices before the fit-
ting phase.

Although not ideal, we zeroed values under the diagonal (λi >
λo) and negative values above it, since these values in our dataset
correspond to measurement errors. We do not apply any further data
filtering during the fitting phase. A further improvement would be
possible with a proper characterization of the acquisition device’s
noise ratio.

5.2. Fitting algorithms

In our previous publication, we used the implementation of
weighted EM provided by the Pomegranate library [Sch22]. In this
revision, we instead use weighted EM in the better-behaving scikit-
learn [PVG*11, sci21] library and compare its fitting accuracy with
the weighted Bayesian fitting algorithm.

5.2.1. Weighted expectation–maximization

EM is a two-stage iterative algorithm suitable for the finding of
mixture model parameters. The E-step (expectation) performs an
estimation of the expected log-likelihood for a complete dataset.
The M-step (maximization) maximizes the expected complete log-
likelihood. The E-step and M-step are run iteratively until the ex-
pectation converges to the target. As a detailed introduction of
EM is beyond the scope of our work, we review only a sketch of
EM. For a detailed study on EM, please refer to Bishop [Bis06].
Vorba et al. [VKŠ*14] also showcase an adaptation of EM to the
rendering context.

The EM algorithm works with a set of observation samples and
computes a mixture matching its distribution. But, the re-radiation
matrix instead provides weights of samples of pairs (λi, λo). We
could use a large set of samples distributed according to these
weights, but then the accuracy of the representation would depend
on the size of the sample set, whereas bigger sample sets would lead
to higher memory consumption and a slower fitting process.

A more suitable approach is to use the weighted EM algo-
rithm [GAPFH16, VKŠ*14] where all non-zero samples are used
as observation outcomes and weighted according to their respec-
tive values.

5.2.2. Variational Bayesian inference

Variational inference follows the principle of the EM algorithm. It
is a two-stage iterative algorithm that maximizes a posterior prob-
ability (MAP) instead of maximizing local likelihood (ML) as in
the EM. Apart from updating the approximations in EM, the model
evidence in variational inference also includes a pre-defined lowest
prior distribution. By maximizing their posteriors using Bayesian
inference in each iteration, the variational inference model gives
more stable results compared to the EM, which can produce singu-
larities and exhibit overfitting [Bis06]. Implementation of weighted
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variational Bayesian inference in our pipeline directly follows the
derivation of weighted EM [HFW21].

5.2.3. Optimal number of Gaussians

Choosing an optimal number of Gaussians for the EM is a non-
trivial problem, as with a higher number of Gaussians, we may face
overfitting issues. Bayesian information criterion (BIC) can miti-
gate overfitting by the introduction of a penalty for the number of
parameters of the model.

Variational Bayesian inference can take advantage of the prede-
fined prior distribution, such as the Dirichlet process (used in the
scikit-learn implementation as default) to select the optimal num-
ber of clusters based on the fitted data.

We evaluate our fitting on different numbers of Gaussians for EM
as the selection may depend on the use case. Conversely, we let
Bayesian inference use a lower number of Gaussians than the spec-
ified maximum if it opts to do so for improved accuracy of the fit.

5.3. Re-radiation re-construction

We can re-construct the re-radiation matrix from the GMM found
previously. Gaussian mixture gives a probability density function,
and so its integral is unity. Because the re-radiation integral does not
hold this property, the resulting Gaussian mixture has to be scaled
to re-construct the re-radiation later on:

�(λi, λo) = S · p(λi, λo) (3)

where:

S is the scaling factor,
�(λi, λo) is the re-radiation function,
p(λi, λo) is the probability density function of the GMM defined in

Equation (1),
λi, λo are the wavelengths of a given absorption and re-emission

event.

There are different strategies to retrieve the scaling factor S. We
originally proposed two approaches:

5.3.1. Error minimisation

The first strategy consists of a minimisation process. S is set as a
parameter to minimise the error between the measured re-radiation
and the re-constructed mixture.

S = argmin
S

∑
�i

∑
�o

‖�measured(λi, λo)− S · p(λi, λo)‖ (4)

The choice of a norm function has little influence on the re-
sult when dealing with fluorescence — the data have a low dy-
namic range. By definition, this strategy reduces the average re-
construction error.

5.3.2. Integral ratio

The second strategy consists of defining S as the ratio between the
integral of the original dataset and the GMM.

S =
∫ ∫

�
�measured(λi, λo)dλidλo∫ ∫

�
p(λi, λo)dλidλo

(5)

This method ensures that the re-constructed re-radiation has the
same albedo as the original measured one.

Although this technique does not reduce the measurable re-
construction error, its application provides better rendering results
because our eyes are more sensitive to brightness variation than to
a slight chromaticity shift.

5.3.3. Strategy selection

The strategy for scaling factor computation depends on the target
application. The integral ratio is better suited for perceptual appli-
cations, such as rendering with tone mapping. If the accuracy of
the spectral re-construction of the re-radiation is needed, then error
minimisation is a better choice.

In this publication, we apply integral ratio scaling as it is more
closely related to the intended application of our method.

6. Rendering Phase

When a fluorescent event occurs during the rendering phase, we first
need to sample an in-shifting or an out-shifting wavelength depend-
ing on the ray direction. Then, we need to evaluate the attenuation
given a set of λi and λo wavelengths. The sampling phase relies on
conditional probability: either λi or λo is known, and we have to
sample a λo or a λi according to the direction of the ray, that is,
evaluate an in- or out-shifting event.

6.1. Conditional GMM

To sample a random wavelength shift after a fluorescent event, we
need to ‘sample a slice’ on the multivariate Gaussian mixture. With
a fixed input wavelength λi, we construct the conditional parameters
for the resulting Gaussian mixture and generate the random variable
as the output wavelength λo.

Our model is made of:

μk =
(

μka

μkb

)
, �k =

(
σkaa σkab
σkba σkbb

)
(6)

where μk and �k are the GMM parameters of the kth Gaussian.

We define T, the inversion of the kth covariance matrix as:

Tk = �−1
k =

(
τkaa τkab
τkba τkbb

)
. (7)

The conditional probability that, given λi, we shift to λo in com-
ponent k is:
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pk(λi → λo) = N
(
λo | μkb|a , τ

−1
kbb

)
(8)

with : μkb|a = μkb − τ−1
kbb

τkba
(
λi − μka

)
. (9)

Then, the probability for the entire conditional GMM from a
given λi to λo is:

p(λi → λo) =
K∑
k=1

π
(λi )
k pk(λi → λo) (10)

with : π
(λi )
k = πkN

(
λo | μka , σkaa

)
∑

kN
(
λo | μka , σkaa

) . (11)

Finally, we generate the random variable based on the new con-
ditional GMMmodel. First, we choose which Gaussian component
we will sample using the conditional mixing coefficients π

(λi )
k , and

then we generate the sample following the normal distribution of
the chosen kth Gaussian:

μ
(λi )
k = μkb|a , σ

(λi )
k = τ−1

kbb
. (12)

We only discuss sampling on the light path, but the same approach
can be symmetrically applied on an eye path.

6.2. Importance sampling

When a ray hits a fluorophore, two events can occur:

• the ray is reflected with the same wavelength as the incident ray
— no fluorescent event,

• the ray is absorbed and its energy re-radiated to a different wave-
length — fluorescent event.

We first determine if a fluorescent event occurs based on the ra-
tio between reflectance and fluorescence for a given incident wave-
length. If a fluorescent event occurs, we use importance sampling to
select a Gaussian distribution from the mixture and a specific wave-
length from the distribution (Algorithm 1).

Figure 4 shows an example of a conditional PDF of outgoing
wavelengths of a specific incident wavelength λi. Given an incident
wavelength, we can generate this distribution from GMM and use it
to importance sample the re-emitted wavelength λo.

The probability of transition between absorption at wavelength λi
and re-emission at wavelength λo is

pshift (λi → λo) =
{

�(λi,λi )
rt (λi )

if λi = λo(
1− �(λi,λi )

rt (λi )

)
·
(∑K

k=1 π
(λi )
k N (λo | μ

(λi )
k , σ

(λi )
k

)

rt (λi) =
∫

�

�(λi, λr )dλr (13)

where:

�(λi, λo) is the bispectral reflectance,
rt (λi ) is the total reflected and re-emitted energy given λi.

Algorithm 1. Random wavelength shifting. Given a λi, we either
have no fluorescent event, that is, λi = λo or, we sample a λo after
a fluorescent event.

Figure 4: Comparison of conditional PDFs derived from a re-
radiation matrix and its corresponding GMM representation. The
figure shows the expected distribution of the re-emission wave-
lengths λo when the HERPICHA material is illuminated at λi =
440 nm. When a fluorescent event occurs, the outgoing wavelength
λo is sampled according to this conditional PDF. Notice the pres-
ence of measurement noise lowering the highest values of the PDF
derived from the raw re-radiation matrix after normalization com-
pared to the PDF derived from the fitted GMM.
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In our renderer, we use HWSS [WND*14]. The HWSS technique
multiplexes multiple wavelengths in a MC sample. It differs from a
simple multiplexing approach by using a ‘Hero’ component, which
is used to make all directional decisions. This technique drastically
reduces colour noise in contexts with a wavelength dependence on
the directional decisions, such as in a participating medium. In the
case of fluorescence, we allow each of the wavelengths in the HWSS
vector to be independently importance sampled. If done directly, we
can find non-zero samples with a zero probability, which is incorrect
for a MC integrator. Mojzík et al. [MFW18] introduced a balance
term to avoid this artefact. We use the same term in our implemen-
tation:

pj(λi j → λo j ) =
N∏

k=1,k �= j

pshift (λik → λok ) (14)

where:

p j (λi j → λo j ) is the probability of j th HWSS sample,
pshift (λi → λo) is the probability of shifting from λi to λo,
N is the size of the HWSS vector.

6.3. Implementation details

To evaluate the re-radiation, we store the mean, covariance matrix
and weight for each Gaussian of the mixture. We also need to store
the scaling factor S. The determinant and inverse of the covariance
matrix are pre-computed to speed up the evaluation of the mixture
during rendering. The diagonal is stored in its original tabulated
form without any alteration.

To efficiently perform conditional wavelength shifting, we also
pre-compute two additional tabulated values to retrieve π

(λi )
k or

π
(λo)
k : the sum of rows and the sum of columns of the Gaussian mix-

ture. In our implementation, we use a 1-nm sampling rate.

Although additional pre-computed values increase the total mem-
ory footprint during rendering, it is still much smaller than the mem-
ory required when using tabulated CDFs, which are necessary for
the use of re-radiation matrices.

We use rejection sampling to guarantee that absorption wave-
lengths do not exceed re-emission wavelengths. It proved sufficient
in our case, as we observed only a small number of rejected samples.
Alternatively, truncated distributions could be used.

The implementation of our method is available on Gitlab.

7. Results and Discussion

Our fluorophore representation consists of the original re-radiation
matrix diagonal representing the reflectance spectrum and the scal-
ing factor S with the GMM representing the fluorescent effect. We
need to store seven values for each Gaussian of the mixture:

• a mixing coefficient π (1 element),
• a mean vector μ (2 elements),
• a covariance matrix � (2×2 elements).

7.1. Dataset

In our previous publication [HFW21], we evaluated our method
on three measured re-radiation matrices distributed in the assets
of the ART rendering toolkit — originally provided by Labsphere
Inc. In this revision, we provide a more in-depth evaluation on a
much larger bispectral dataset. We additionally use the dataset from
RIT [GF00], which contains 144 measured re-radiation matrices of
different materials.

All measurements in the resulting dataset come from the same
device: Labsphere BFC-450. The materials were sampled at 10-
nm precision with an absorption wavelength ranging from 300 to
780 nm and a re-emission ranging from 380 to 780 nm, resulting in
49 × 41 re-radiation matrices.

One material measurement (IXCAXORA) was discarded from
our evaluations. Its re-radiation matrix appears to be incorrect due
to human error. We still include this sample in the supplemental.

In this section, we provide the results of the evaluation on the
whole dataset but directly showcase only its small sub-set. Detailed
results of our method on all samples are available in the supplemen-
tal.

7.2. Illuminants

To evaluate the accuracy of our representation, we compare the re-
sults of our fitted model with the original tabulated data. We base
our accuracy evaluation on the CIE 2000 Delta E (	E∗

00) between a
rendering of the reference data and the corresponding fits observed
under a large set of illuminants.

We use two sets of illuminants and distinguish the results of each
group:

• Monochromatic illuminants: We evaluate the bispectral re-
flectance of each fluorophore under monochromatic illumination
from 300 to 780 nm to cover the full range of incident wave-
lengths in the dataset. The performance of our model is calculated
as an average 	E∗

00 of all monochromatic illuminants.
• CIE standard illuminants: We also evaluate the colour repro-
duction accuracy of our model under the CIE standard illumi-
nants, which cover often used illumination conditions in render-
ing practice.

Any measured differences between our model and pure re-
radiation matrices are caused by our compact representation of the
fluorescence, as the reflectance spectrum is not modified.

7.3. Rendering and colour reproduction

While a MC rendering provides additional information about inter-
reflection between different fluorescent materials and self-inter-
reflection, the choice of the scene and its setup also limit the eval-
uation to particular configurations. And so, given the large number
of material measurements, we instead predominantly use an ana-
lytical rendering method. Specifically, we evaluate the accuracy of
the fitting on an analytically calculated interaction of light with a
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fluorescent material represented as a re-radiation matrix:

C =
∫

�o

∫
�i

φ(λi, λo)Li(λi)dλiC̄(λo)dλo (15)

where:

C is the computed outgoing colour,
λi, λo are the incident and outgoing wavelengths,
φ(λi, λo) is the re-radiation matrix value for λi, λo,
Li(λi ) is the illuminant radiance at λi,
C̄(λo) is the colour matching function at λo.

This equation is equivalent to a single light bounce configuration
on a Lambertian surface where both incident and outgoing direc-
tions are aligned with the surface normal. This configuration allows
us to assess the quality of the fits without any additional parameters
interfering with our evaluations.

The re-radiation matrix corresponding to our fit can be con-
structed by evaluating the GMM at regular intervals for λi, λo. This
approach allows efficient generation of noise-free results for each
material in the dataset for a large variety of illumination types.

7.4. Rendering accuracy

Due to the fluorescent nature of our dataset, illumination conditions
have a significant impact on error, making an objective evaluation
difficult. Therefore, we evaluate our representation of fluorophores
under a wide variety of illuminants visualized as

• Colour band: To visualize outgoing colour after interaction of a
monochromatic illumination with a fluorophore, we use a ‘colour
band’. It consists of three strips representing from top to bottom:
outgoing colour based on a re-radiation matrix, outgoing colour
based on our fitted model, and visualization of 	E∗

00 between
these two. The colour bands cover the entire excitation spec-
trum of the fluorophore (horizontal axis) and allow wavelength-
specific comparisons of the measured bispectral reflectance with
our fit.

• Colour patches: To compare the quality of our fit with the orig-
inal measured data, we use colour patches to visualize how well
a fluorescent material is represented under a specific CIE stan-
dard illuminant. The fitted patch is embedded inside of a refer-
ence patch. The colour values are divided by the Y value of the
used illuminant.

Figure 5 shows the five worst fluorophore fits based on their av-
erage 	E∗

00 for monochromatic illuminants at four Gaussians us-
ing EM. While the colour difference is visible for some monochro-
matic illuminants, the difference is hardly noticeable for most CIE
standard illuminants, especially with a higher number of Gaussians.
While four Gaussians would be suitable for most rendering pur-
poses, eight Gaussians already provide high accuracy within a small
memory footprint. This also applies to global illumination, as show-
cased in Figure 1.

This is supported by a comparison of the quality of the GMM
fit with respect to the number of Gaussians used (Figure 6). Even
though the reconstruction of the original re-radiation at four and two

Gaussians is very rough, it does not translate to big observable dif-
ferences as our visual system is much more sensitive to luminance
discrepancies than to chromaticity variations.

7.5. Average accuracy on the whole dataset

To compare the overall accuracy of the two fitting methods with a
varying number of Gaussians, we provide a 	E∗

00 averaged across
the entire dataset.

7.5.1. Fitting methods comparison

Figures 7b and 8b show a consistent decrease of the 	E∗
00 with an

increasing number of Gaussians. Bayesian inference performs bet-
ter with a lower number of Gaussians, but is outperformed by EM
from eight Gaussians. This is caused by the Bayesian inference im-
plementation opting to use a lower number of Gaussians for fitting
than the allowed maximum.

7.5.2. Model accuracy

Figure 7a shows the average 	E∗
00 over the entire dataset for

monochromatic illuminants ranging from 300 to 780 nm. The sig-
nificant error observed in the lower parts of the spectrum can be
attributed to limitations of the 	E∗

00 involving colours with low lu-
minance. In our case, this part of the spectrum usually represents
non-visible light or a negligible amount of re-radiation, as absorp-
tion bands of fluorophores are often situated there. Therefore, the
practical influence of this error on real-world rendering applications
is limited. The monochromatic illumination error is visualized for
a few selected fluorophores in Figure 5 and the whole dataset in
the supplemental.

In Figure 8a, we provide an evaluation of a more practical appli-
cation of our approach—rendering with CIE standard illuminants.
We show an average of the whole dataset for the ten worst perform-
ing illuminants while fitting four Gaussians with EM. On average,
we achieve a 	E∗

00 lower than 1.1 for two, 0.6 for four and 0.3 for
eight Gaussians.

7.6. Memory footprint

While retaining high accuracy, our method is memory efficient, re-
quiring only a fraction of the memory necessary for use of the raw
re-radiation matrices.

In the most favourable case, we only have to store the upper trian-
gular part of the re-radiation matrix due to the nature of fluorescent
re-radiation being of lower energy than excitation caused by the in-
cident illumination. For our dataset measured at 10 nm precision, it
is approximately 1150 values. If maximal precision was required,
each matrix could be interpolated to 1 nm precision, resulting in a
hundredfold increase in memory footprint. Additionally, to facili-
tate efficient importance sampling of wavelength-shifting events, it
is desirable to compute tabulated CDFs, effectively tripling the total
required memory when using re-radiation matrices for rendering.
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Figure 5: Comparison of analytical renderings based on our fittedmodel with EMand re-radiationmatrices. Five worst behaving fluorophores
on the fitting of four Gaussians based on the average	E∗

00 over the set of monochromatic illuminants from 300 to 780 nm are showcased. The
colour bands show the bispectral reflectance of the re-radiation matrix and our corresponding fit under monochromatic illumination along
with 	E∗

00 for each wavelength. The colour patches show bispectral reflectance of the fitted model embedded inside of a patch rendered with
a re-radiation matrix. The worst performing (average 	E∗

00) CIE standard illuminants on the whole dataset are displayed.
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Figure 6: Worst performing fluorophores’ re-radiation matrices with absorption and re-radiation spectra and corresponding fits of EM.

With our method, we only need a small set of GMM parameters
to both evaluate the re-radiation on the fly and to importance sample
wavelength shifting events.

In practice, for a representation using N Gaussians, we need to
store 1+ 7 · N values. For importance sampling, we need two addi-
tional 1D arrays to efficiently evaluate the conditional GMM. This is

much less than the two tabulated 2DCDFs required for a fluorescent
material when using a re-radiation matrix. Additionally, if desired,
our method can be used solely for importance sampling instead of
tabulated CDFs.

The memory efficiency of our method becomes especially
pronounced when working with larger numbers of re-radiation
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Figure 7: Evaluation of the fitting accuracy on monochromatic illuminants. In the box plot, the box extends from first to third quartile, the
lines show the median and the triangles show the average value. The whiskers extend from quartile to 1.5 inter-quartile range.

Figure 8: Evaluation of the fitting accuracy on CIE standard illuminants. The box extends from first to third quartile, the lines show the
median and the triangles show the average value. The whiskers extend from quartile to 1.5 inter-quartile range.

matrices. It makes fluorescent textures where each pixel may have to
be represented by a re-radiation matrix usable in rendering practice.
This, in turn, facilitates the use of related techniques such as enlarge-
ment of the colour gamut by uplifting of RGB textures [JWH*19].

8. Conclusion and Future Work

We presented a method for efficient storage of re-radiation matrices
via GMM.We showed that this approach drastically lowers required
memory for the rendering of fluorescence while retaining colour re-
production accuracy matching that of the original data. Further, the
resulting GMM representation can be directly used in MC-based
rendering pipelines, as it supports efficient importance sampling.

We evaluated weighted EM and Bayesian inference fitting ap-
proaches on an extensive dataset of measured re-radiation ma-
trices under all CIE standard illuminants and a wide range of
monochromatic illuminants. Both fitting methods proved to provide
a comparable and highly accurate representation of fluorescent re-
radiation with as little as eight Gaussians for most practical render-
ing use cases.

Different models and fitting approaches could be explored, but
considering the rendering accuracy and small memory footprint of
the presented solution, the potential gains seem marginal.

We think that the main direction of future work is in the devel-
opment of a parametric fluorescence model. Such model would not
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require tabulated CDFs — further lowering total memory require-
ments for efficient rendering of fluorophores. More importantly, it
would allow a smooth integration of editable fluorescent materials
into artistic workflows.
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mentation of fitting code.
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