
Pacific Graphics 2022
N. Umetani, E. Vouga, and C. Wojtan
(Guest Editors)

Volume 41 (2022), Number 7

Learning Dynamic 3D Geometry and Texture
for Video Face Swapping

C. Otto1,2 , J. Naruniec1 , L. Helminger1,2 , T. Etterlin2 , G. Mignone1 , P. Chandran1,2 ,
G. Zoss1 , C. Schroers1 , M. Gross1,2 , P. Gotardo1 , D. Bradley1 , R. Weber1

1DisneyResearch|Studios, Switzerland
2ETH Zürich, Switzerland

Figure 1: We present a new method to swap the face of a target video performance with a new source identity. Our method learns dynamic
3D geometry and texture to obtain more realistic face swaps with better artistic control than common 2D approaches.

Abstract
Face swapping is the process of applying a source actor’s appearance to a target actor’s performance in a video. This is a
challenging visual effect that has seen increasing demand in film and television production. Recent work has shown that data-
driven methods based on deep learning can produce compelling effects at production quality in a fraction of the time required
for a traditional 3D pipeline. However, the dominant approach operates only on 2D imagery without reference to the underlying
facial geometry or texture, resulting in poor generalization under novel viewpoints and little artistic control. Methods that do
incorporate geometry rely on pre-learned facial priors that do not adapt well to particular geometric features of the source
and target faces. We approach the problem of face swapping from the perspective of learning simultaneous convolutional
facial autoencoders for the source and target identities, using a shared encoder network with identity-specific decoders. The
key novelty in our approach is that each decoder first lifts the latent code into a 3D representation, comprising a dynamic face
texture and a deformable 3D face shape, before projecting this 3D face back onto the input image using a differentiable renderer.
The coupled autoencoders are trained only on videos of the source and target identities, without requiring 3D supervision. By
leveraging the learned 3D geometry and texture, our method achieves face swapping with higher quality than when using off-
the-shelf monocular 3D face reconstruction, and overall lower FID score than state-of-the-art 2D methods. Furthermore, our
3D representation allows for efficient artistic control over the result, which can be hard to achieve with existing 2D approaches.

CCS Concepts
• Computing methodologies → Image manipulation; Rendering; Neural Networks;

1. Introduction

The demand for high-quality visual effects in film and television is
growing faster than ever before. Shots requiring face swapping—

such as digital de-aging or virtually resurrecting a deceased
performer—are becoming almost commonplace. This fact creates
significant pressure on traditional visual-effects pipelines, where
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production time and costs are key limiting factors. While current
pipelines can achieve results of stunning quality, they often require
very careful (and expensive) on-set preparation, light-stage captur-
ing, and detailed 3D modeling. On the other hand, recent progress
using deep learning for face swapping [PGC∗20, NHSW20] has
shown remarkable results in certain scenarios, suggesting an op-
portunity for revolutionizing existing visual effects pipelines. This
could lead to much more efficient workflows with substantial time
and cost savings as well as quicker iterations during production.

While the recent developments in face swapping are very
promising, there are still significant limitations. The lack of certain
poses and expressions in the training data can considerably reduce
the quality of the generated faces, as 2D approaches often struggle
in generalizing due to their having no explicit understanding of un-
derlying facial geometry. In addition, working in 2D also limits the
level of control over the final output. Understanding and leverag-
ing the underlying 3D geometry and facial texture for video face
swapping has the potential to achieve superior generalization and
better cope with scenarios in which it is not possible to find enough
reference data of an actor to cover certain poses. Unfortunately,
the few face swap methods that do incorporate 3D geometry (e.g.
[NMT∗18]) rely on fixed, non-adaptive priors. As a result, they of-
ten fail to capture the identity features that are unique to a particular
face, such as characteristic nose shapes that become more notice-
able in the challenging profile views.

In this paper, we address the aforementioned challenges and
propose a new face-swapping approach that leverages explicit and
adaptive 3D face geometry. Our new method simultaneously learns
convolutional facial autoencoders for both the source and target
identities, with distinct decoders and a shared encoder (i.e., latent
code). As a key novelty, each of our decoders first lifts the input la-
tent code into a learned 3D representation, for better 3D modeling
and generalization, before projecting the 3D face back onto the im-
age plane using a differentiable renderer. In essence, each autoen-
coder reconstructs a dynamic 3D face solely by training on video
images depicting the face under different viewpoints. We show that
this results in more accurate 3D geometry relative to using off-the-
shelf monocular 3D face reconstruction. The final result is a face
swap that better reproduces actor-specific facial shapes compared
to previous methods.

The main contributions of this paper are the following:

• We propose a full pipeline for performing high-quality 3D
geometry-aware neural face swapping.

• We introduce a method for learning dynamic 3D geometry and
texture based on a video sequence without requiring 3D supervi-
sion.

• Finally we show superiority of our approach over other state-of-
the-art tools, both in terms of image quality and also the ability
to artistically control the result.

2. Related Work

The vast majority of face-swapping methods operate in the 2D im-
age domain. These methods can produce high-quality swaps, but
they often struggle with faces in extreme poses, especially when

the coverage of such images is insufficient in the training data. 3D-
based swapping methods can utilize underlying geometry and pose
information to increase performance under new, unseen views but
are prone to errors in the reconstruction of the 3D model. Addition-
ally, the access to texture and geometry that comes with 3D-based
methods can allow for more natural artistic control of the swaps. In
the following subsections we give an overview of both 2D and 3D
face swapping methods.

2.1. 2D Face Swapping

Most successful deep-learning-based face-swapping methods rely
on autoencoder architectures by mapping images from different
identities into a shared latent space, similar to translation net-
works presented in [LBK17]. The state-of-the-art open-source face
swapping method, DeepFaceLab [PGC∗20], which is being used
in most publicly available examples, produces realistic and de-
tailed face swaps. Results of their autoencoder, in which two pro-
duced outputs correspond to two swapped identities, are further
improved by training models with adversarial loss. An additional
super-resolution post-processing step may be used to upscale low
resolution outputs. Those additional techniques, despite increasing
the resolution and details of the final image, often introduce char-
acteristic, undesirable artifacts.

Naruniec et al. [NHSW20] create high-resolution 1024× 1024
face swaps by using a progressive training regime [KALL17] and
multiple decoders. They improve the temporal consistency of the
results by introducing a landmark-stabilization procedure. Their
approach still struggles with side poses, which can be noticed in
the blurriness of the face edges in the network output. FSGAN
[NKH19] utilizes an adversarial loss [GPAM∗14] to swap arbi-
trary identities without requiring identity-specific training. That
work relies on landmark displacements between faces of the source
and target image to condition a recurrent network to produce the
desired pose and expression. SimSwap [CCNG20] introduces a
weak feature-matching loss to inject source identity information
into the latent code while preserving other face attributes. MegaFS
[ZLW∗21] shows results in megapixel resolution but has some dif-
ficulties in preserving the full source identity due to the pre-trained
StyleGAN2 prior [KLA∗20]. In [XDW∗22] the authors try to over-
come the limitations caused by the pretrained GAN prior through
disentangeling the latent semantics and deriving structure and ap-
pearance attributes from different decoder layers. [LWXS22] pro-
pose an end-to-end framework where attributes and identity are dis-
entangled by dedicated encoders. In [XZH∗22] a region-aware face
swapping network based on GAN inversion is presented. It gener-
ates high-resolution and identity consistent swaps, although due to
the StyleGAN2 prior, the method fails to handle difficult face poses.

We develop a new method that is based on the 2D method
of [NHSW20]. However, we make significant alterations to their
2D method, incorporating 3D information via differentiable ren-
dering and employing two separate decoders per identity. We use
an identity specific approach as opposed to identity agnostic ap-
proaches (like [CCNG20, ZLW∗21] or [NKH19]), since identity
agnostic methods tend to make assumptions about the underlying
appearance, like teeth or expressions, that we wish to reconstruct
as faithfully as possible. For identity agnostic methods, the result-
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ing images often have good subjective image quality but fail to
preserve the characteristics of the original identity. In the case of
[NHSW20], however, difficulties with extreme poses can be traced
to a lack of correspondence in poses in the source and target train-
ing data or from inaccuracies in landmark alignment during pre-
processing. In contrast, our novel 3D-based approach suffers less
from this limitation, since its explicit 3D face model incorporates
pose information which help to generalize better to novel view-
points. Our decoders provides expression and texture updates com-
plementary to the geometric information that is learned separately
for each person. Furthermore, we will show that our proposed ap-
proach yields better swap quality (i.e. a lower FID score) than these
2D methods.

2.2. 3D-Based Face Reconstruction and Swapping

Traditionally, face swapping in the 3D domain is posed as a geom-
etry retargeting problem, where 3D models of both the source and
target identity are either scanned or hand-crafted. The target per-
formance is reconstructed from the video, retargeted to the source
geometry, and then re-rendered back into the scene [Sey19]. This
process is very laborious and expensive, and even with that effort it
remains challenging to achieve a thoroughly convincing final result
over a full range of expressions and behavior.

Reconstruction of the 3D geometry of the face from a single
image is usually performed using a parametric model, such as in
3D morphable face models [BV99, BV03], or by neural-network
models such as PRNet [FWS∗18]. Face swapping within paramet-
ric models can be achieved by exchanging the geometric parame-
ters (e.g. translation, rotation and blendshape weights) and texture
between 3D faces of different identities [BSVS04]. For example,
Nirkin et. al. [NMT∗18] use the Basel face model [PKA∗09] and
3D dense face alignment (3DDFA) [ZLLL17] to fit a 3D shape
to the source and target images. They then swap the texture of
the source face onto the target face geometry before rendering
the image. Newer 3D face reconstruction methods, such as DECA
[FFBB20] and 3DDFA-V2 [GZY∗20], improve upon these earlier
results but still suffer from the uncertainty about the geometry when
estimating it from a single image. HifiFace [WCZ∗21] preserves
the face shape of the source identity in the swap using a 3D face re-
construction method [DYX∗19], but is constrained by the 3DMM
model space. Our method predicts vertex position deltas instead
of 3DMM parameters and is thus not constrained to the 3DMM
model space. Similar to Dale et al. [DSJ∗11] we take advantage
of having a sequence of images that allow us to explicitly model
the shape of the face. However, Dale et al. [DSJ∗11] only replace
the face without being able to keep the target performance in the
process. We further estimate dynamic geometry and textures us-
ing differentiable rendering, which has been explored for different
applications in the context of GANs [GPAM∗14] in works such
as GANFIT [GPKZ19], Olszewski et al. [OLY∗17] and Nagano et
al. [NSX∗18]. An application that is related but distinct from face
swapping is facial reenactment and puppeteering in the 3D domain
[TZS∗16, KCT∗18, GSZ∗18]. Face reenactment swaps facial ex-
pressions but does not swap the identity. As a result, it does not
require relighting or blending the new face, which simplifies the
task. Often, the original head pose is also preserved, making pre-

cise 3D reconstruction less important. In face swapping, the new
identity must be rendered with a new expression, new lighting, and
a new head pose, which makes it a more challenging task.

In contrast to current state-of-the-art face swapping methods
[ZLW∗21, PGC∗20, NHSW20, CCNG20, NKH19, NMT∗18], we
learn dynamic subject-specific texture and geometry and use it to
perform artistically controllable face swaps.

3. Video Face Swapping

We approach the problem of face swapping by training a convo-
lutional autoencoder for each of the two swapped identities. The
network’s encoder is shared between identities, allowing for the
joint representation of specific features like expression or lighting
conditions, while the decoders are identity specific. Each decoder
consists of two parts, one responsible for the geometry and one for
the texture. We follow the terminology of [NHSW20] and refer to
this architecture as a comb model. The generated identity is deter-
mined entirely by the choice of decoder at inference time. Note
that face swap fundamentally requires decoders to generalize well,
since their input code at test (swap) time comes from a different
subject, not seen by the decoder during training.

A key novelty in our approach is that the decoders aim to lift the
input latent code into a 3D representation, comprising a dynamic
face texture and a deformable 3D face shape. Similar to the texture,
we encode the 3D shape in UV space as an XYZ (3-channel) image
grid, where each pixel represents a 3D point location. This geom-
etry image captures the entire 3D face mesh [FWS∗18, GGH02]
while allowing our autoencoder to process it with convolutions.
The 3D face is projected back onto the input image plane under the
same pose of the original face using a differentiable renderer. We
leverage the fact that having a video consisting of many viewpoints
can provide additional information useful in predicting the partic-
ular 3D geometry of a person, especially compared to off-the-shelf
monocular 3D methods. Consequently, our face-swapping pipeline
can provide detailed geometry and a high-quality texture.

Our network operates on preprocessed face images that are first
cropped and normalized (Section 3.1). Our proposed network, its
dynamic model of facial texture and 3D geometry, and the differ-
entiable renderer are presented in Section 3.2. At inference time,
the encoder/dual-decoder pair can be reassembled to perform face
swapping between pairs of trained identities. A final step then
blends the new face onto the original image (Section 3.4).

3.1. Preprocessing

To train a model that is capable of swapping the facial expression of
a target performance to a source identity, a sequence of frames for
each identity is necessary. We use the dataset captured by Naruniec
et al. [NHSW20] that consists of sequences of eight different iden-
tities under three different lighting conditions and in a variety of
poses and expressions. Each of the clips is captured at 4K and are
between two to six minutes long.

Image Normalization and Pose Detection Our preprocessing
step crops, rotates, and scales each training image to provide a
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smaller, normalized image with a centered face. This preprocess-
ing is also required at inference (swapping) time, and all parame-
ters of this normalization are saved so the process can be reversed
when blending a new face back onto the original image. The nor-
malization parameters are computed based on the positions of the
eyes, nose, and mouth, which are provided by an off-the-shelf facial
landmark detector [KNT17]. The detected landmarks are averaged
from ten random face bounding box perturbations as proposed by
[NHSW20] to achieve better temporal stability across frames. For
pose detection we use 3DDFA [ZLLL17], since it provides a face
mesh with 3D landmarks and an associated head pose (projection)
matrix that our 3D decoders require during training and testing,
as described below. Note, however, that our method will predict a
more identity-specific facial shape than that of 3DDFA, which we
illustrate in Section 4, and so the primary responsibility of 3DDFA
in our work is for head pose computation.

Face Segmentation Mask To define the 2D target face region for
training and swapping, we compute a face mask for each input im-
age using the BiSeNet [YWP∗18] face segmentation network im-
plementation of [Zll19], which is pre-trained on the CelebAMask-
HQ dataset.

3.2. Comb Network Architecture with 3D Decoders

Our autoencoder architecture is inspired by the comb model orig-
inally proposed in [NHSW20] for 2D face swapping. A general
comb model consists of a single convolutional encoder E (·) and
multiple convolutional decoders Dp (·), p ∈ {1, . . .P}, one for each
of the P target identities considered at training time. In this work,
we have two decoders per identity and we fix P = 2 to train ded-
icated swapping networks between a chosen source s and target
identity t, although a more general training scheme is also possi-
ble.

The identity-specific decoders allow for disentangling the se-
mantic details of the performance (e.g. head pose, eye gaze, fa-
cial expression, lighting) from the personal appearance of the iden-
tity. The performance is encoded on a per-frame basis within the
shared latent code, and the personal appearance given those seman-
tic details are decoded by the identity-specific decoders. Before
face swapping at test time, the network is trained as two autoen-
coders with the task of reconstructing performances of the individ-
ual identities (with a single shared encoder).

A significant departure of our approach from the general archi-
tecture in 2D based comb [NHSW20] is in training two separate
facial decoders per identity, one for texture and one for 3D geome-
try (i.e. DT

p and DG
p ), which operate together with a differential ren-

derer to reconstruct and project 3D faces onto the original 2D image
plane (Fig. 2). This novel architecture allows us to perform train-
ing and swapping with explicit 3D geometry and texture, pooling
data across the different viewpoints seen at training time. This helps
to generalize to viewpoints at inference time that were not seen by
the subject-specific decoder during training. Furthermore, we effec-
tively embed and solve simultaneous 3D reconstruction problems
during the training of each autoencoder. These model-free, data-
driven reconstructions allow us to better adapt and capture identity
features that are unique to particular faces (e.g. the shape of the

nose and chin), leading to face shapes that are more accurate than
those achieved with off-the-shelf 3D face reconstruction methods
that use fixed geometry priors.

As shown in Fig. 2, the geometry decoder DG
p produces delta

shape images ∆Gp, encoded as the difference from a static 3D ge-
ometry Gp. The static geometry can be considered the mean face
shape of the identity. At the start of the training 3DDFA is fitted to
a neutral expression image once per identity. We use this fit to ini-
tialize Gp. Note that Gp is not an output of the decoder, but is rather
learned together with the decoder weights during training over all
frames. This is beneficial, for instance, when the input shows a pro-
file or occluded face, the static term provides increased robustness
for inferring the correct output. To obtain a per-frame geometry
estimate, the dynamic geometry component ∆Gp is added to the
static prior Gp. In contrast to the comb model in [NHSW20], rather
than outputting final 2D faces, the first decoder outputs a 3-channel
image made up of a delta XYZ geometry map, and the second de-
coder outputs an RGB texture, both set in the UV texture plane of
our 3D mesh topology (as in [GZY∗20]). The decoded per-frame
3D geometry and texture are then fed into the differentiable ren-
derer redner [LADL18] to produce the output 2D face. The ren-
dering input also includes the face pose (rotation and translation)
parameters extracted by fitting 3DDFA to the normalized input im-
age. This rigid transformation is applied to the learned geometry
before rendering. Here, we model most of the lighting implicitly,
in a data-driven way, into the latent code learned by the shared im-
age encoder. Combined specular and diffuse facial shading corre-
sponding to the input lighting condition is decoded directly into
the output texture. Thus, we set up redner with a constant, fully
white environment map that in effect introduces only an additional
(diffuse) ambient occlusion component to the rendered facial ap-
pearance. During training, the rendered face is compared to real
images of the same identity (without swapping) and errors are back-
propagated into the learned geometry and texture parameters. Our
network design aims to better model the identity-specific features,
such as particular nose shape and skin features, and therefore pro-
duce renderings with higher fidelity. Please refer to the supplemen-
tary material for more details on our network architecture.

At inference (face-swap) time, the rendered 2D face image is
finally blended over the original image of the input scene. This
blending step is summarized in Section 3.4. Optionally, before
blending, the face geometry, texture, and the white environment
map fed into redner can all be manually altered to incorporate
artistic control over the rendered face, as demonstrated in Sec-
tion 4.3.

3.3. Training

We train our network with loss functions that aim to reconstruct the
images as closely as possible, considering structural similarity of
face pixels and the face silhouette, with regularizers to control the
geometry smoothness. Unlike [NHSW20], we do not follow a pro-
gressive training regime, which was necessary for gently increasing
the resolution capabilities of the model while also learning simi-
lar representations for similar poses and expressions. In our case,
the pose information is explicitly supplied and serves effectively
as a conditioning signal to the network. As a result, we directly
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Figure 2: The normalized target image xt is fed to our autoencoder network with shared encoder E across identities. Two identity-specific
decoders DG

p and DT
p are trained to generate, respectively, a 3D geometry delta image ∆Gp and a texture image Tp for each frame. During

training, p = t, where t refers to the target identity. However, during swapping, p = s, where s is the second identity (source) that our network
is trained on. The geometry delta image ∆Gp is added to the learned static geometry Gp and converted to a 3D face mesh G′

p, which is posed
and rendered back to the input image plane using a differentiable renderer. The resulting image x̂p can be used for training or swapping. See
the supplementary material for network architecture details.

start training on our final resolution (512×512). Images larger than
512×512 are downsized accordingly for training and swapping.

Reconstruction Loss: With only the face area being of interest,
we mask the background region of all images. This is accomplished
by predicting a binary face segmentation mask M(xp) for an im-
age xp belonging to identity p (Section 3.1). Our reconstruction
loss seeks to minimize the discrepancy between the target image
and the network output x̂p:

Lrec = d (xp ⊙M(xp) , x̂p ⊙M(xp)) , (1)

where d(x,y) = 1
2 (1 − SSIM(x,y)) is the structural dissimilarity

between x and y and ⊙ is the elementwise Hadamard product
[WSB03].

Silhouette Loss: During training we observed that the model
struggles to learn the correct subject-specific facial boundaries (i.e.
nose shape - Figure 10, row 3, column 4). To overcome this prob-
lem, we constrain the learned geometry toward the correct shape
boundary. We define the silhouette loss as the ℓ1-loss between the
face segmentation mask and the silhouette of the learned geometry
[WZL∗18], an additional output of the differentiable renderer:

Lsil = ∥M(xp)−S
(
G′

p
)
∥1, (2)

where S
(
G′

p
)

is the learned geometry silhouette.

Laplacian Smoothing Loss: While the silhouette loss forces the
model to learn the correct mesh boundary, it does not prevent the
generation of uneven vertices inside the silhouette (Figure 10, col-
umn 5). We can control for this problem by adding the Laplacian
regularizer as proposed in [WZL∗18]. This additional loss term
serves as a local detail-preserving operator, which encourages a
vertex v to move in the same direction as its neighbors N (v).

To compute the loss, we calculate the Laplacian coordinate δv

for each vertex v ∈R3:

δv = v− 1
|N (v) | ∑

v′∈N (v)
v′. (3)

We then constrain the movements of each vertex in the learned
mesh to be smooth compared to the original 3DDFA mesh via a
simple ℓ2 penalty:

Lsm = ∑
v
∥δv3DDFA −δvlearned∥

2
2. (4)

Geometry Delta Regularizers: As mentioned in Section 3.2,
we assume that the geometry can be separated into identity-specific
static and dynamic components. While the static component is con-
stant over all frames, the dynamic component should only contain
frame-specific information, such as the expression. We refer to the
dynamic component as deltas per frame.

The geometry deltas ∆Gp represent the offsets of the model’s
estimated vertices for a given frame relative to the static geometry.
To first learn an identity-specific representation of the static geom-
etry, we constrain the geometry deltas to be close to zero in the
beginning of the training:

L∆G1 = ∥∆Gp∥2
2. (5)

Once we arrive at an identity-specific static geometry, regulariz-
ing the deltas towards 0 becomes limiting, and we begin regulariz-
ing instead using the estimated per-frame meshes from 3DDFA.
Specifically, let Dp represent the frame-specific differences be-
tween 3DDFA’s neutral geometry for identity p and the frame-
specific 3DDFA expression in image xp, then our regularization
term is given by

L∆G2 = ∥∆Gp −Dp∥2
2. (6)
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This loss effectively constrains the model’s sense of geometric dis-
placement to resemble that of 3DDFA. Importantly, this loss is
gradually phased out in order to allow the model greater freedom
to represent geometry outside of 3DDFA’s set of priors.

Overall Objective: During training, the differentiable rendering
is guided by these losses and helps our model to learn identity-
specific features and render the faces with higher fidelity. The
combined objective for each frame is obtained by adding up the
weighted loss terms:

L= βrLrec +βsLsil +βlLsm +βg1L∆G1 +βg2L∆G2 , (7)

where βr,βs,βl , βg1 and βg2 are loss-weighting hyperparameters.
At training time, we sequentially iterate over both identities and
process one identity per batch. The final objective is given by

Lfinal (X ) =
1
2

2

∑
p=1

1
Np

Np

∑
i=1

L
(

x(i)p , x̂(i)p

)
, (8)

where Np is the number of frames corresponding to identity p.

Training Details: The proposed model is trained by minimizing
equation (8) using the Adam optimizer [KB15]. The training itself
consists of multiple stages. From the start, we train the full model
with regularizer L∆G1 with weight βg1 = 1. The regularization term
βg1 is set to zero after 50K iterations, since at this stage static ge-
ometry contains most of the identity-specific information and only
frame-specific differences are left to learn. We then use L∆G2 with
weight βg2 = 1 for 30K iterations to regularize the geometry deltas
towards the frame-specific expressions, before phasing it out to al-
low the model to have greater freedom to represent geometries and
expressions outside of the 3DDFA prior. The remaining regular-
ization weights are fixed throughout the training: βr = 1, βs = 1,
and βl = 5. In total we train our model for 200K iterations for each
identity pair taking roughly 9 days on a 3090 GPU or 18.5 days on a
TITAN X GPU. We expect more modern GPUs to further decrease
the training time. On a TITAN X GPU, one full iteration with two
IDs takes around 8 seconds, mainly consisting of the forward pass
with rendering (0.6 secs/ID), computing the gradients (2.5 secs/ID),
and computing the several losses (where by far the most expensive
is the smoothing loss: 1.1 secs/ID). Due to limitations of our mem-
ory, we train with a batch size of one on the TITAN X GPU.

3.4. Post-Processing

At test (swap) time, the rendered face image x̂p is moved to the cor-
rect position on the target frame yt by reversing the image normal-
ization process. We create a blending mask by rendering a painted
texture onto the learned geometry (Figure 3). For the final swap,
multi-band blending [BA83, NHSW20] is applied to the mask and
the output image.

4. Experiments

This section offers experimental results showing the quality of our
method’s (1) learned geometry, as well as (2) face swapping re-
sults in comparison to other state-of-the-art methods. Swaps are
performed on images that display a variety of head poses, including
challenging profile views that 2D methods struggle with. Finally,

Figure 3: We render the texture mask onto the learned geometry to
generate our blending mask.

Input Our Learned
Geometry

3DDFA Our Learned
Geometry

3DDFAInput

Figure 4: Profile views illustrating the geometry learned by our
method for four identities, showing the improvement over the initial
result obtained using 3DDFA.

we also demonstrate (3) how artistic control can be easily incorpo-
rated into our method, (4) our model’s generalization capacity, and
(5) an ablation study of our training loss.

4.1. Learned Geometry

Figure 4 illustrates the geometry learned by our method in compar-
ison to the initial 3DDFA estimate on four subjects, in profile view.
Our method successfully captures the characteristics of the indi-
vidual faces, such as nose and chin shape, which are poorly mod-
eled by 3DDFA. Although 3DDFA correctly estimates pose and
expressions, 3DDFA’s results across different subjects often show
very similar facial geometry that miss most of the variability due
to unique identity features of each subject. Other fitting errors also
occur when parts of the estimated facial geometry incorrectly over-
lap with the background. For these reasons, our method takes the
3DDFA fit for each identity only as a first initialization of the sub-
ject’s static geometry. During training, the static geometry learns
to adapt more identity-specific features. The improvement is es-
pecially noticeable in profile views, where the generic nose shape
turns into an identity-specific nose shape (Figure 4).

We expect these facts to also hold with respect to other pre-
trained 3D face reconstruction methods that process individual
images as input [FFBB20, GZY∗20], as opposed to multi-image
methods like ours. Single-image methods are thus strongly biased
by their training dataset, making them less than ideal for face swap-
ping on video of novel faces with unique geometric features.
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Figure 5: Comparison of state-of-the-art face swapping methods.
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4.2. Comparison with State-of-the-Art Face Swapping

We compare our method to DeepFaceLab (DFL) [PGC∗20],
Naruniec et al. [NHSW20], SimSwap [CCNG20], MegaFS
[ZLW∗21] and FSGAN [NKH19], five state-of-the-art face-
swapping methods that show convincing, high-quality results. For
a better comparison, we retrain the two subject-specific methods
(DFL and Naruniec et al.) on the dataset of [NHSW20]. For DFL,
we train each identity pair for 300K iterations, applying an adver-
sarial loss for the last 50k iterations. We use the highest resolution
that fits into the memory of our hardware (352x352). We retrain
the model of Naruniec et al. [NHSW20] in a progressive fashion
for 100K presented images, at each resolution level, up to our com-
mon final resolution of 512x512. SimSwap, MegaFS and FSGAN
all claim to be subject-agnostic and therefore do not require retrain-
ing [CCNG20, NKH19, ZLW∗21].

Figure 5 shows the side-by-side comparison among the six meth-
ods. Swaps from DeepFaceLab (DFL) show a high level of de-
tail and realism, especially for front poses, but fail to capture the
target lighting in some settings (row 4 and 6). Similar, Naruniec
et al. show realistic swaps in most of the poses but lack overall
sharpness of the face (row 1 and row 9). While SimSwap, FSGAN
and MegaFS allow for subject-agnostic face swapping, they strug-
gle to maintain faithful source identity (row 4, 6 and 9). FSGAN
and MegaFS show less realistic profile views (row 3 and 5) and
have difficulties in keeping the target lighting (row 1, 4 and 7). Our
method shows high details in front poses (teeth in row 1) and cor-
rectly captures the target performance (shows teeth in row 6). For
profile poses our method benefits from the pose information and
the learned geometric shape that captures the source identities nose
shape. Row 2, 3, 5 and 8 show, how our subject-specific decoders
generalize to these novel viewpoints at test (swap) time. Additional
comparisons are shown in the supplementary video.

To assess which method performs face swapping better, we also
conducted a perceptual user study with 59 adult participants, rating
our approach alongside four of the five competing face-swapping
methods. Specifically, we compare our method to Naruniec et al.
[NHSW20], DeepFaceLab [PGC∗20], FSGAN [NKH19] and Sim-
Swap [CCNG20]. Four source-target pairs were randomly selected
from the available data, and we used each competing method to per-
form a swap between source and target. For each source-target pair,
the participants viewed a 10-second video clip featuring a gallery
of the outputs from all five methods in random spatial order, with
no limitation on the time allowed for evaluation. We followed a
randomized ranked-choice design using questions similar to those
asked in [LBY∗19], focusing on realism, similarity to the intended
identities, pose and expression quality, lighting, and profile quality,
all adapted to a video context. The results of our study showed that
no method was dominant in every category. Our method produced
results ranked at the top by a number of study participants across all
categories, although the 2D method by Naruniec et al. [NHSW20]
received the most votes overall. See the supplemental material for
more information on study design and detailed results.

Similar to [NKH22] and [XZH∗22], we quantitatively compare
our method to other face-swapping methods using the FID score,
which correlates with human perception the quality of generated
images [HRU∗17]. We use the FID score to judge the visual quality

Method FID score ↓

FSGAN [NKH19] 35.06
MegaFS [ZLW∗21] 32.19
SimSwap [CCNG20] 25.67
Naruniec et al. [NHSW20] 23.59
DFL [PGC∗20] 20.54
Ours 18.14

Table 1: Our swaps show the best image quality among the evalu-
ated methods as judged by the FID score.
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Figure 6: Incorporating artistic control on the learned geometry:
result of geometry edits that scale along the x-axis with a factor of
0.9, 1.0 and 1.1. The source identity is the same as in Figure 7

.

of the swaps (generated images) when compared to a distribution of
real images displaying the source identity. We evaluate on around
12000 real images and 12000 swaps per method using the dataset
of Naruniec et al. [NHSW20] and the PyTorch FID implementa-
tion of [Sei20]. Our method achieves the best FID score among
all evaluated face-swapping methods (see Table 1), indicating the
best-matching swap relative to the source identity imagery.

4.3. Artistic Control

One of the benefits of our 3D approach for video-based face swap-
ping is that it allows more natural artistic control of the result, as
compared to traditional 2D methods. Artists are familiar with ma-
nipulating 3D geometry and textures and their edits can be seam-
lessly integrated into our pipeline at test time, after decoding the
geometry and texture, just before rendering and compositing. We
highlight this benefit by demonstrating the ease with which the
swap result can be edited to modify the 3D face shape (in Figure
6) or the facial texture (adding a tattoo, in Figure 7). The ability to
relight the face by adjusting the environment map before rendering
is also demonstrated in Figure 8 and in the supplementary video.

4.4. Generalization

During inference (swapping), our subject-specific decoders might
have to generate the subject under novel viewpoints since each
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Figure 7: Incorporating artistic control on the learned texture: re-
sult of adding a tattoo on the forehead of the source identity.
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Figure 8: Artistic control by relighting when rendering: example
of taking the original result (column 2) and placing an additional
light on the right (column 3) or on the left (column 4).

of the decoders is evaluated on a code coming from another sub-
ject that was not seen during training. In contrast, the encoder is
shared across both identities and must learn identity-agnostic fea-
tures. While the network is primarily designed to be applied only to
the source and target identity, it may further generalize to new iden-
tities or a known identity with new expression and lighting (Figure
9).

4.5. Ablation study

We show the effect of leaving out different parts of our loss function
visually in Figure 10. For example, it can be seen how the silhouette
loss helps to learn a nose shape that is closer to the source identity’s
nose shape (column 2, row 3 vs. column 4, row 3). This example
indicates that performing face swapping with subject-specific face

ID1

ID2 Result

Target Performance

Figure 9: Our model trained only on ID1 and ID2 (column 1) can
create swaps that generalize: It can encode an unknown target ID
and decode ID2 (column 3). Furthermore, when combined with
multi-band blending [BA83, NHSW20] it can create swaps of ID2
in illumination conditions that are novel to the decoder (column 2),
and it can encode an unknown target ID and create swaps of ID2
in novel illumination conditions (column 4).

shapes leads to more realistic results than performing face swap-
ping with more generic off-the-shelf 3D reconstructed face shapes.

5. Limitations

We have identified four sources of limitations of the proposed
method. First, imperfections of the face segmentation algorithm
can affect the reconstruction quality. As the segmentation mask is
used in the silhouette loss defined in Section 3.3, the segmenta-
tion significantly influences the boundary of the learned geometry.
However, current segmentation algorithms are already quite accu-
rate in many cases and advancements in facial segmentation will
likely lead to improved reconstructions in the remaining cases.

Second, in some sequences the model is not perfectly stable
in time and we can observe minor jittering of the results. This is
caused by the inaccurate fit of the underlying 3DDFA model used
for the face pose estimation. In future experiments, we intend to ad-
ditionally regress the pose directly from the input image to mitigate
this behavior.

Third, our approach occasionally has difficulties with faithfully
swapping rare or extreme target expressions, e.g. very wide smiles
or yawning. In these cases, the result may contain blurry teeth or
mouth regions (Figure 11, rows 1 and 2). Additionally, incorrect
eye gaze direction may occur if the training data lacks the target
gaze direction for the source identity (Figure 11, row 3). We aim to
investigate these issues further in future work.

Lastly, the differentiable rendering and geometry smoothing loss
are two bottlenecks that lead to long training times (Section 3.3).
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Figure 10: Ablation study. Column 2 shows the results of our method when setting the loss weights as described in section 3.3. In column
column 3, row 4 (setting the geometry regularizers to 0 for the full training), it can be seen that the source identity’s chin is sticking out too
much in front, leading to artifacts. Column 4, row 3 and 4 show that the source identities’ nose shape is not learned by the geometry when
the silhouette loss is set to 0. Similarly, blending artifacts occur for the front pose (column 4, row 2) when the silhouette is not constrained.
Column 4 shows the effect of leaving out the geometry smoothing loss term (i.e. setting the weight to 0). The underlying face geometry
collapses.
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Figure 11: Visual failure cases. The results in row 1 and 2, column
3 show blurry teeth for extreme expressions such as a mouth that
is wide open or a big smile. Row 3, column 3 shows problems in
displaying the correct eye gaze direction, likely due to the fact that
the training data of the source identity mostly contains examples of
looking to the upper left when displaying a wide smile.

Making either of these processes more efficient would be one key
to reducing training time in the future.

6. Ethical Concerns

Any method that generates photorealistic facial imagery carries
with it the potential for misuse. We condemn such misuse and sup-
port the growing research effort into automatically detecting ma-
nipulated imagery [Wes19, TVRF∗20]. We also stress the legiti-
mate role that face-swapping technology plays in visual effects and
intend for our work to be applied only in that direction.

7. Conclusion

In this paper we present a novel face-swapping pipeline that em-
ploys 3D information by simultaneously learning facial textures
with person-specific face shapes and frame-dependent, expression-
derived updates to these shapes. We showed that, compared to other
methods which operate only in 2D, we can generate higher-quality
swaps as measured by the popular FID score. Additionally, our 3D
approach gives more control to the artist in compositing the result,
where changes to the shape, texture and lighting are all possible.
Finally, we also demonstrated that our approach leads to improved
geometry estimates compared to traditional monocular face capture
methods like 3DDFA.
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