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Abstract
There exist previous works in computing the visual aesthetics of 3D shapes “globally”, where the term global means that shape
aesthetics data are collected for whole 3D shapes and then used to compute the aesthetics of whole 3D shapes. In this paper, we
introduce a novel method that takes such “global” shape aesthetics data, and learn both a “global” shape aesthetics measure
that computes aesthetics scores for whole 3D shapes, and a “local” shape aesthetics measure that computes to what extent a
local region on the 3D shape surface contributes to the whole shape’s aesthetics. These aesthetics measures are learned, and
hence do not consider existing handcrafted notions of what makes a 3D shape aesthetic. We take a dataset of global pairwise
shape aesthetics, where humans compares between pairs of shapes and say which shape from each pair is more aesthetic. Our
solution proposes a point-based neural network that takes a 3D shape represented by surface patches as input and jointly outputs
its global aesthetics score and a local aesthetics map. To build connections between global and local aesthetics, we embed the
global and local features into the same latent space and then output scores with the weights-shared aesthetics predictors.
Furthermore, we designed three loss functions to supervise the training jointly. We demonstrate the shape aesthetics results
globally and locally to show that our framework can make good global aesthetics predictions while the predicted aesthetics
maps are consistent with human perception. In addition, we present several applications enabled by our local aesthetics metric.

CCS Concepts
• Computing methodologies → Shape analysis; Perception;

1. Introduction

The computational measurement of aesthetics is a significant re-
search problem due to its wide potential applications in areas where
visual experience is involved, including product designs, artificial
intelligence, and human-computer interactions. There have been
previous works [DLT17, RSL∗17, ZZL∗21] that explore the au-
tomatic assessment of image aesthetics with deep learning and
datasets with thousands of annotated images. For 3D shapes, early
works [Pha99,PZ03,Séq05,BR13,MR14] focused on building rela-
tionships between aesthetic properties suggested by art and philos-
ophy with handcrafted geometric features (e.g., curvature, symme-
try, proportion) or mathematical criteria (e.g., bending energy, min-
imum variation surface). Recently, Dev and Lau [DL22] first pro-
posed a learning-based shape aesthetics metric based on a human
shape aesthetics dataset. Given a 3D shape represented by multi-
view images, they learned a neural network to compute the shape’s
aesthetic score. Although Dev and Lau [DL22] can rate the shapes’
aesthetics automatically, their work cannot automatically figure out
which elements on the shape surface contribute to the shape’s over-
all beauty. To the best of our knowledge, there is no existing work
that predicts shape aesthetics maps with a learning-based method
and not using manually defined aesthetics features.

The key contribution of this paper is in simultaneously predict-
ing the global aesthetics scores and local aesthetics maps for 3D
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Figure 1: Instead of indirectly formulating global and local shape
aesthetics attributes, we propose a learning-based framework to
directly output the global shape aesthetics score and local shape
aesthetics map simultaneously.

shapes. By the term “global”, we mean that the shape aesthetics
data are collected for whole 3D shapes and then used to compute
the aesthetics of whole 3D shapes. We introduce a novel method in
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this paper that takes such “global” shape aesthetics data, and simul-
taneously learn a “global” shape aesthetics measure that computes
aesthetics scores for whole 3D shapes, and a “local” shape aesthet-
ics measure that computes to what extent a local region on the 3D
shape surface contributes to the whole shape’s aesthetics. The “lo-
cal” shape aesthetics measure can then be used to compute shape
aesthetics maps on the surfaces of 3D shapes to indicate each local
region’s influence towards the whole shape’s aesthetics.

In this work, we do not consider any manually defined shape
aesthetics features. Instead, we learn the global shape aesthetics
score and the local shape aesthetics map directly from a dataset of
global pairwise shape aesthetics comparisons (see Figure 1). This
data comes from asking humans to compare between pairs of whole
3D shapes and to say which shape from each pair is more aesthetic.

We propose a learning-based method to solve the following two
problems simultaneously: (i) whether a 3D shape looks aesthetic
overall, and (ii) which surface region(s) or element(s) contribute
to a shape’s beauty. We introduce a point-based neural network
(see Figure 3) with several deliberately designed structures and loss
functions to encourage the learning of meaningful local shape aes-
thetics information from the global shape aesthetics data. Specifi-
cally, to capture the local attributes of the 3D shapes, we chose a
patch-based representation [HLK∗17] which focuses on localizing
the style-defined elements over the shape surface. But unlike this
previous work [HLK∗17] which clusters the patches and then iter-
atively selects the discriminating elements, our method feeds each
shape with its patches to the neural network, and then simultane-
ously outputs the global aesthetics score for the shape and the local
aesthetic scores for the surface patches. As the global aesthetics
comparisons provide weak supervision for the local predictions,
in our networks, we embed the global features and local features
into the same latent space and then output scores with the weights-
shared aesthetic predictors. In addition, to further build connections
between the global aesthetics and local aesthetics maps, we make
the assumption that “if shape A is more aesthetic than shape B, A
is likely to have more beautiful patches than B” as an additional
constraint. Details of our network architecture and loss functions
can be found in Section 3.

We evaluate the performance of our method globally and locally.
For the global aesthetics prediction, we quantitatively compare our
results with the results of Dev and Lau [DL22] and show that our
performance is comparable or even better. For the local aesthetics
maps, we conduct user studies to quantitatively and qualitatively
demonstrate that our predictions are consistent with users’ percep-
tions. Furthermore, to demonstrate the effectiveness of our method,
we develop several applications such as aesthetics-based patch gal-
leries, aesthetics-driven subparts extraction, and aesthetics-guided
shape editing that can benefit from the types of shape aesthetics
maps that we compute.

In summary, our work makes the following contributions:

• We propose a novel learning-based framework to simultaneously
predict global aesthetics scores and local aesthetics maps for 3D
shapes.

• Our framework is the first method to learn the local aesthetics
attributes from “global” shape aesthetics data consisting of shape

pairwise comparisons, without considering existing handcrafted
shape aesthetics features.

• We present several applications that are made possible by our
shape aesthetics maps: aesthetics-based patch gallery, aesthetics-
driven subparts extraction, and aesthetics-guided shape editing.

2. Related Work

Our work simultaneously predicts the perceptual attribute of shape
aesthetics “globally” and “locally” via point-based neural net-
works. In this section, we discuss previous works related to: met-
rics of aesthetics, and the global and local perceptual analysis of
3D shapes.

2.1. Metrics of Aesthetics

The concept of aesthetics has been analyzed in many studies of
philosophy, psychology and art. In computer graphics and vision,
while many works have proposed aesthetic metrics for 2D images
based on commonly established photographic rules and learning-
based methods [DLT17,ZZL∗21], there have been fewer works that
explore the aesthetics of 3D shapes.

Early work [Pha99] tried to propose a systematic approach for
exploring the interactions of aesthetics principals and term-based
design variables in 3D designs by integrating knowledge from
fields such as philosophy, psychology and arts. Then the follow-
ing work [PZ03] used parametric geons to derive the membership
functions for linguistic geometric descriptions and aesthetic char-
acteristics by a series of user studies. Furthermore, mathematical
geometric-based criteria [BR13] were defined by extending the
existing criteria for image aesthetic assessment, and mathemati-
cal models [MR14] were proposed to formulate aesthetic curves
and surfaces directly. Instead of using specific handcrafted features
to formulate the aesthetic metric, recent work [DL22] proposed a
cross-category shape aesthetics metric via multi-view image-based
neural networks. While their work only predicts a global aesthetics
score for an input shape, our patch-based network also captures the
local surface information and outputs a local shape aesthetics map
simultaneously.

2.2. Global Perceptual Analysis of 3D Shapes

From the “global” perspective of 3D shapes as a whole, existing
works explored metrics to rate a single shape’s perceptual attribute
or rate the pairwise attribute comparison between two shapes.

Some works aimed to learn intra-category perceptual attributes.
Xu et al. [XLZ∗10] explored the style between shapes in the same
functional class by anisotropic structural ratios. Rather than focus
on a single specific attribute, Yumer et al. [YCHK15] conducted
user studies to explore the most relevant attributes of shapes in the
same category and then formulate the score function for each at-
tribute fitted by the crowdsourcing rates. Other works aimed to
work with heterogeneous 3D shape collections and explore inter-
category instincts. Machine learning with handcrafted geometric
descriptors [LHLF15, LKS15] or deep learning with image-based
representations [LGK16, WYA∗20, DL22] were proposed to ex-
plore style compatibility or aesthetics measuring for 3D shapes
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crossing categories. Our work chooses the locally-defined geomet-
ric descriptors as the input of a point-based neural network and
trains an aesthetics predictor to capture both global and local infor-
mation.

2.3. Local Perceptual Analysis of 3D shapes

From the “local” perspective of local regions on 3D shape surfaces,
existing works tried to measure the contributions of local regions
towards the perceptual attributes.

Lee et al. [LVJ05] proposed handcrafted mesh saliency via lo-
cal geometric cues to measure the regional visual importance of
3D meshes, and Song et al. [SLMR14] took global information
also into consideration. Without the connectivity information of
the mesh surface, Shtrom et al. [SLT13] manually define hierar-
chical saliency for dense point clouds via multi-scale distinctness
and association between point-based features. Instead of directly
defining the saliency via handcrafted geometric descriptors, some
works also used data-based and learning methods. Regression mod-
els [CSPF12] or neural networks [SXX∗18] were proposed to pre-
dict a probability distribution for points of saliency or interest from
pointwise marked data in a large-scale user study. Besides visual
perception, Lau et al. [LDS∗16] learned a tactile saliency metric
via crowdsourcing pairwise comparison data.

As local-based perceptual datasets are sometimes difficult to ob-
tain, style co-analysis supervised by global style labels [HLK∗17]
or semi-supervisions like global triplet comparisons [YZX∗18]
were proposed to extract the cross-category style-defining local el-
ements. Moreover, Remil et al. [RXCW19] unsupervisedly learned
the content-revealing patches and style-revealing patches from a set
of shapes in the same category. Our work also learns the local per-
ceptual information from the global dataset. However, in contrast to
the above previous works, which identify the attribute-defining ele-
ments over the input shapes via machine learning, we design neural
networks to predict end-to-end pointwise aesthetics maps directly.

3. Methods

3.1. Shape Representation

3D shapes are composed of a series of surface patches. We rep-
resent each 3D shape with the patch centers and the patch-based
features.

After all the shapes have been aligned and normalized, we first
sample points on the shape surface uniformly using Poisson disk
sampling with a fixed grid size d = 0.004. Then we sample N =
1024 points from each dense point cloud by farthest point sam-
pling as the patch centers. We generate surface patches by grow-
ing from each center until the geodesic radius reaches a threshold
r = 0.07 of the shape’s bounding box diagonal. Here the radius
r is decided based on experience from early patch-based works
[HLK∗17, RXCW19], which should be local but large enough to
provide meaningful perceptual information. Motivated by the style-
learning works [LKS15, HLK∗17], we use a feature collection that
contains both low-level geometric information and high-level per-
ceptual information. As shown in Figure 2, to represent the surface
patch, we use geometric histograms such as point-feature histogram

(3× 11 bins) [RMBB08], spin image (64 bins) [JH99], and pair-
wise distance distribution (32 bins) to encode low-level geometric
information. Moreover, we compute each point’s principal curva-
tures and saliency [SLT13] for the dense point cloud, and then we
use histograms of points’ curvature distribution (4× 16 bins) and
saliency distribution (3×16 bins) within the patch to encode high-
level perceptual information. In this way, each 3D shape is repre-
sented by the patch centers and the concatenation of a series of
patch-based histograms.

SI PFH D2

Saliency Curvature

Figure 2: We use a series of patches to represent a 3D shape where
each patch is encoded with its patch center and several patch-based
histograms. Here the blue points over the surface are patch centers.

3.2. Network Architecture

Given a 3D shape, we design a network to output the global aes-
thetic score of the 3D shape and the local aesthetic scores of the
patches. The core idea of the network design is to enhance the con-
nection between the local information and global information. In
the feature embedding, we use several network structures to aggre-
gate each patch to its neighbors and the whole shape; and in the
aesthetic predicting, we use the weights-shared predictors to facili-
tate a local-global related aesthetics metric.

Figure 3 shows the architecture of our network, and it is in-
spired by the framework of Point Cloud Transformer [GCL∗21].
The network’s input is the sparse patch centers with the patches’
encoded features. First, we use two EdgeConv layers [WSL∗19] to
aggregate the local attributes with the neighbors further. By con-
catenating the output (a 64D feature) of each EdgeConv layer, we
obtain the new embedded patch feature. Then the feature is fed
into four Offset-Attention (OA) layers [GCL∗21] and each layer
yields a 128D feature. A fully-connected layer [QSMG17] further
fuses the concatenated OA features and obtains the local features
fl ∈RN×512. And the global feature fg ∈R512 is obtained after the
max-pooling operation. We expect our learned aesthetic features
are general and regular enough, so we follow the idea of variant
auto-encoder (VAE) [KW14] and map the global aesthetic feature
to a latent space. More concretely, we assume the latent variable
follows the Gaussian distribution, and we use two fully-connected
layers to predict the mean µ ∈ R512 and the standard deviation
σ ∈ R512 respectively. During training, we sample the latent code
z = µ+σ×n, where n ∈R512 ∼N (0,I) is the random noise. Then
the sampled feature will be fed into the aesthetics prediction net-
work (MLPs) to output a global aesthetic score sg. To predict the
local patches’ scores sl , we embed the local features into the same
latent space and then feed them to the same aesthetics prediction
network. The advantage of using weights-shared networks instead
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Figure 3: Overview of our network architecture for aesthetics predictions. Given the patch-based represented input, our framework embeds
the global and local features into the same latent space and outputs the scores with weights-sharing aesthetics predictors. Here LBR combines
Linear, BatchNorm and ReLU layers; LRD combines Linear, BatchNorm and Dropout layers.

of an additional aesthetic predictor will be demonstrated in Section
4.4.

3.3. Loss Function

We propose the following loss functions according to our training
dataset which is in the form of pairwise global comparisons: each
data sample consists of a sorted pair of 3D shapes, where the former
shape is labeled more aesthetic than the latter shape by a user.

3.3.1. Comparison Loss from Global Predictions

Similar to the method from Dev and Lau [DL22], we also consider
the margin loss to constrain the pairwise comparison. However, dif-
ferent from their constant margin m, we propose a dynamic margin
weighted by “user’s agreement”.

Supposing that there are n1 (A,B) pairs and n2 (B,A) pairs in the
dataset S, we define users’ agreement on the unsorted pair {A,B}:

a{A,B} =
|n1 −n2|
n1 +n2

(1)

As humans have various perceptions of aesthetics and some
shape pairs do not have a high difference in aesthetics, the users’
agreement of the pairwise comparisons varies among the pairs.
Considering that a high agreement indicates that {A,B} is likely
to have a high aesthetics difference, and a low agreement indicates
that {A,B} is likely to have a low aesthetics difference, we propose
the dynamic margin loss as follows:

Lg =
1
|S| ∑

(A,B)∈S
max(0,a{A,B} ·m− (sgA − sgB)) (2)

3.3.2. Comparison Loss from Local Predictions

We aim to have our network be able to make good “local” aesthetics
predictions, even though the dataset has “global” shape aesthetics
comparisons. To further build a bridge between the global and lo-
cal aesthetics, we make an assumption that if a shape A is more

aesthetic than B, then A is likely to have more attractive patches
than B. That is, the average local aesthetic score slA is likely to
be greater than slB. Therefore, we also define the comparison loss
from local predictions:

Ll =
1
|S| ∑

(A,B)∈S
max(0,a{A,B} ·m− (slA − slB) (3)

Please note that it is not easy to use other functions such as “vari-
ance” instead of “the average” to bridge the global and local aes-
thetics, as it is hard to assume that if a shape A is more aesthetic
than B, then A is likely to have higher (or lower) local aesthetic
variance than B. While “the average” looks naive, the evaluations
in Section 4.3 show it is enough to make a good performance.

3.3.3. KL-divergence Loss

As proposed in the vanilla VAE model [KW14], the latent feature
z = µ+σ×n ∈ R512 follows a standard Gaussian distribution with
the assumption of independence of each dimension. Therefore, we
add a Kullback-Leibler divergence loss as the constraint:

LKL−div =
1
2

512

∑
i=1

(µ2
i +σ

2
i −1− log(σ2

i )) (4)

3.3.4. Network Training

The total loss is a weighted sum of the loss functions described
above:

L= Lg +λ1 ·Ll +λ2 ·LKL−div (5)

We set λ1 = 0.01, λ2 = 4e− 4, m = 0.5. We use the Adam opti-
mizer to train the network for 30 epochs, setting the batch size to
48 and the learning rate to follow a cosine annealing decay schedule
from 2e−4 to 1e−6. All the hyperparameters were jointly decided
according to the training performance.
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4. Results and Analysis

4.1. Dataset

We used the dataset provided by Dev and Lau [DL22], which con-
tains 277 chairs, 40 tables, 75 mugs, and 88 lamps with 5100, 2875,
825, and 2500 pairwise aesthetics comparisons respectively. We
split the data for each shape category by 8:2 for training and testing
(denoted as It ), and we trained with all the categories together.

Moreover, we conducted an additional user study to augment the
“more reliable” subset. Specifically, we randomly chose 30 shapes
from each category and invited 30 participants to select the top 5
most beautiful shapes and the top 5 most ugly shapes from the 30
shapes per category. Each user selects top 5 shapes (denoted as X),
bottom 5 (i.e. most ugly) shapes (denoted as Y ), and then the re-
maining 20 shapes are denoted as Z. For each category, 225 aes-
thetics comparison pairs can be generated from (X ,Y ), (X ,Z), and
(Z,Y ). For each unsorted pair {A,B}, if it is proposed by at least 15
users, and the agreement is greater than 1

3 , its corresponding sorted
pair is recognized as a general and reliable comparison. In this way,
we have another 223 chair pairs, 202 table pairs, 199 mug pairs, and
220 lamp pairs for evaluation (denoted as Ir).

4.2. Global Aesthetics

We use the accuracy of pairwise comparison on It and Ir to eval-
uate the performance of our global aesthetics predictor. We denote
the complete network architecture with all the loss functions intro-
duced in Section 3 as the full version, and the network without VAE
embedding (so the corresponding loss LKL_div is also excluded)
and local aesthetics loss Ll as the naive version. Table 1 shows the
quantitative comparison of our method with the method from Dev
and Lau [DL22]. Our full version global aesthetics predictor out-
performs their work in three object categories on both the original
“messy” test set It and the “more reliable” aggregated set Ir. Be-
sides, excluding the VAE structure and the local-related loss does
not affect the performance much.

Table 1: Quantitative evaluation of the global aesthetics prediction
performance. Our method performs better than the method of Dev
and Lau [DL22] for most categories in both the original test set It
and the “more reliable” augmentation set Ir.

Method Chair Table Mug Lamp

It

Dev and Lau [DL22] 64.4% 71.7% 68.0% 72.8%
Ours (full) 65.5% 72.5% 75.2% 66.8%
Ours (naive) 65.1% 72.9% 74.5% 66.4%

Ir

Dev and Lau [DL22] 80.7% 93.9% 79.5% 79.5%
Ours (full) 90.6% 90.4% 86.3% 90.4%
Ours (naive) 89.6% 90.4% 85.1% 89.2%

4.3. Local Aesthetics Maps

To the best of our knowledge, since there are no existing labeled
datasets for assessing the local aesthetics maps, we invited 20 users
and conducted two user studies to evaluate the quality of our local
aesthetics maps.

4.3.1. Pairwise Local Comparisons

Similar to the data collection in the Tactile Saliency work
[LDS∗16], we asked users to compare pairs of vertices of a 3D
shape and rate which vertex (with its local patch) contributes more
to the shape’s aesthetics. More specifically, we sampled ten shapes
from each shape category, for a total of 40 shapes. For each shape,
we sampled ten pairs of surface patches. Each user rated one pair
from each shape (so each user rated 40 pairs from different shapes
in total), and each pair was rated by two users. Hence we collected
800 labeled pairs as ground truth, denoted by Sgt .

We compute the accuracy of our predicted local aesthetics scores
in two ways. First, we conduct an evaluation directly on the unfil-
tered 800 pairs. As shown in the second column of Table 2, in the
full version method, we achieved 71.8% accuracy. While aesthet-
ics ratings are personal and sometimes users have different opin-
ions about the same pair, there are potential conflicts in the original
ground truth. Therefore, we also filter out the pairs which received
different answers from their two users. We find there are 244 (i.e.
about 60%) non-repeated pairs left, and we denoted them as S′

gt .
As shown in the third column of Table 2, we achieved a higher
accuracy of 85.6% on S′

gt .

Table 2: Quantitative evaluation of the local aesthetics predic-
tion performance in different settings. The full version achieves the
highest accuracy in the unfiltered pairwise comparison Sgt and the
filtered subset S′

gt . When we remove some loss function or network
structure, the accuracy decreases.

Ablation Sgt S′
gt

Full 71.8% 85.6%
w/o Ll 70.2% 83.2%
w/o WS 66.0% 76.2%
w/o VAE 68.2% 80.0%

4.3.2. Global Rating

Since the pairwise comparisons do not cover the shape patches and
their relative aesthetics densely, we also invited each user to rate
our aesthetics maps directly. Users were shown the aesthetics maps
and told that: “red” represents the local surface region contribut-
ing to the beauty of the shape, “blue” represents the local surface
region contributing to the ugliness of the shape, and the color in-
tensity represents the degree of contribution. Then we asked each
user to rate whether they agree with the aesthetics maps on a 7-
point scale, from -3 (strongly disagree) to 0 (neutral) to 3 (strongly
agree). After each user rated all 40 shapes, we selected two to three
shapes that received the lowest scores from that user and conducted
a semi-interview to learn more about why the user disagreed with
the aesthetics maps.

We visualize the aesthetics maps and the results of the users’
ratings in Figures 4 and 5. Qualitatively, as the aesthetic maps in
Figure 4 show, local regions with high curvatures can be beauti-
ful (e.g., complex patterns), neutral (e.g., cylinder holders) or ugly
(e.g., sharp corners). Our learned aesthetic maps distinguish aes-
thetics better than the naive curvatures, and the feature collection
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Ave:    1.20                         1.10                           0.50                          1.35                     2.20   1.65                      1.90                     2.20                       1.60                       1.90 
Std:     1.81                         1.41                           1.56                          1.59                     0.81   1.27                      1.13                     1.12                       1.20                       1.44

Ave:    1.85                           1.15                         1.60                          0.95.                    1.10    2.05                      1.05                     2.00                       1.00                         1.25
Std:     1.74                           1.59                         1.53                          1.66                     1.89    1.02                      1.66                     1.38                       1.55                         1.92

Ave:    1.55                            1.60                         1.65                          1.45                     1.55    1.45                     1.30                     0.80                       1.50                         1.85
Std:     1.16                            1.39                         1.31                          1.56                     1.56    1.50                     1.45                     1.54                       1.94                         1.56

Ave:    1.70                            1.40                        1.30                         1.45                      1.90    1.60                     1.20                       1.75                       1.35                        2.00
Std:     1.45                            1.62                        1.73                         1.53                      0.94    1.32                     1.75                       1.13                       1.49                        1.14

Ugly Beautiful

1

40

Figure 4: Results of local shape aesthetics maps generated by our method. The shapes are labeled from ID 1 to ID 40, in order from top to
bottom, and then left to right. For each shape, we compute the average and standard deviation of the users’ ratings (from -3 to 3).

we mentioned in Section 3.1 jointly helps to make proper predic-
tions. For quantitative evaluation, we compute the average users’
ratings and the standard deviation for each shape, based on all the
20 users. As Figure 5 shows, for most shapes, the majority of the
users agree with our aesthetics maps. The overall average rating is
1.499, and the standard deviation is 1.531. Also, we can see that,
for most shapes, there are always some users proposing negative
ratings. This is natural because the perception of aesthetics can vary
among different users.

In addition to the quantitative evaluation from the user ratings,
we perform a qualitative evaluation from our semi-interviews. We
discuss below the reasons for the users’ negative ratings. First, each
user has his/her personal preferences. One user (U16) mentioned:
“For shape 11, I don’t like the curved and complex legs, so I think
the legs should be blue ... Also, I don’t like the elements like sphere
decorations. Instead, I prefer simple designs like that cup (shape
29), and it looks beautiful”. Second, some users would like to con-
sider global aesthetics criteria when assessing the local aesthetics
maps. For example, “For shape 6, the chair looks rounded and soft
overall, so the edge of the back should be blue because it is not
soft enough” (U3) and “For shape 1, I think the center part of the
back should be red as it is the component of the decoration like the
edges” (U9). Third, although we asked the users to rate the maps
from the perspective of aesthetics, some users subliminally consid-
ered other factors such as functionality. For example, user 5 said

“For shape 37, although the circle decorations around the pillar
look okay, I think they will affect my usage of the lamp, so I prefer
that area to be blue.”

Chairs Tables

Mugs Lamps

Figure 5: The users’ rating distribution for each aesthetics map.
The ID corresponds to the shapes in Figure 4. The further the bars
extend to the right (relative to zero), the more users agree with our
aesthetics maps.
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BeautifulUgly

Figure 6: Comparison of the aesthetics maps in different cases.
(a) Our full version method; (b) Without local comparison loss; (c)
Without VAE; (d) Using independent aesthetics predictor. Overall,
the full version achieves the best qualitative performance.

4.4. Ablation Study

Our key idea is to simultaneously learn the global aesthetics metric
and the local aesthetics maps via a point-based neural network. In
this section, we analyze the effects of our network architecture and
loss functions with a series of ablation studies. As we mentioned
that the naive version of our method does not affect the global per-
formance much, the following discussion will focus on the local
evaluations.

4.4.1. Role of Local Comparison Loss

According to our network architecture design, the global aesthetics
feature fg comes from a dimensional-wise max-pooling operation
of the local patches’ features fl . Then they are further embedded
and used to predict scores with the same network. Ideally, if our
network indeed learns the intrinsic criteria of 3D shape aesthetics
with the global comparison loss Lg, the aesthetics feature space
will be good enough for the local predictions. We conducted ex-
periments without the local comparison loss function Ll (denoted
as w/o Ll), and Table 2 shows the corresponding evaluation ac-
curacy on the local pairwise dataset. From the table, we see that
our networks still achieve acceptable accuracy. However, with the
local comparison loss as a further constraint, the performance im-
proves. Besides, from the visualization of some aesthetics maps in
Figures 6 and 7, we find that some aesthetics-contributing regions
are missed.

(b)

(a)

(c)

(d)

BeautifulUgly

Figure 7: Comparison of the aesthetics maps in different cases.
(a) Our full version method; (b) Without local comparison loss; (c)
Without VAE; (d) Using independent aesthetics predictor. Overall,
the full version achieves the best qualitative performance.

4.4.2. Weights Sharing

As shown in Figure 3, our global aesthetics predictor shares
weights with the local aesthetics predictor. We propose this strat-
egy because of the weak local constraints from the global-based
dataset. Our training data are the pairwise global comparisons. To
build a connection between local aesthetics and global aesthetics,
we assume that if shape A is more aesthetic than B, A will have
more attractive patches than B, and propose the corresponding loss
Ll . However, this loss is still a weak constraint for each patch, and
the assumption itself also fails in some cases. If we use indepen-
dent networks (denoted as w/o WS) to predict the local aesthetics,
overfitting will occur. Quantitatively, as Table 2 shows, the accu-
racies decrease drastically. Qualitatively, Figure 6 (d) and Figure
7 (d) show that the aesthetics maps will have greater differences
between different regions and the smoothness decreases.

4.4.3. Role of the VAE Architecture

Due to the lack of strong local constraints from the global-based
data, we proposed to let the local and global predicting networks
share weights. This requires the embedded feature space to be gen-
eral and regular. Therefore, we follow the idea of VAE to map the
global and local aesthetics features into the same latent space and
assume the embedded latent code follows a Gaussian distribution.
We conducted experiments with VAE excluded (denoted as w/o
VAE) to evaluate its role. As shown in Table 2, the accuracy is
lower than the full version. Moreover, through the visualizations in
Figures 6 (c) and Figure 7 (c), we find that the aesthetics maps will
become less stable.

5. Applications

In this section, we describe several applications enabled by our
local shape aesthetics measure and the resulting shape aesthetics
maps.
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(a)

(b)

Figure 8: We extract the aesthetic contributing elements (a) and
aesthetic suppressing elements (b) with our aesthetics maps. The
aesthetic contributing elements are more varied and can come from
different parts of a shape, while the aesthetic suppressing elements
are more similar.

5.1. Aesthetics-based Patch Galleries

Inspired by related works in shape style [HLK∗17, YZX∗18] that
extract the style-revealing patches over the surface, we show the
application of aesthetics-revealing patch galleries. For each shape,
we extract the patches whose scores are higher than 0.4 or lower
than -0.4 and then do clustering [ZMP04] with the patch-based rep-
resentation introduced in Section 3.1 to obtain no more than ten
representative patches, respectively. While aesthetics can be cre-
ative and those mentioned patches can make up a large gallery,
we do clustering further for all the categories to find the more
general aesthetic-related elements. As shown in Figure 8, we ob-
tain the aesthetic contributing elements such as curves and waves,
and the aesthetic suppressing elements such as hard corners. our
aesthetics-revealing patch gallery can act as the inspiration and ref-
erence for novice designers. Novice designers can learn the typi-
cal aesthetics-contributing elements in the existing 3D shapes, and
then they can incorporate those elements as they create and edit
new shapes. Moreover, designers can learn from the aesthetics sup-
pressing elements and use them less in their own designs.

5.2. Aesthetics-driven Subparts Extraction

Combining our aesthetics maps with 3D shape segmentation or
cuboid abstraction algorithms, we can extract the aesthetic subparts
and build a series of aesthetic-driven sub-datasets. More specifi-
cally, we use the existing segmenting method [YC21] to segment
each shape into subparts respectively. Then we propose a part-
based aesthetic score with our learned aesthetic map for each sub-
part to extract the top-scoring subset.

We define the part-based aesthetics from the local aesthetics
maps with the following considerations. First, If the subpart looks
aesthetic overall, it will generally not have many low score patches,

(a)

(b)

Figure 9: Two examples of our aesthetics-guided shape editing. In
case (a), the system detects that the lamp shader is less aesthetic; in
case (b), the lamp holder is detected to be less aesthetic. For both
cases, similar but more aesthetic corresponding parts are searched
from the dataset. Finally, a series of more aesthetic shapes are ob-
tained via substitution.

which means the average aesthetics over the subpart are generally
not low. Second, it is usually a small number of aesthetic patches
that make a big global difference. Therefore, to emphasize more
about the contributions of the aesthetic patches, we also add the av-
erage scores of the top 10% patches into the computation. Finally,
we define the part-based aesthetics as the sum of the average of all
scores and the average of the top 10% scores in the subpart. Figure
10 shows the aesthetic chair backs, chair seats, and lamp holders
extracted automatically from our dataset with the part-based aes-
thetics.

5.3. Aesthetics-guided Shape Editing

Our aesthetics maps are helpful in automatically recognizing the
regions that cause a 3D shape to be ugly. This is an important ability
if we aim to make a shape more beautiful by making as few changes
as possible.

We propose a system based on the local aesthetics maps and
global aesthetics metric to facilitate editing shapes to make them
more aesthetic (illustrated in Figure 9). Given an input shape, the
system detects the relatively less aesthetic part in the whole shape.
Then the system suggests more aesthetic parts searched from the
dataset according to a weighted consideration of similarity differ-
ences [CTSO03] and aesthetic increases. Here the weight is a user-
controllable parameter to balance the editing changeability and aes-
thetics improvement. However, sometimes part substitutions will
cause a shape to be globally incompatible. We use our global aes-
thetics measure to check for these cases and filter them automat-
ically. With our proposed system, users can easily obtain a series
of more aesthetic shapes by choosing from the substitution sugges-
tions.
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(a)

(b)

(c)

Figure 10: Examples of aesthetic subparts: (a) chair seats, (b) chair backs and (c) lamp holders extracted from the dataset with our aesthetics
maps.

6. Limitations and Future Work

We designed a framework to predict the global shape aesthetics
score and local shape aesthetics maps via a point-based network ar-
chitecture, based on user data from global pairwise shape compar-
isons. While our work was able to achieve a good global aesthetics
measure and compute local aesthetics maps on 3D shape surfaces,
there are some limitations.

First, we design the network from the perspective of small
patches, so our aesthetics map may not reflect the overall shape
style or structural disharmony. Sometimes, a shape looks ugly be-
cause it violates the visual balance, and the components that are
inconsistent with other parts in the overall shape proportion or
style negatively contribute to the shape’s aesthetic. Figure 11 shows
some failure cases where our aesthetics maps fail to highlight the
incompatible part. For future research, we can learn the aesthetics
metrics hierarchically. For example, we can consider disentangling
the aesthetics into two independent branches: the coarse structural
level and the fine patch-based level; and then combine them to out-
put an aesthetics map that can capture both the local patterns and
global balance.

Furthermore, our method learns the generic global and local aes-
thetics, and it is not personalized. As discussed in Section 4.3.2,
we find that the users’ aesthetics preferences sometimes vary by a
lot: some users prefer the soft, curved or elaborate designs, while
other users prefer the rigid, linear or simple designs. A good in-

Figure 11: Our aesthetics maps work well in showing the local
patch-based aesthetics contributions, but it fails to detect the style
incompatibility, proportional imbalance or other structural-based
ugliness.

telligent perceptual tool should be personalized, and personalized
image aesthetics assessment [RSL∗17, ZZL∗21] has received in-
creasing attention in the 2D field in recent years. For 3D shapes,
we can learn from the algorithms proposed for the images, such
as learning a prior generic model first and then fine-tuning with a
small number of individually annotated dataset. Compared to the
images, the more complex representations and less available an-
notated datasets make personalized shape aesthetics assessment an
interesting but challenging topic.

Additionally, we learn the aesthetics metrics from the 3D geom-
etry represented by surface patches, and we use the patch center
with patch-based histograms to encode each patch. While informa-
tion loss inevitably occurs during the handcrafted encoding, we can
perform learning from the dense point cloud directly [BLZ∗20].
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Finally, our work only considers the geometry of the 3D shapes.
However, in real applications, the aesthetics of a 3D shape is also
closely affected by other factors such as texture and material. For
example, a flat plane can look rugged with some specific normal
map. For future work, more data collection and studies are needed
to build a more complete aesthetics metric for 3D objects.
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