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Figure 1: Our method successfully removes makeup and lighting influences from the input face image to recover a bare skin (de-makeup and
de-lighting) face image. The bare skin image facilitates subsequent applications such as the normalized texture (diffuse, normal, roughness,
and specular) inference and avatar creation.

Abstract
We propose BareSkinNet, a novel method that simultaneously removes makeup and lighting influences from the face image.
Our method leverages a 3D morphable model and does not require a reference clean face image or a specified light condition.
By combining the process of 3D face reconstruction, we can easily obtain 3D geometry and coarse 3D textures. Using this
information, we can infer normalized 3D face texture maps (diffuse, normal, roughness, and specular) by an image-translation
network. Consequently, reconstructed 3D face textures without undesirable information will significantly benefit subsequent
processes, such as re-lighting or re-makeup. In experiments, we show that BareSkinNet outperforms state-of-the-art makeup
removal methods. In addition, our method is remarkably helpful in removing makeup to generate consistent high-fidelity texture
maps, which makes it extendable to many realistic face generation applications. It can also automatically build graphic assets
of face makeup images before and after with corresponding 3D data. This will assist artists in accelerating their work, such as
3D makeup avatar creation.
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1. Introduction

The realistic 3D avatar generation has become increasingly popu-
lar because of its ever-expanding applications in technologies such
as virtual and augmented reality, video conferences, and games.
With research efforts, a high-quality 3D face model can be acquired
through consumer cameras or smartphones [YSN∗18, WRV20,
BLC∗21] and time-consuming specialized hardware [DHT∗00,
SXZ∗20, RGB∗20]. 3D face reconstruction from portraits dramati-
cally improves the convenience and speed of the avatar creation.

In general, high-fidelity avatar creation from portraits is achieved
using deep-learning-based generative models [GPKZ19, LMG∗20,
YSN∗18]. In these methods, a large-scale high-resolution texture
dataset is used to train the networks through supervised learning.
However, portrait-based high-fidelity 3D face reconstruction is still
difficult when the face image includes complex environment light-
ing or large expressions. Many face normalization methods have
been introduced to overcome these issues [NLW∗19, LNK∗21].
The input face image is normalized to become as close as possible
to be consistent with the high-resolution texture dataset. Although
these methods show impressive results on environmental issues,
such as pose, lighting, and expression, they do not consider arti-
ficial factors such as facial makeup. However, makeup is prevalent
in daily life photos. It is necessary to be aware of how to normalize
the face image with various kinds of makeup, from light to heavy.
Although enlarging the dataset will increase the ability to handle
makeup [SRH∗11], it is still difficult to address all of them. Addi-
tionally, collecting numerous makeup faces is not a realistic task in
controlled environments, such as the light stage.

The study aims to generate face images without makeup and
lighting influences as shown in Fig. 1. Fig. 2 shows an overview
and application of the proposed method. We introduce a de-makeup
and de-lighting method that can generate bare skin images by uti-
lizing 3D face reconstruction. Therefore, the corresponding 3D in-
formation can be easily accessed. As a result, we can obtain clean
3D face textures without makeup and lighting. The application of
high-fidelity texture inference becomes more accurate and accessi-
ble.

For the makeup face image input, we propose to build a special-
ized network called BareSkinNet, which can estimate two types of
information. 1) A bare skin image is generated to preserve the high-
frequency appearance information of the input face image. The bare
skin color is consistent with the high-resolution texture dataset. 2)
The low-frequency information is estimated by a 3D face recon-
struction process of the 3D morphable model (3DMM).

To remove makeup influences from the input face image, the
LADN dataset [GWC∗19] is used to train BareSkinNet via weakly
supervised learning. The lighting influences are removed by the
process of 3D face reconstruction using 3DMM. Our experiments
proved that by combining the process of 3D face reconstruction, the
effectiveness of makeup removal is also enhanced. We further ad-
vanced the capabilities of BareSkinNet in a teacher-student manner.
We can employ joint learning of BareSkinNet using a differentiable
rendering technique.

In addition, we show an application of high-fidelity texture in-
ference using the results of BareSkinNet. We use the 180 scanned

face dataset captured by the high-quality multi-camera scan system
to train the high-fidelity texture inference network. Scanned data
include facial geometries and the corresponding 4K-resolution dif-
fuse, normal, roughness, and specular texture maps. By combining
BareSkinNet and the high-fidelity texture inference network, we
can obtain a makeup- and lighting-free 3D face model.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to explore how
to remove makeup for face normalization. Our method removes
both makeup and lighting influences to produce a bare skin im-
age consistent with the texture dataset, which helps the subse-
quent process of high-fidelity texture inference.

• We propose BareSkinNet, the method jointly training a generator
and a process of 3D face reconstruction by leveraging a 3D mor-
phable model. This will be a great convenience because we do
not require a reference clean face image or specified light condi-
tions, which solves the problem of non-existent ground truth for
in-the-wild de-makeup and de-lighting face images. A teacher-
student manner of 3D face reconstruction is introduced to im-
prove performance. We conducted a detailed ablation study to
confirm the effectiveness of each component and loss function
designs.

• We demonstrate that BareSkinNet can stably produce bare skin
images under various makeup and lighting conditions. We show
the result of normalized texture inference for 3D avatar creation.
The inferred texture maps can be used to create clean avatars for
re-lighting and re-makeup processes.

2. Related Work

This study aims to generate a normalized 3D face model from a
single image input under various makeup and lighting conditions.
Therefore, in this section, we briefly review the existing works on
3D face reconstruction from single image input and face normal-
ization techniques for constructing facial avatars.

2.1. Image-based 3D Face Reconstruction

3DMM has been widely used to reconstruct 3D face mod-
els [BV03, THMM17, TZK∗17, GZC∗18, GCM∗18, DYX∗19,
BLC∗21, FFBB21, DBB22]. The 3D face model is reconstructed
by fitting the 3DMM to the 2D face image input using facial
features, such as face landmarks. Face 3DMM was first pro-
posed by Blanz and Vetter [BV99]. In general, 3DMM is created
from a scanned face dataset [PKA∗09,CWZ∗14,BRZ∗16,SSD∗20,
YZW∗20, LBZ∗20, LBB∗17, WCY∗22]. An alternative method is
3DMM built from a face image dataset [Kem13, TL18]. The prob-
lem with the 3DMM-based approach is that it is difficult to rep-
resent the details of facial appearance using 3DMM. Other meth-
ods exist to represent facial shapes in more detail by adding geo-
metric information [JBAT17,GZC∗19,KSB11,RSOEK17,SRK17,
HCS∗18, TZG∗18, DMJ∗21]. However, it is still difficult to recon-
struct a high-fidelity 3D face model using 3DMM fitting. For more
detailed discussions on 3DMM, see [EST∗20].

Appearance information is an essential factor in achieving high-
fidelity 3D face reconstruction. Texture inference methods have
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Figure 2: Overview of the proposed system. BareSkinNet comprises a de-makeup and de-lighting network G, a 3D face reconstruction
network E, and a Pre-trained 3D face reconstruction network F. Makeup and lighting influences are removed from the input makeup image.
In the inference stage, given an input makeup image, BareSkinNet outputs the bare skin image and the 3DMM coefficients. The diffuse,
normal, roughness, and specular maps are inferred from the unwarped UVs of the bare skin image and reconstructed 3DMM.

been widely proposed for generating high-quality texture maps.
UV-GAN [DCX∗18] is a UV texture completion method. First,
this method generates the face UV map texture by unwarping the
input face image using the result of 3D face reconstruction. The
generated face UV map has missing regions because of the occlu-
sion. To complete these regions, an image-inpainting technique is
applied. This UV map inpainting framework is widely extended
[GDZ21,KYT21]. Saito et al. [SWH∗17] proposed a photorealistic
face texture map generation method. They showed the possibility of
a high-resolution face texture map by combining the low-frequency
appearance information from 3DMM and the high-frequency ap-
pearance information from the input face image. Yamaguchi et
al. [YSN∗18] employed image completion and image-to-image
translation to generate diffuse, specular, and displacement texture
maps. They also applied the super-resolution method [LTH∗17] to
obtain 2K-resolution texture maps. In the training process, they
used various lighting conditions to render the synthetic face im-
ages to obtain the robustness of the lighting environment change.
Using the generated texture maps, they can apply physically based
rendering. GANFIT [GPKZ19] uses the advantages of GAN and
differentiable rendering to generate a face texture map from a la-
tent vector and optimizes the entire network. They utilized losses
based on face landmark detection and face recognition to main-
tain the identity and fit the face geometry. A similar approach
was applied and improved by [LL20]. AvatarMe [LMG∗20] is an
extension of GANFIT for generating high-fidelity texture maps.
AvatarMe trains an image translation network to obtain textures
for photorealistic rendering. AvatarMe can generate 4K-resolution
diffuse albedo, diffuse normal, specular albedo, and specular nor-
mal texture maps. AvatarMe++ [LMP∗21] is an improvement of
AvatarMe [LMG∗20]. In contrast to the other methods, Bao et

al. [BLC∗21] used an RGB-D selfie video input acquired by a con-
sumer smartphone. They proposed a hybrid method of parametric
fitting and CNN-based methods to estimate the reflectance. This
method can produce albedo and normal texture maps.

All of the above appearance reconstruction methods directly use
information from the input face image. Therefore, the texture gen-
eration process fails if the input images are taken under extreme
conditions, such as lighting and expressions. To solve this problem,
face normalization techniques [CBK∗17, NLW∗19, LNK∗21] have
gradually attracted attention, regarded as a preprocess of avatar cre-
ation.

2.2. Face Normalization

Many face normalization methods can be used for preprocess-
ing to achieve robust and stable 3D face reconstruction. Face-
frontalization methods [HZLH17, YYS∗17, YJRF20] can correct
face orientation to reduce the number of occluded areas. This pro-
cess improves the accuracy of the 3D face reconstruction. Light-
ing and shadow manipulation methods [ZHSJ19,SKCJ18,SBT∗19,
ZBT∗20,HZS∗21,RTD∗21,PEL∗21,WYL∗20,RGB∗20] that adjust
skin color can be further used to generate a stable albedo texture
map. Facial attribute editing methods [TEB∗20,TER∗20,GGU∗20,
YFD∗21, LZG∗21] are comprehensive tools that can change pose
and lighting. In addition, these methods can restore the input facial
expression to a neutral facial expression state.

Nagano et al. [NLW∗19] proposed the first face normalization
technique for generating an avatar. Perspective distortion, lighting,
head pose, and facial expressions in the input image were normal-
ized through a step-by-step process. On the other hand, instead
of using the input image directly, Luo et al. [LNK∗21] employed
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StyleGAN2 [KLA∗20] to refine the facial texture. Their method
could generate normalized avatar face models under harsh lighting
conditions.

Although various works can be used to handle lighting and ex-
pression for generating the 3D face model, to the best of our knowl-
edge, no study has investigated the influence of facial makeup on
high-fidelity 3D face reconstruction tasks. Recently, GAN-based
face image generation can create photorealistic face images. In
many cases, the output face image includes facial makeup, es-
pecially in female photos. Removing facial makeup is necessary
to generate normalized avatar face models. Enlarging the scanned
face dataset is not a realistic solution because there are numerous
variations in makeup. Makeup transfer is a related research topic
that can transfer makeup styles between facial images. Beauty-
GAN [LQD∗18] employed a histogram matching loss to maintain
the color distribution between the face regions. LADN [GWC∗19]
employed a local discriminator to enable a strong makeup style
transfer. PSGAN [JLG∗19] utilized an attention mechanism to ac-
curately achieve makeup transfer between different head poses
and facial expression images. Nguyen et al. [NTH21] proposed
a method to transfer makeup patterns precisely by unwarping the
face image to a UV representation. SCGAN [DHC∗21] employed
a style-based encoder to map the makeup style into a disentangled
style code, which solves the large spatial misalignment problem.
EleGANt [YHXG22] proposed a locally editable makeup transfer
method that can achieve more flexible controls.

Unlike the above methods, our method does not require a refer-
ence image for makeup removal. In addition, for the application of
high-fidelity texture inference, makeup-removed face images are
preferably consistent with the high-resolution texture dataset that
can achieve consistent normalized texture inference.

3. Data Preparation

We use two datasets. The makeup dataset was used to learn fa-
cial de-makeup. The high-resolution texture dataset was utilized to
build the 3DMM and train the high-fidelity texture inference net-
work.

3.1. Makeup Dataset

The current publicly available makeup dataset [LQD∗18, JLG∗19,
GWC∗19] is not ideal, because the dataset classified as non-
makeup also contains many photos with light makeup. To effi-
ciently remove the influence of makeup styles, we used the dataset
created in the makeup transfer research LADN [GWC∗19], because
they have strong contrasts. This dataset contains 334 faces without
makeup and 355 faces with makeup. In addition, synthetic makeup
images were generated by blending the makeup style and face im-
ages without makeup. For more details about the LADN dataset,
please refer to [GWC∗19]. Owing to the contribution of LADN, we
can train our network via weakly supervised learning using before
makeup and synthetic makeup image pairs.

3.2. Scanned Face Dataset

To prepare a high-resolution texture dataset, we captured 180
Japanese females with neutral facial expressions using the ESPER

LightCage with 55 Sony α7RIII cameras and polarizing lights. A
head mesh was reconstructed using the RealityCapture software.
Skin specular and diffuse components were separated by the cross-
polarization technique using polarizing filters. Normal maps were
generated using a photometric stereo technique. Finally, the head
mesh and a set of diffuse, normal, roughness, and specular texture
maps at 16K-resolution were obtained. However, the raw scan data
involved artifacts. We asked the 3DCG artists to clean the scan data.
In addition, the reconstructed head mesh was registered with the
same topology during the clean-up process.

3.3. 3DMM Construction

We used the scanned head meshes and diffuse texture maps to cre-
ate a linear PCA-based 3DMM [BV99]. To improve the represen-
tation of the expression, we manually made 236 blendshapes from
the mean head. The constructed 3DMM contained 65,143 vertices
and 130,000 faces. The shape S and appearance A of the 3DMM can
be controlled by changing the parameters of identity α , expression
β , and appearance δ .

S = S̄+Bidα +Bexpβ

A = Ā+Baδ
(1)

where S̄ and Ā are the mean shape and appearance, respectively.
Bid , Bexp, and Ba are the identity basis, expression basis, and ap-
pearance basis vectors, respectively. In our method, we employ
[DYX∗19] as the backbone of our neural network to be optimized
and regress the 3DMM coefficients C(α,β ,δ ,R, t). The coefficient
vector C ∈ R298 was composed of the parameters of shape iden-
tity α ∈ R120, expression β ∈ R120, appearance δ ∈ R52, rotation
R ∈ R3, and translation t ∈ R3. In addition, spherical harmonics
(SH) lighting is parameterized γ ∈ R27 in the case of lighting con-
ditions.

We use two 3D face reconstruction networks F and E. We em-
ploy ResNet50 [HZRS16] as the backbone of network F trained
with our 3DMM following [DYX∗19] to estimate C and SH light-
ing. The network E is ResNet18 [HZRS16] architecture to estimate
Ĉ.

4. BareSkinNet

Given a makeup face image, the de-makeup and de-lighting net-
work (BareSkinNet) generates a bare skin image with a 3D facial
geometry and coarse 3D textures.

The training process of BareSkinNet is shown in Fig. 2. The
framework comprises two parts. 1) De-makeup and de-lighting net-
work G for removing makeup and lighting influences from the input
image to generate a bare skin image (Sec. 4.1). 2) 3D face recon-
struction network E and F for estimating the 3DMM coefficients
and SH lighting (Sec. 4.2). The coefficients and rendered results
are used to improve the capability of G. The loss function for Bare-
SkinNet is represented as follows:

LBSN = LDD +LFR (2)

LDD is a loss function for the de-makeup and de-lighting network,
and LFR is a loss function for the 3D face reconstruction process.
The details of each loss are described in the following sections.
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4.1. De-makeup and De-lighting network

We employ a U-Net [RFB15] architecture with skip connections
for de-makeup and de-lighting network G to maintain the structure
of the input face image. Using this architecture, we can remove
makeup and lighting influences from the input face image while
maintaining the identity information.

As shown in Fig. 2, we used the pairs of before and after makeup
images from the LADN makeup dataset [GWC∗19]. We remove
makeup by minimizing the distance between the bare skin image
and the before makeup face image. The loss function for the de-
makeup and de-lighting is defined as follows:

LDD = w1Lphoto +w2LGAN +w3LLPIPS (3)

Lphoto is the L1 pixel loss, LGAN is the adversarial loss calculated
by PatchGAN [IZZE17] for realistic results, and LLPIPS is the per-
ceptual image patch similarity (LPIPS) metric loss [ZIE∗18] pre-
served meaningful facial features. w1, w2, and w3 are the weights
for balancing each term. These losses are calculated from the bare
skin image and the corresponding reference image.

The makeup loss proposed in BeautyGAN [LQD∗18] has been
widely used in makeup transfer tasks. In contrast to the makeup
transfer task, we do not need to ensure consistency between the
color distributions of different makeup styles. In addition, we re-
move the lighting influence in our framework by minimizing loss
with 3D face reconstruction. For these reasons, we do not employ
makeup loss. Note that the purpose of this network is to remove the
makeup and lighting influences from the input image. However,
the face image before the makeup used as the ground truth already
contains lighting information. Therefore, it is difficult to remove
the lighting influence using this network completely. We verified
this claim in an ablation study (Sec. 7.3). To remove the influence
of lighting, we incorporate 3D face reconstruction networks. In the
next section, we discuss using the 3D face reconstruction process
to achieve de-lighting.

4.2. De-lighting via 3D face reconstruction

To remove the lighting influence, we use 3D face reconstruction
networks E and F to estimate the 3DMM coefficients and SH light-
ing from the bare skin image and reference image.

Since the LADN dataset [GWC∗19] only has a small number of
subjects, the pre-trained network F will be fixed as a teacher role
to help the network E learn the 3D face reconstruction process. We
expect that jointly learning the 3D face reconstruction process will
improve the capability of network G to remove makeup and light-
ing influences. In the training stage, we jointly learn networks G
and E with fixed F . We employ differentiable rendering to render
the 3DMM so that BareSkinNet can be trained in an end-to-end
fashion. Therefore, the networks G and E can be optimized simul-
taneously. In the inference stage, we use the network G to obtain the
bare skin image, and then use F to obtain 3DMM coefficients. Be-
cause F is trained from a large dataset, which can perform a more
accurate 3D reconstruction.

For the differentiable renderer DR, we use Nvdiffrast [LHK∗20]

to calculate the reconstruction loss and optimize the parameters of
the network. γ is estimated from the pre-makeup reference image
by F . The consistency loss between E and F results implicitly uses
estimated SH lighting. After estimating 3DMM coefficients Ĉ from
E and SH lighting from F , we render the 3DMM with and without
lighting. Note that C is not used for 3DMM rendering. The ren-
dered 3DMM image without lighting should be close to the bare
skin image, and the rendered 3DMM image with lighting should
be close to the reference image. By combining with the de-makeup
and de-lighting network G, BareSkinNet can correctly remove the
makeup and lighting influences. The following loss function is used
for the 3D face reconstruction process to optimize network E.

LFR = wcoe f f Lcoe f f +wlandLland

+wdi f f Ldi f f +wlightLlight +wregLreg
(4)

Lcoe f f is the loss between 3DMM coefficients Ĉ and C esti-
mated from networks E and F . Lland is the reprojection error of
facial landmarks between the detected 2D landmarks from the ref-
erence image and the projected landmarks from the 3DMM. Ldi f f
and Llight are the pixel-wise L1 distances between the images and
the rendered 3DMM image with and without lighting, respectively.
Lreg is the regularization term for the coefficients of the 3DMM.
This regularization term is commonly used in the 3DMM-based
face reconstruction process to avoid an unnatural face output. Con-
cretely, Lreg is defined as the distance between the estimated and
mean face coefficients. wcoe f f , wland , wdi f f , wlight and wreg are
weights for balancing each term.

By combining the process of 3D face reconstruction, the lighting
influence can be removed in the bare skin image, and the overall
skin tone of the face region is matched with the 3DMM diffuse.
The 3DMM diffuse retains global appearance information at a low
frequency in the high-resolution texture dataset.

5. High-fidelity texture inference

This process is considered to be an application. We can apply high-
fidelity texture inference methods on top of BareSkinNet. Simi-
lar to that reported in the literature [YSN∗18, LBZ∗20, LMG∗20,
LMP∗21].

The high-fidelity texture inference network takes the bare skin
image and the 3D face reconstruction result acquired by Bare-
SkinNet as shown in Fig. 2. The bare skin image, 3DMM dif-
fuse, 3DMM normal, and 3DMM geometry are unwarped to the
same UV map. Then, the image-translation framework [WLZ∗18]
can infer diffuse, normal, roughness, and specular texture maps.
The output of the image-translation framework is 1K-resolution.
Finally, we use SRGAN [LTH∗17] to upscale the 1K-resolution
texture maps to 4K-resolution texture maps.

In the training process, to synthesize occlusions depending on
the viewing angles, we rendered a scanned face model with diffuse
from three different viewpoints: front, left, and right. The 3DMM
is then fitted to the rendered image. Following the 3D face recon-
struction result, the rendered image is unwarped to the UV map,
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Figure 3: Data augmentation using 2D skin masks. Skin masks
are unwarped using the result of 3D face reconstruction. These un-
warped skin masks are used to synthesize the occlusion effect.

which is the same as the inference process. As a result of this pro-
cess, we can obtain the pairs of the occluded high-frequency ap-
pearance information of face texture, the low-frequency appearance
information of 3DMM, geometry, and normal, which correspond
to high-resolution diffuse, normal, specular, and roughness texture
maps. In addition, to improve the robustness against occlusion due
to viewpoint change, we synthesize the occluding effect using 2D
face masks as shown in Fig. 3. First, we carefully selected face
images and corresponding skin mask images for 500 neutral faces
from the celebAMask-HQ dataset [LLWL20], and the 3DMM was
fitted to face images. Using the result of 3D face reconstruction,
skin mask images were unwarped to the UV map. In each training
process, unwarped visible masks were used to enhance the capacity
to handle occlusion by multiplying it with the face texture.

6. Implementation detail

We implemented our pipeline with PyTorch. For the differentiable
renderer, we use Nvdiffrast [LHK∗20]. All training processes were
performed on an NVIDIA RTX 2080Ti graphics card. The 3DMM
was created using the scanned face dataset. In the de-makeup and
de-lighting stage, the face images from the LADN dataset were
resized to 256×256. 3D face reconstruction was performed under
the same resolution and finally rendered to a 1024×1024 UV map
representation. In the high-fidelity texture inference stage, the high-
resolution texture contained in the scanned face dataset is resized to
4K-resolution. SRGAN is also trained under 4× super-resolution
conditions to upscale the image from 1K-resolution to obtain the
final 4K-resolution result.

We set our balancing factors as the following: w1 = 100, w2 =
1, w3 = 40, wcoe f f = 1e−1, wland = 8e−2, wdi f f = 100, wlight =
100,wreg = 1e−3. First, The BareSkinNet was trained for 10000
iterations only using LDD. This can warm up the BareSkinNet and
generate a stable bare skin image. At this stage, the BareSkinNet
is split and only G is used. Then the BareSkinNet was trained in
30000 iterations with the full model. We set a batch size of 4 using
the Adam optimizer to train our BareSkineNet. The learning rate
of the de-makeup and de-lighting network G was set to 2e−5 and

exponential decay rates (β1, β2) = (0.5, 0.999). The learning rate
of the 3D face reconstruction network E was set to 1e−4.

7. Results and Evaluations

To demonstrate the effectiveness of our method, we conducted
qualitative and quantitative evaluations. In the qualitative evalua-
tion, we present the results of the bare skin images. In addition,
we show the rendering results using the generated high-fidelity tex-
ture maps. By comparing it with the existing high-fidelity texture
inference method [YSN∗18]† and the normalized avatar synthesis
method [LNK∗21]‡, we demonstrate the usefulness of our method
against makeup. In the quantitative evaluation, we evaluated the
stability of the generated texture maps.

7.1. Qualitative Evaluation

De-makeup and de-lighting

First, we compared the makeup removal effects with state-of-the-
art methods [LQD∗18, JLG∗19, DHC∗21, YHXG22, GWC∗19]. As
shown in Fig. 4, our BareSkinNet can remove the makeup and light-
ing influences without specifying a reference image or a known
lighting condition. The state-of-the-art makeup transfer methods
could not achieve makeup removal successfully. LADN [GWC∗19]
could remove makeup to some extent by carefully selecting a non-
makeup reference image. However, the results were affected by the
reference image and introduced new lighting. We dig deeper into
the reasons for BareSkinNet effectiveness. We think the result of
3D face reconstruction can be regarded as a reference image. The
diffuse of 3DMM contains ideal conditions without makeup and
lighting. Additionally, the 3D face reconstruction process has con-
sistency with the original image. Therefore, in contrast to using
another person’s reference image, our results preserve the subject’s
identity.

BareSkinNet can remove makeup and lighting influences cor-
rectly. Fig. 5 shows the results of BareSkinNet for the same subject.
These results confirm that our method can produce a consistently
clean face under different makeup and lighting conditions.

Fig. 6 shows the other results of the de-makeup and de-
lighting. The makeup face images were obtained from the CPM-
Real dataset [NTH21]. The CPM-Real dataset contains real-world
makeup photos. From these results, our method can successfully
remove the makeup and lighting influences from the light makeup
images. In addition, even for the strong makeup images, the results
of de-makeup and de-lighting are of reasonable quality.

Texture inference

Fig. 7 shows the results of the normalized texture inference. We
selected five samples of face images from the LADN dataset. The

† We used the original implementation and pre-trained model provided by
the authors.
‡ Results were provided by the authors.
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(a) (b) (c) (d) (e) (f) (g)

Figure 4: Comparison with state-of-the-art makeup transfer methods for makeup removal. From left to right, we show (a) input face im-
ages; (b) BeautyGAN [LQD∗18]; (c) PSGAN [JLG∗19]; (d) SCGAN [DHC∗21]; (e) EleGANt [YHXG22]; (f) results from the paper of
LADN [GWC∗19]; (g) our results of bare skin images.

Figure 5: BareSkinNet for the same subject. The first row is the
input images. The second row is the bare skin images. The last row
is the reconstructed 3DMM from the bare skin images.

makeup face image was used as an input to BareSkinNet. Bare-
SkinNet outputs a bare skin image and 3D face reconstruction re-
sult. The results confirm that BareSkinNet can successfully remove
the makeup and lighting influence from the input image. The high-
fidelity texture inference network was then executed using the out-
puts of BareSkinNet. We can confirm that the generated clean tex-
ture maps can be used for realistic face rendering.

To demonstrate the effectiveness of BareSkinNet for high-

Figure 6: Results for real-world makeup image from CPM-Real
dataset [NTH21]. The first and third rows are the input face images
(light makeup and strong makeup). The second and the fourth rows
are the bare skin images using BareSkinNet.

fidelity texture inference, we compared the output texture maps
with and without BareSkinNet preprocessing. As input to the tex-
ture inference process, with and without of BareSkinNet samples
colors from the makeup image and the bare skin image, respec-
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(a) (b) (c) (d) (e)

Figure 7: Example results of normalized texture inference. From
left to right, we show (a) makeup images; (b) recovered bare skin
images; (c) 3D face reconstruction results; (d) inferred diffuse, nor-
mal, roughness and specular texture maps; (e) rendering results us-
ing inferred texture maps.

(a) (b) (c) (d) (e) (f)

Figure 8: Qualitative comparison with state-of-the-art methods.
From left to right, we present (a) input images; (b) results of Ya-
maguchi et al. [YSN∗18]; (c) Luo et al. [LNK∗21]; (d) ours without
BareSkinNet; (e) ours; (f) output of BareSkinNet. Result images are
rendered using inferred diffuse texture.

tively. The entire 3D reconstruction process is the same except for
the color sampling.

Figs. 8 (d) and (e) show the rendered results using the inferred
diffuse texture maps with inputs (a) and (f), respectively. We can
confirm artifacts in the generated diffuse texture maps in the case
without BareSkinNet. On the other hand, using the BareSkinNet
output, the generated diffuse texture maps do not include any arti-
facts.

We also compared state-of-the-art texture inference meth-

Table 1: Quantitative evaluation of the output texture maps from
the facial details inference network. Metrics are root mean square
error (RMSE), peak signal-to-ratio (PSNR), and structural similar-
ity index measure (SSIM).

w/o BareSkinNet w/ BareSkinNet

RMSE (Diffuse) 3.910 3.358↓
RMSE (Normal) 1.365 1.244↓
RMSE (Specular) 3.997 3.146↓
RMSE (Roughness) 1.782 1.242↓
PSNR (Diffuse) 33.332 36.167↑
PSNR (Normal) 45.541 46.252↑
PSNR (Specular) 35.188 37.843↑
PSNR (Roughness) 43.850 46.296↑
SSIM (Diffuse) 0.963 0.969↑
SSIM (Normal) 0.976 0.980↑
SSIM (Specular) 0.943 0.961↑
SSIM (Roughness) 0.981 0.985↑

ods [YSN∗18, LNK∗21], as shown in Fig. 8 (b) and (c). For com-
parison, we only used the diffuse texture map for rendering. In the
results of Yamaguchi et al. [YSN∗18], the entire makeup texture
patterns remained in the inferred diffuse texture maps. Although
Luo et al. [LNK∗21] could remove some makeup texture patterns,
makeup effects remain around the eyebrow, eyes, and mouth. In
contrast to these methods, our method successfully removed the
makeup patterns for the entire face texture.

7.2. Quantitative Evaluation

Since it is hard to acquire ground truth data of in-the-wild de-
makeup and de-lighting images, it is challenging to evaluate Bare-
SkinNet directly. We evaluated the effectiveness of BareSkinNet
by comparing the final outputs of the texture maps from the texture
inference network. We randomly selected 70 subject faces with var-
ious synthetic 2100 makeup images that were not included in the
training set. For comparison, we obtained the final texture maps
with and without BareSkinNet. We used the output texture map
of the before-makeup image inputs as a reference for computing
the error metrics. We then computed the root mean square error
(RMSE), peak signal-to-noise ratio (PSNR), and structural similar-
ity index measure (SSIM) as metrics between the generated UV
maps. Table 1 lists the results for each score for each texture map.
Compared with the texture maps without BareSkinNet, the errors
of RMSE were reduced after applying BareSkinNet. In addition,
the results confirm that the PSNR and SSIM metrics are improved.
From these results, we believe that our BareSkinNet can improve
the stability of 3D face reconstruction under various makeup and
lighting conditions.

7.3. Ablation Study

To validate the effectiveness of each component in BareSkinNet,
we conducted experiments with different submodules and losses.
Example results are presented in Fig. 9.

First, we only use de-makeup and de-lighting network G results
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Figure 9: Results of ablation study. (a) input images; (b) Lphoto and LGAN ; (c) Lphoto, LGAN and LLPIPS; (d) use F instead of E without
fine-tuning; (e) use F instead of E with fine-tuning; (f) our proposed teacher-student framework without Llight ; (g) our full model.

in supervised learning. As shown in (b) and (c), makeup effects
were removed in most parts. However, some effects remain around
the eyes. Utilizing LLPIPS can add some details and make the face
clearer.

Next, we added a pre-trained 3D face reconstruction network F .
We verified the effectiveness of removing lighting and makeup with
and without fine-tuning. As shown in (d) and (e), makeup around
the eyes is better removed. Different from (b) and (c), we can con-
firm that the lighting effect is removed. However, some artifacts
appeared in (e) around the illuminated area.

Finally, we went a step further to improve the capability of re-
moving makeup and lighting influences by adding a network E that
can be trained. We found that the best performance can be achieved
by letting network E learn the diffuse part while the pre-trained net-
work F provides accurate SH lighting estimates. In addition, net-
work E is difficult to train without the support of a teacher-student
strategy due to the limitation of the diversity of the makeup dataset.
Comparing (f) and (g), by adding Llight , the lighting effect was re-
moved significantly.

8. Limitations

Although the results of qualitative and quantitative experiments
confirm that our method performed excellently under makeup and
lighting conditions, it is challenging to handle largely inclined face
poses and extreme facial expressions, especially a face with closed
eyes or opened mouth. Fig. 10 shows examples of the failure cases.
BareSkinNet cannot produce desirable makeup removal results be-
cause BareSkinNet was trained using a front neutral expression
face collection dataset.

Also, In the makeup removal process, eyes and hair are affected

Figure 10: Examples of the failure cases of de-makeup

by the color of 3DMM, which is a limitation. Although hair color
and eye color changed, the result of the application in this study is
not affected by these factors because these regions are automat-
ically excluded by facial skin area segmentation and the recon-
structed 3DMM.

Our scan dataset has limitations in the diversity of faces, lead-
ing to similarities in the reconstructed shapes and texture maps.
For the BareSkinNet module, we believe the BFM [PKA∗09] or
FLAME [LBB∗17] model can be employed, which is more suit-
able for non-Asian faces, instead of our original 3DMM. But when
considering subsequent applications, we propose that 3DMM origi-
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Figure 11: Examples of makeup transfer. Images with the red
square show makeup results by editing diffuse texture maps by the
3DCG artist. Other images show the results of makeup transfer.

nates from the same scan dataset with high-resolution texture maps
because consistency between 3DMM, bare skin image, and texture
maps are preferred.

9. Conclusions and Future Work

We presented BareSkinNet, a framework to remove makeup and
lighting influences from the face image input to reconstruct a high-
fidelity 3D face model. Using our BareSkinNet as a preprocessing
step for 3D face reconstruction, we can obtain consistent results
of high-fidelity texture maps for the same subject. Through exper-
iments, we confirmed that our approach could be successfully ap-
plied to various makeup image inputs.

Fig. 11 shows an example of makeup editing. The reconstructed
face models can be found in Figs. 1 and 8. In this example, we
asked a 3DCG artist to put makeup on the reconstructed face mod-
els by editing the inferred diffuse texture maps. Note that the 3DCG
artist also created eyes and hairs. Created models are marked with
the red square in the figure. A makeup layer was extracted by sub-
tracting the reconstructed and edited diffuse texture. The makeup
transfer was then achieved by adding the reconstructed diffuse tex-
ture maps and extracted makeup layers. The images without the red
square show the results of makeup transfer. These results confirm
the possibility of creating photo-realistic avatars in various makeup
styles with minor effort.

This study focused on de-makeup and de-lighting for 3D face
reconstruction. Currently, our system cannot separate makeup style
and skin color. In the future, we plan to extend our method to ex-
tract the makeup layer and use it for 3D makeup reconstruction and
transfer.

In addition, there is a potential to use BareSkinNet for other tasks
such as face recognition and face verification. It can also be used
to improve the accuracy of 3DMM texture space, for example, the
texture creation process of the FLAME [LBB∗17] model. We will
investigate the availability of our method.
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