
Pacific Graphics 2022
N. Umetani, E. Vouga, and C. Wojtan
(Guest Editors)

Volume 41 (2022), Number 7

Spatio-temporal Keyframe Control of Traffic Simulation
using Coarse-to-Fine Optimization

Yi Han1 He Wang2 Xiaogang Jin1†

1State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, China
2University of Leeds, United Kingdom

Figure 1: An example of the controlled simulation with a keyframe. (a) The original trajectories. (b) The keyframe controlled trajectories.
The vehicle drives along the rightmost lane originally. A keyframe is assigned in the center lane, which denotes that we want the vehicle to
arrive at the position marked by the yellow vehicle at the time framed by the red box. As a result, a new reference path is planned through
the position at first, and then the vehicle follows it to meet the spatial-temporal constraints smoothly.

Abstract
We present a novel traffic trajectory editing method which uses spatio-temporal keyframes to control vehicles during the sim-
ulation to generate desired traffic trajectories. By taking self-motivation, path following and collision avoidance into account,
the proposed force-based traffic simulation framework updates vehicle’s motions in both the Frenet coordinates and the Carte-
sian coordinates. With the way-points from users, lane-level navigation can be generated by reference path planning. With a
given keyframe, the coarse-to-fine optimization is proposed to efficiently generate the plausible trajectory which can satisfy the
spatio-temporal constraints. At first, a directed state-time graph constructed along the reference path is used to search for a
coarse-grained trajectory by mapping the keyframe as the goal. Then, using the information extracted from the coarse trajec-
tory as initialization, adjoint-based optimization is applied to generate a finer trajectory with smooth motions based on our
force-based simulation. We validate our method with extensive experiments.

CCS Concepts
• Computing methodologies → Procedural animation; Interactive simulation;

† Corresponding author: jin@cad.zju.edu.cn

1. Introduction

Traffic simulation has received increasing attention due to the de-
velopment of computer games, film industry, urban planning, au-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14699

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-9548-7979
https://orcid.org/0000-0002-2281-5679
https://orcid.org/0000-0001-7339-2920
https://doi.org/10.1111/cgf.14699

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

tonomous vehicle driving [LPZ∗19], etc. A reliable traffic simula-
tor that can generate high-fidelity virtual traffic data is thus valu-
able [CBL∗20].

While realistic traffic flows can be simulated via a variety of
simulators [KEBB12, APA∗16, Fel94, DRC∗17], editing or impos-
ing specific space-time constraints on vehicles is difficult. Mean-
while, the capability of interactively editing vehicle trajectories is
needed when traffic scenes need to be simulated with specific ve-
hicles controlled/showing a pre-defined driving behavior. As a re-
sult, currently traffic simulation editing has to be based on labor-
intensive manual tuning of simulation parameters and exhaustive
trial-and-error runs of simulators. Some attempts have been made
to address such a limitation, e.g. by allowing users to manually
generate desired trajectories or rare traffic events observed less
frequently in previous methods or datasets [HRW∗22]. However,
they do not address the spatio-temporal nature of the editing con-
straints, e.g. specifying a certain vehicle to arrive a certain posi-
tion at a pre-defined moment. Recently, traffic reconstruction meth-
ods [VDBO07, SVDBLM10] provide a potential solution via opti-
mization with respect to the space-time constraints. But they deteri-
orate the trajectory quality, e.g. discontinuous and implausible tra-
jectories, and incur large computational costs which renders them
unscalable.

To ensure the pluasibility of edited trajectories, TraED-
ITS [HRW∗22] integrates a data-driven traffic simulation mod-
ule inspired by [RXX∗19]. Data-driven methods can utilize pre-
recorded traffic data to generate realistic behaviors. However, there
is a fundamental challenge to combine data-driven methods with
optimization-based methods which are widely used in traffic sim-
ulation. The core reason is the simulation process of optimization-
based methods is intrinsically non-differentiable, making gradient-
based learning infeasible. It is worth noting that the social force
model, which is widely used in crowd animation, has also shown
fantastic potential in traffic simulation recently. A unified force-
based framework [CJH∗19] and a simplified force-based frame-
work [HCJ21] are successively proposed to simulate mixed traffic
scenarios with different types of agents. Because agent’s dynam-
ics are explicitly expressed with derivable formulas, optimization
based on force models is more practical. However, current force-
based traffic simulation methods can only provide scenarios with
simple straight lanes, and vehicle’s motions are restricted strongly
to the lane shapes.

To generate traffic trajectories based on the force-based models
with given spatio-temporal constraints, keyframing is a practical
and effective technique for controlling coarse results in physically-
based simulation. The adjoint method, as one of the popular meth-
ods in optimal control for gradient computation, has been intro-
duced in fluid simulation [MTPS04] and general particle dynam-
ics [WMT06], to satisfy given keyframe constraints. However, the
results of the adjoint optimization are highly dependent on the ini-
tialization. Bad initialization can slow down or even prevent gradi-
ent descent from achieving convergence.

None of the prior methods can fulfill all of our requirements per-
fectly due to the following challenges. Firstly, the current force-
based traffic simulation frameworks constrain vehicles to drive
along straight lanes and can hardly meet the demands of arbi-

trary settings or edits given by users. Secondly, there is no proper
method for optimizing traffic trajectories with spatio-temporal
keyframe control. State-time space search becomes extremely time-
consuming if we need smooth traffic behaviours, while gradient-
based optimization like the adjoint method may decelerate conver-
gence or generate implausible trajectories due to poor initialization.
The optimization process needs to be adapted to efficiently gener-
ate plausible traffic behaviours.

To address the above challenges, we provide a novel traffic tra-
jectory editing method that allows users to control vehicle’s mo-
tions with spatio-temporal keyframes. Vehicles are updated by
force-based models using path coordinates to make them more ma-
neuverable rather than being strongly restricted to straight lanes.
A coarse-to-fine optimization process is presented to find optimal
keyframe controls of the simulation appropriately. The main con-
tributions of this work are as follows:

• A traffic trajectory editing approach, which allows users to spec-
ify keyframes to regulate vehicles and generate desired trajecto-
ries that can meet the spatio-temporal constraints while the traffic
behaviours can remain plausible.

• A novel force-based framework that decouples vehicle’s motions
from static lanes and can generate microscopic traffic simulation
in complex scenarios including diverse interactions.

• A coarse-to-fine optimization process is developed by combin-
ing the adjoint method with state-time space search to perform
gradient descent effectively and stably to generate smooth tra-
jectories with keyframe controls.

2. Related Work

2.1. Interactive Editing Technology

Traffic simulation software packages like SUMO [KEBB12], Sim-
Mobility [APA∗16], Vissim [Fel94] and Carla [DRC∗17] can gen-
erate traffic flows effectively. However, if users want to edit the
results or generate some cases with specific behaviours, they have
to tune parameters and run the simulation over and over based on
the previous result until it meets the expectation.

The interactive editing concept was proposed to solve the simi-
lar problem in crowd animation at the very beginning. Cage-based
deformation was introduced to edit large-scale crowd animation in-
teractively [KSKL14]. Similar results can be achieved based on
mesh deformation [ZZZY20]. Users can also control the simula-
tion in real-time by drawing sketches as reference paths or obsta-
cles [MM17]. In traffic simulation, a human-in-the-loop framework
is proposed, which allows users to generate irregular and diverse
traffic trajectories [HRW∗22] by generating self-defined reference
paths or modifying vehicle’s attributes. However, this method only
allows users to edit in space dimension, and the temporal con-
straints like specific arriving time are not supported explicitly. Our
method allows users to assign spatio-temporal keyframes to regu-
late vehicle’s motions and generate desired trajectories.

2.2. Traffic Simulation

In computer graphics, data-driven methods are used to gen-
erate realistic traffic flows based on pre-captured traffic data

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

542

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

OutputsOutputsOutputsInputsInputs

Static SceneStatic SceneStatic Scene

Way pointsWay pointsWay points

KeyframesKeyframesKeyframes

Inputs

Static Scene

Way points

Keyframes

SimulationSimulation

Scene GridScene GridScene Grid Social Force ModelsSocial Force ModelsSocial Force ModelsReference PathReference PathReference Path

Simulation

Scene Grid Social Force ModelsReference Path

OptimizationOptimization

State-Time SpaceState-Time Space

-

-

-

-
-

-

-

-

State-Time Space

-

-

-

-
-

-

-

-

Adjoint MethodAdjoint Method

1.51.5

1.5
1.5

Adjoint Method

1.51.5

1.5
1.5

Optimization

State-Time Space

-

-

-

-
-

-

-

-

Adjoint Method

1.51.5

1.5
1.5

Figure 2: Overview of our spatio-temporal keyframe control of traffic simulation using a coarse-to-fine optimization process. By discretizing
static scenarios, we can generate reference paths for vehicles using the given way-points. We simulate the vehicles using our proposed social
force models. With given spatio-temporal keyframes, a coarse-grained state-time search and fine-grained adjoint-based optimization are
combined to efficiently generate smooth trajectories that can satisfy the keyframe constraints.

from video, LiDAR, GPS, and other available sensors. Spatio-
temporal data from in-road sensors is provided to reconstruct traf-
fic flows [WSL13, LWL17]. Based on texture synthesis and cage-
based deformation, appropriate traffic flows can be populated in
any road network with given samples [CDR∗17]. A data-driven
optimization-based method is proposed to simulate heterogeneous
multi-agent systems [RXX∗19]. However, it is difficult to combine
data-driven methods with numerical optimization if we want to add
extra spatio-temporal constraints through the generated trajectories
since it is difficult to compute the derivative of data-driven simula-
tion processes.

On the other hand, the social force model, which is widely
used in crowd animation [HM95, HFV00, AGR∗16, CSC16], has
recently shown great potential in traffic simulation due to its high
computational effectiveness and flexibility. In order to consider all
possible agents in a realistic urban environment, a unified force-
based framework is proposed which can describe various inter-
actions among different types of agents [CJH∗19]. Based on an
object-oriented concept, a simplified model is proposed to param-
eterize adjustable coefficients for different agents, make parame-
ter tuning more intuitive and improve the scalability of the frame-
work [HCJ21]. With real-world traffic datasets, the coefficients in
the force model can also be calibrated automatically with adaptive
genetic algorithm [CLH∗21]. However, these methods only provide
simulation scenarios with straight lanes, and vehicles’ behaviours
are strongly restricted and difficult to extend to complex scenar-
ios. We develop a more viable force-based framework to simulate
vehicles in different environments and generate diverse behaviours.

2.3. Keyframe Control Animation

Keyframe is a classical technique for giving fine-grained controls
manually to coarse results in physically-based simulation such as
fluid, smoke and cloth. As one of the popular methods of opti-
mal control problems involving gradient computation, the adjoint
method is introduced to control fluid simulation [MTPS04], gen-
eral particle systems [WMT06] as well as elastic motion editing
[LHDJ13]. However, the gradient-based methods greatly rely on

the initialization, and are improper to be applied to optimize traffic
simulation directly. Specifically, traffic reconstruction methods can
respect keyframe constraints via searching for paths by mapping
the keyframes as the goals in state-time space [VDBO07, SVD-
BLM10], but their performance and generated results strongly de-
pend on the space discretization timestep. Therefore, we combine
the adjoint method with state-time space search and propose a
coarse-to-fine optimization process that can generate plausible traf-
fic simulation results effectively with given keyframes.

3. Method

The overview of our proposed method is demonstrated in Fig. 2.
We first introduce the Frenet coordinates and our static scenarios
representation (Section 3.1).Then we show the force-based traf-
fic simulation including social forces calculation (Section 3.2.1)
and reference path planning (Section 3.2.2). In order to provide
keyframe controls with spatio-temporal constraints, we come up
with a coarse-to-fine optimization process (Section 3.3). The state-
time graph is constructed (Section 3.4.1) to search for coarse-
grained trajectories as initialization (Section 3.4.2, 3.5.1), and the
adjoint method is further applied to obtain smooth trajectories and
plausible behaviours (Section 3.5.2).

3.1. Frenet Coordinates and Scenario Representation

We perform our framework in both the Cartesian coordinates and
the Frenet coordinates. Frenet frame is a more intuitive way to de-
scribe the vehicle state in the lane. A Frenet coordinate [s,d] con-
sists of the longitudinal displacement along the lane and the lateral
deviation relative to the lane center. We use p = [x,y], p̂ = [s,d],
v = [vx,vy] and v̂ = [vs,vd] to represent positions and velocities in
the Cartesian coordinates and the Frenet coordinates, respectively.
Similarly, we use notations f = [f x, f y] and f̂ = [f s, f d] to represent
forces or other attributes in these two coordinate systems.

Specifically in our work, Lane is the static areas where vehicles
can drive, usually defined segment-by-segment with specific lane
width in the configuration files. Path is a sequence of points linking

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

543

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

a starting point to a destination, and we interpolate them by cubic
spline. Namely, the center line of each Lane with a specific driving
direction is a Path. We use L and P to represent a Lane and a Path,
respectively.

Given a certain scene configuration, the lanes in the scene are
always determined. So we initialize the reference path set as:

P∗ = P∗
topo ∪P∗

user,

P∗
topo = DFS

(
L∗) ,

P∗
user =∅,

(1)

where P∗ is the reference path set containing all the available ref-
erence paths in the scene, and L∗ is the lane set containing all the
lanes defined in the configuration file. P∗

topo and P∗
user represent the

reference paths determined by lanes’ topology and user settings, re-
spectively. Each path in P∗

topo is a unique link from the origin of a
lane without in-comings to the end of a lane without out-goings.
DFS represents the depth-first search function.

In accordance with [HRW∗22], we generate a grid map for the
scene in 2D space with a given resolution. The lanes are embedded
into the grid nodes by capsule-like shape approximation for every
segment, and we label the grid cells of undrivable areas, drivable
areas and lane centers with different values. The 2D grid map will
be used to plan the reference paths with way-points from users and
store vehicles’ information to accelerate real-time neighbor search
during the simulation.

3.2. Force-based Traffic Simulation

3.2.1. Force Calculation

We model three factors which heavily influence a vehicle’s state:
self-motivation, surrounding neighbors and the environment. The
state of a vehicle at time t is denoted as [v̂t , p̂t ,vt ,pt ,θt , v̂o,t ,Pk].
v̂t ,vt ∈ R2 represents its velocity in Frenet coordinates and Carte-
sian coordinates, respectively. p̂t , pt ∈ R2 represent its position in
Frenet coordinates and Cartesian coordinates, respectively. θt ∈ R
represents its orientation by Euler angles. v̂o,t ∈ R2 represents the
free-flow desired velocity. Pk ∈ P∗ represents the reference path
k it follows. The vehicle’s attributes in the Frenet coordinates and
the Cartesian coordinates can be interconverted by the cubic spline
function Sk of its reference path. The dynamics of a vehicle are
formulated as:

f̂ t = f̂ o,t + f̂ k,t +Sk

(
∑

j∈Nt

f j,t

)
,

v̂t+1 = v̂t +
f̂ t
m

·∆t,

p̂t+1 = p̂t + v̂t+1 ·∆t,

[vt+1,pt+1,θt+1] = Sk
(
p̂t+1

)
,

(2)

where f̂ t represents the total force on the vehicle in Frenet coordi-
nates, which is a combination of the self-motivated force f̂ o,t , the
path keeping force f̂ k,t from its reference path Pk and the colli-
sion avoidance forces f j,t exerted by the neighbor vehicle j in its
neighbors set Nt . Specifically, the collision avoidance forces are
computed in Cartesian coordinates at first. m represents the vehi-
cle’s mass. The velocity and the position in Frenet coordinates are

updated by the forces. The velocity and the position in Cartesian
coordinates as well as the orientation are obtained using the cubic
spline function Sk. ∆t is the timestep used in the simulation.

Self-motivated force: We assume that each vehicle has a desired
velocity to travel at when it is not constrained by the presence of
neighbor vehicles. Different from the previous methods [CJH∗19,
HCJ21, CLH∗21], we formulate the self-motivated force as:

f̂ o,t = ωom
(

2
1+ ev̂o,t−v̂t

−1
)

â, (3)

where ωo is a corresponding weight, and â is the maximum acceler-
ation of the individual in Frenet coordinates. Such formulation can
make vehicles gradually change and keep their velocity to the de-
sired v̂o,t , while the derivative of the expression exists at each point
in its domain.

Path keeping force: Typically drivers tend to drive along the
lane center due to safety and traffic rules in real world traffic. As
mentioned, we consider the center line of a lane with a driving di-
rection as a path, so the lane keeping behaviors can also be regarded
as path keeping. We define the path keeping force as an attractive
force from the path:

f̂ k =

{
ωk |dt |uk, |dt | ≥ 1

2 (wl −wv)
0, otherwise

, (4)

where ωk is a corresponding weight, dt ∈ p̂t is the current lateral
displacement of the vehicle related to the path, and uk is the unit
vector pointing from the vehicle to the path. wl is the lane width,
and wv is the vehicle’s width. As shown, path keeping force is active
only if a vehicle’s deviation from its reference path exceeds the
threshold in order to prevent the vehicle oscillating around the path.

Collision avoidance force: A vehicle should avoid colliding
with others who are too close to it. We formulate such behaviour as
a point-to-point repulsive force that effects between the vehicle and
its surrounding neighbors. The collision avoidance force between a
vehicle and its neighbor j is defined as:

f j = ωc
a ·b(

1+ c||p j,t −pt ||
)2 uc,

a =

{
cosφ, φ ≤ π

4
0, otherwise

,

b = s0 + ||vt ||T0 +
||vt || · ||v j,t − vt ||

2||â|| ,

c =
1
s0
,

(5)

where ωc is a corresponding weight, a is a visual factor, b and c
are parameterized coefficients, and uc is the unit vector pointing
from j to the vehicle. We formulate the coefficients inspired by the
intelligent driver model (IDM) [THH00]. φ is the angle between the
vehicle’s moving direction and the direction of the vehicle pointing
to j. v j,t and p j,t is the velocity and the position of j in Cartesian
coordinates. s0 and T0 are the safety space headway between two
vehicles and the reacting time for the vehicle to brake, which are
both constant for a certain individual. The neighbor set Nt can be

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

544

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

Figure 3: An example of the forces on a vehicle. The vehicle follows
the reference path Pk and has two neighbors, where j0 is in the
same lane and j1 is in the adjacent lane.

updated at each frame effectively by the 2D grid map, where the
search range is 100 × 100 grid nodes in our implementation.

Based on the force models, our traffic simulation can generate
smooth traffic behaviours such as acceleration/deceleration, lane
keeping and lane changing. Since we update the vehicles along
their reference paths, our framework can simulate the traffic in
complex scenarios. We give an example of the forces on a driving
vehicle in Fig. 3.

3.2.2. Reference Path Planning

In addition to the paths extracted from lane centers, new reference
paths can be created by clicking a sequence of key points in the
scene. The given key points are mapped to the specific nodes on
the constructed 2D grid map, and then the whole path is planned
segment-by-segment, where the first node of each segment is con-
sidered as the start and the second one is the terminal. We use the
A* algorithm to plan the path and define the heuristic function as:

h(n) = ||n−ngoal ||+µa · e(µb·sign), (6)

where ||n−ngoal || is the Euler distance between the current node
and the terminal, and µa and µb are adjustable coefficients. sign ∈
[0,1,2] is the sign filled in different types of nodes we metioned in
Section 3.1, where 0 represents unreachable area, 1 represents driv-
able area and 2 represents lane center. The second term on the right-
hand side of the equation can make the planning tend to search
along with lane centers.

We post-process the planning results by down-sampling, Gaus-
sian smoothing and interpolating with cubic spline. Finally the
user-defined path P becomes available for vehicles to follow, de-
noted as P∗

user = P∗
user ∪ [P]. Specifically, once a vehicle’s refer-

ence path is changed, its state values represented in Frenet coordi-
nates need to be updated according to the new cubic spline function.

3.3. Spatio-temporal Keyframe Control

In order to provide further keyframe controls with both spatial
and temporal constraints, the adjoint method is applied since it
is proven to be effective in optimal control. We can find a set of
optimal controlling desired speeds and corresponding controlling
forces, and make vehicle’s behaviours satisfy the keyframe con-
straints based on our force-based simulation.

However, gradient-based optimization greatly depends on the
initial values of the parameters to be optimized. Bad initialization
may decelerate or even prevent gradient descent from achieving

Algorithm 1 Coarse-to-fine optimization

Input:
State-time graph for a vehicle along its reference path;
K setting keyframes Q = [q̃0, q̃1, ..., q̃K];
The maximum iteration number N for the adjoint method;
Learning rate α, exponential decay rates β0, β1;

Output:
Trajectory T under keyframes control;

1: Initialize controlling desired speeds V ⇐∅, controlling forces
F ⇐∅;

2: for i = 0 to K −1 do
3: Start state-time node [sstart ,vs

start , tstart]⇐ q̃i;
4: Goal state-time node [sgoal ,v

s
goal , tgoal]⇐ q̃i+1;

5: Find a coarse trajectory in state-time graph with A* algo-
rithm, Tc ⇐A∗([sstart ,vs

start , tstart], [sgoal ,v
s
goal , tgoal]);

6: Append controlling desired speeds, V ⇐ V ∪ [vs
o,0,v

s
o,1, ...]

extracted from current Tc;
7: end for
8: Pad controlling desired speeds V ;
9: for i = 0 to N −1 do

10: Compute corresponding forces with controlling desired
speeds, F ⇐V ;

11: Simulate the current whole trajectory To with F using our
force-based traffic simulation algorithm;

12: if loss decreases then
13: Update T ⇐ To;
14: end if
15: Compute gradient of desired speeds using the adjoint

method, ∇V ⇐Ad joint(To,V);
16: Gradient descent, V ⇐ Adam(∇V,α,β0,β1);
17: end for
18: return Fine trajectory T ;

convergence. Therefore, we perform another optimization in a dis-
crete state-time space to find a coarse-grained trajectory at first, and
then treat it as initialization to further optimize and improve the
behaviours. The pseudo-code of our coarse-to-fine optimization is
described in Algorithm 1, and we will introduce the details in the
following sections.

3.4. Coarse Search in State-Time Space

3.4.1. State-Time Graph Construction

We define the state space of a vehicle as a subset of its entire state
representation shown in Section 3.2.1 for simplicity in the follow-
ing. The state space along a vehicle’s reference path in the longitu-
dinal direction is denoted as [s,vs], where s ∈ p̂ and vs ∈ v̂ are the
longitudinal displacement and the longitudinal speed, respectively.

The state space can be discretized into grid nodes by giving an-
other timestep ∆t̃, which is much larger than the one we use in traf-
fic simulation. Assume that the acceleration of a vehicle can only
be chosen from a discrete set [−as,0,as] where as ∈ â is the max-
imum longitudinal acceleration. According to the state dynamics
shown in Eq. 2, the intervals along the vs-axis and the s-axis are

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

545

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

-

-

-

-
-

-

-

-

Figure 4: A part of discretized state-time space and directed state-
time graph. The reachable nodes are marked by the dots with dif-
ferent colors laying on the corresponding s-vs planes, representing
time at ∆t̃ (green), 2∆t̃ (red) and 3∆t̃ (blue). The transitions from
parent nodes denoted by arrows are also colorized.

∆vs = as
∆t̃ and ∆s = 1

2 as(∆t̃)2. Therefore, starting from a given
state node [s,vs], there should be three reachable state nodes after
∆t̃: [s+(2 vs

∆vs +1)∆s,vs +∆vs] for acceleration, [s+2 vs

∆vs ∆s,vs] for
speed maintenance and [s+(2 vs

∆vs −1)∆s,vs−∆vs] for deceleration.
As a result, the behaviours along the reference path can be repre-
sented as a directed graph with finite combinations of reachable
state nodes.

The state-time space of a vehicle is the state space augmented
by the time dimension. Similarly, we can also construct a directed
graph in the state-time space that contains transitions from given
state-time nodes q̃ = [s,vs, t] to their corresponding three reachable
state-time nodes. Therefore, the given keyframes can be mapped to
specific state-time nodes, and we need to find a trajectory from the
start node [sstart ,vs

start , tstart] to the goal [sgoal ,v
s
goal , tgoal] through

the spanning graph. A part of discretized state-time space and state-
time graph are demonstrated in Fig. 4.

The state-time space and the corresponding directed state-time
graph for any vehicle are identical with the same discretization pro-
cess. In practice, we only need to explicitly construct one directed
state-time graph and reuse it for different reference paths.

3.4.2. Coarse Trajectory Search

Finding a trajectory through the state-time graph with given a start
and goal can be seen as finding an optimal path in the special 3D
solution space. We also use the A* algorithm to search for it. The
heuristic function for a certain node is defined as:

h̃(q̃) = ωd h̃d(q̃)+ωah̃a(q̃),

h̃d(q̃) =
√

|s− sgoal |2 + |vs − vs
goal |2 + |t − tgoal |2,

h̃a(q̃) =
|vs − vs

parent |
∆t̃

,

(7)

where h̃d is the distance between the state-time node and the goal,
and h̃a is the variation of speed compared with its parent state, mak-
ing the vehicle accelerate or decelerate as infrequently as possible.
ωd and ωa are corresponding weights.

Moreover, other moving vehicles can be pre-converted to static
obstacles in the state-time space [SVDBLM10]. During the A*
search, the nodes occupied by other vehicles are marked as un-
reachable from their parent nodes. The nodes that exceed allowed
speed, path length or maximum time duration are also prohibited.
However, such constraints may raise failure that we can not find a
trajectory that matches the keyframes. To ensure that the A* algo-
rithm always produces an output, we will return the trajectory that
can reach the node closest to the goal and has the minimal heuristic
value when the search can not reach the true goal.

Obviously, this generated trajectory is implausible because of
the large timestep used to construct the state-time graph as well as
the discrete acceleration options. Though using a small timestep or
adding more alternative acceleration values can generate better re-
sults, they will also make space discretization and state-time search
become extremely time-consuming because of the exponential rise
of the number of state-time nodes. Therefore, we will use the ad-
joint method to refine the behaviours along the coarse trajectory
depending on our force-based simulation.

3.5. Trajectory Refinement with Adjoint Method

3.5.1. Initialization Using Coarse Trajectory

We use the notation T to represent a trajectory in the following.
After searching a coarse trajectory Tc in state-time space, we use
the speeds extracted from Tc as the initialized controlling desired
speeds V = [vs

o,0,v
s
o,1, ...], and further optimize them based on our

force models to make the simulation satisfy the given keyframes.

As we mentioned in the last section, different timesteps in traffic
simulation and state-time space discretization are used. It will cause
different numbers of frames when a certain trajectory is registered
by simulation and state-time space. We pad the sequence of con-
trolling desired speeds V extracted from coarse trajectory by linear
interpolation to align the number of frames with the trajectory gen-
erated by simulation. Then we can use the padded V to calculate
the corresponding controlling forces F and trajectory To. Tc and To
can be seen as the different representations for a certain trajectory
in state-time space and traffic simulation, respectively. Obviously,
we have a relationship that #To ·∆t = #Tc ·∆t̃, where #To and #Tc
are the numbers of frames, and both sides are equal to the total
driving time duration of this trajectory.

3.5.2. Adjoint-based Optimization

To measure the difference between the trajectory To with T
frames generated by the controlling desired speeds V and a set of
keyframes Q specified by users, we define the objective function
which we want to minimize as:

Φ(To,V) =
1
2

T

∑
t=0

(
ωt ||To,t −Qt ||2 +ωv||vs

o,t ||
)
,

s.t. To,t+1 = G
(
To,t ,vs

o,t
)
, t ∈ [0,1, ...T −1],

(8)

where ωt is a weight to emphasize the influence of the state at cer-
tain keyframes, To,t = [st ,vs

t] is the state at time t along the trajec-
tory, and Qt is the keyframe at time t if there exists. In fact, To,t
should be the state-time node [s,vs, t] as our definition, but the time

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

546

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

Parameter Value Unit Description
∆t 0.01 s the timestep used in the force-based traffic simulation

â [5.0, 1.0] m/s2 the maximum acceleration of the vehicles in Frenet coordinates

s0 4.0 ± 1.0 m the jam space headway between two vehicles for safety

T0 1.0 ± 0.5 s the reacting time for the vehicles to brake

wv, wl 1.8, 3.5 m the width of lanes and the vehicles, respectively

ωo, ωk, ωc 1.0, 0.5, 3.0 − the weights for the force calculations in Eq. 3, Eq. 4 and Eq. 5, respectively

µa, µb 20.0, −1.5 − the coefficients for the heuristic-based path planning in Eq. 6

∆t̃ 0.5 s the timestep used in state-time space discretization

ωd , ωa 1.0, 2.0 − the weights for the heuristic-based state-time search in Eq. 7

ωt , ωv 1.0, 0.1 − the weights for the objective function in the adjoint method in Eq. 8

α, β0, β1 0.01, 0.9, 0.999 − the parameters of Adam optimizer used for gradient descent in Algorithm 1

Table 1: The values of the important parameters used in our experiments.

dimension is left out here because we strictly align every times-
tamp when calculating the objective function. A regularization term
weighted by ωv is also added to prevent overfitting.

As shown in Eq. 8, the optimization should satisfy a series of
time stepping constraints advanced via function G, an abbreviation
of the state dynamics functions we have already shown in Eq. 2.
According to the adjoint method, we introduce a set of Lagrange
multipliers and transform the optimization into

∇V =
dΦ

dV
=

T

∑
t=0

λt ·
∂G

∂vs
o,t

+
∂Φ

∂V
,

λt =

{
∂Φ

∂To,t
, t = T

λt+1 · ∂G
∂To,t

+ ∂Φ

∂To,t
, t < T

,

(9)

where λt is the Lagrange multiplier for time t, which is also called
an adjoint state in the adjoint method. These Lagrange multipliers
are calculated by iterating backward in time at first, and then we can
obtain the gradient of the controlling desired speeds V by substitu-
tion. Finally, the controlling desired speeds are updated by gradient
descent algorithm to get a new set of controlling forces which tends
to decrease the difference between the simulation trajectory and the
given keyframes. We use Adam optimizer for gradient descent in
our implementation.

For clarity, we further demonstrate how to solve the terms
∂G/∂vs

o,t and ∂G/∂To,t in the above equations. For the speed com-
ponent vs ∈ [s,vs] along To, according to Eq. 2, the transition func-
tion G can be written as:

vs
t+1 = G(To,t ,vs

o,t) = vs
t +

f s
t

m
·∆t, (10)

where f s
t is the longitudinal component of the total force at time t.

So we can obtain that
∂G

∂vs
o,t

=
∂ f s

t
∂vs

o,t

∆t
m
,

∂G
∂To,t

=

[
1+

∂ f s
t

∂vs
t

∆t
m
,

∂ f s
t

∂st

∆t
m

]
.

(11)

According to the force models demonstrated in Section 3.2.1, we
can easily calculate these expressions. In our implementation, we

only compute the derivative of self-motivated force. Since the
collision avoidance force calculation contains a non-differentiable
piecewise function, and the path keeping force has no contribu-
tion to the vehicle’s longitudinal motions. In a similar way, the two
terms for the position component s ∈ [s,vs] are

∂G
∂vs

o,t
=

∂ f s
t

∂vs
o,t

(∆t)2

m
,

∂G
∂To,t

=

[
∆t
(

1+
∂ f s

t
∂vs

t

∆t
m

)
,1+

∂ f s
t

∂st

(∆t)2

m

]
.

(12)

After repeating optimization for certain iterations, the final re-
fined trajectory T can meet the given spatio-temporal keyframe
constraints and also gets smoother.

4. Experimental Results

4.1. Experimental Setup

The following experiments were implemented on a computer with
a 3.60GHz Intel(R) Xeon(R) W-2123 CPU with 8-core processors
and 32GB memory. Our source code was implemented in C++,
compiled as a x64 dynamic link library and imported into Unity3D
for visualization. The values of some important parameters we used
in our experiments are shown in Table 1, which were pre-defined
in configure files and loaded by the program.

There are three scenarios used in our cases which were manually
created by SUMO NetEdit and exported as XML files. The first sce-
nario contains a curvy road with three lanes in the same direction.
The second scenario contains a straight road with three lanes in the
same direction as well as a crosswalk. The third scenario contains
an intersection with a four-lane dual carriageway. The discretiza-
tion resolution of the 2D grid map is 0.5m × 0.5m for each.

4.2. Keyframe Controlled Trajectories

We designed some cases to show the results of keyframe controlled
simulation with our method. In the following figures, we use a yel-
low vehicle to represent the position constraint and a red box to

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

547

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

Figure 5: The original trajectories (top) and the keyframe con-
trolled trajectories (bottom) of running the red light in the cross-
walk scenario.

Figure 6: The original trajectories (top) and the keyframe con-
trolled trajectories (bottom) of yielding to the oncoming vehicles
in the intersection scenario.

frame the time constraint of the keyframe. That is to say, we want
the vehicle to reach the position marked by the yellow vehicle at
the moment framed by the red box. The edited vehicles are shown
with its historical states, while the other vehicles are only shown
with their final states.

The first case was generated in the scenario with a curvy road,
which we have already shown in Fig. 1. The specific vehicle drove
along the rightmost lane originally. We set a keyframe in the center
lane and assigned the vehicle to reach the position at the framed
time. As a result, a new reference path through the position was
planned. Then, the vehicle changed the lane and decelerated to ar-
rive at it on time.

The second case was generated in the crosswalk scenario. The
specific vehicle braked in the center lane and waited for the red
light originally. We set a keyframe to assign the vehicle to overtake
and get through the crosswalk instead of waiting. As a result, a new
reference path was planned to lead the vehicle to the lane which

Discretization Timestep ∆t̃ State-Time Search Time
0.5 0.173

0.25 36.924

0.1 −

Table 2: The state-time search time (s) over different discretization
timesteps (s). Due to memory limitation, it is hardly to obtain the
state-time search time when discretization timestep is 0.1s.

Simulation Timestep ∆t Adjoint-based Optimization Time
0.5 0.002

0.1 0.004

0.05 0.011

0.01 0.185

0.005 0.699

Table 3: The adjoint-based optimization time (s) over different traf-
fic simulation timesteps (s) for a certain trajectory.

had not been blocked yet. The vehicle accelerated to run the red
light (see Fig. 5).

The third case was generated in the interaction scenario. The spe-
cific vehicle turned right in the left lane without yielding to the on-
coming vehicles driving forward in the right lane originally. We set
a keyframe to assign it to wait before turning. In this case, we only
needed to specify the position and the corresponding arrival time
since the reference path for the vehicle was not changed. As a re-
sult, the vehicle decelerated and yielded at the intersection to let the
vehicles in the right lane go first (see Fig. 6).

4.3. Performance and Comparison

To evaluate the performance of our coarse-to-fine optimization pro-
cess, we performed a series of experiments with different timesteps
or initialization for the adjoint method. The following experiments
are based on a keyframe which constrains a vehicle to travel 100
meters in 10 seconds along its reference path, setting the number of
the maximum iterations of the adjoint method to 100.

We searched for the coarse trajectory in the state-time space with
different discretization timesteps ∆t̃=0.5s, 0.25s and 0.1s. The cor-
responding search times are shown in Table 2. ∆t̃=0.5s was used
to reconstruct the traffic flows In [SVDBLM10]. When ∆t̃ gets
smaller, the generated trajectories with state-time search may be-
come smoother, but search time and required memory will also in-
crease rapidly. According to Table 2, the search time is 36.924s
when ∆t̃=0.25s. Due to the memory limitation, the search time can
hardly be obtained when ∆t̃=0.1s. Therefore, as mentioned earlier,
it is impractical to obtain plausible keyframe controlled results by
using a smaller discretization timestep in state-time space.

We optimized the trajectory using the adjoint method with differ-
ent simulation timesteps ∆t. The corresponding optimization times
are shown in Table 3. The optimization time mainly depends on
the number of frames of the trajectory, so it becomes more time-
consuming when ∆t gets smaller. In our implementation, we chose

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

548

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

Time (s)

Lo
n

gi
tu

d
in

al
 S

p
ee

d
 (

m
/s

)

Number of Iterations

O
p

ti
m

iz
at

io
n

 L
o

ss

Adjoint MethodAdjoint Method OursOurs

0

5

10

15

20

25

0

5

10

15

20

25

(a) (b)

0 1 2 3 4 5 6 7 8 9 100 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

State-Time SearchState-Time Search OursOursState-Time Search Ours

0 10 20 30 40 50 60 70 80 900 10 20 30 40 50 60 70 80 90

Figure 7: (a) The longitudinal speeds of the vehicle generated by
state-time search and our method with the same keyframe con-
straints. (b) The optimization loss over different numbers of iter-
ations of the adjoint method initialized with average speed and our
method with the same keyframe constraints.

∆t̃=0.5s and ∆t=0.01s in order to strike a balance between the to-
tal optimization time and the plausibility of generated trajectories.
Thus the total optimization time with the given keyframe using our
coarse-to-fine optimization is about 0.358s for 100 iterations.

We compare the results generated by state-time search only and
our method. The longitudinal speeds along the generated trajecto-
ries are shown in Fig. 7 (a). The speed of the state-time search result
changes suddenly since the vehicle can only choose the determined
acceleration values in a discrete set at each timestep, which will
cause implausibilities. In comparison, the result generated by our
coarse-to-fine optimization is much smoother.

We further compare the loss during the optimization of the ad-
joint method and our method, and the loss values over different
numbers of iterations are shown in Fig. 7 (b). For the adjoint
method, we initialize the controlling desired speeds as the average
speed that the vehicle needs to travel from the start to the key-frame
position within the time. The loss achieves convergence at approx-
imately the 70th iteration. In comparison, with our coarse-to-fine
process, we initialize the controlling desired speeds better by uti-
lizing the information of the coarse trajectory search in the state-
time space. The loss at the beginning is thus much smaller than
the optimization initialized with average speed and can achieve fast
convergence at approximately the 15th iteration. Therefore, we can
also give an early stop if the loss no longer decreases to further
reduce the optimization time in our method.

Finally, the key aspects of our method in comparison with previ-
ous works are summarized in Table 4. Our method includes all the
positive aspects of the previous works such as generating smooth
traffic motions, allowing to simulate in complex scenarios and edit
vehicles during the simulation. Furthermore, since our traffic simu-
lation is based on the force models, we can provide spatio-temporal
key frames to regulate vehicles and generate desired trajectories in
a more intuitive way.

5. Discussion

5.1. Conclusion and Limitation

We have presented a novel traffic trajectory editing method that
allows users to specify spatio-temporal keyframes to control ve-

Method (a) (b) (c) (d) (e)
[SVDBLM10] State-Time Search ✗ ✓ ✗ ✓

[CLH∗21] Force-based ✓ ✗ ✗ ✗

[HRW∗22] Data-driven ✓ ✓ ✓ ✗

Ours Force-based ✓ ✓ ✓ ✓

Table 4: Comparison with previous methods. Several criteria are
presented: (a) Traffic simulation model, (b) Smooth traffic motions,
(c) Allowing to simulate in complex scenarios, (d) Allowing to in-
teractively edit vehicles during the simulation, (e) Allowing to con-
strain vehicles with spatio-temporal keyframes.

hicles’ behaviours. We propose a force-based traffic simulation
framework containing self-motivated force, path keeping force and
collision avoidance force. It mainly updates vehicles based on the
Frenet coordinates along vehicles’ reference paths which can be
defined manually. To provide keyframe controls, we propose a
coarse-to-fine optimization process. First, we discretize the state-
time space along the path, construct a state-time graph and plan
a coarse trajectory from the start to the keyframe node. Then, we
utilize the coarse trajectory to initialize the adjoint method and ef-
ficiently find a set of optimal controlling desired speeds to generate
a finer trajectory based on our force-based simulation.

Though the proposed method is promising, it still has some lim-
itations. Firstly, the keyframe constraints may become inoperative
if the environment is congested. As we stated in Section 3.4.2, the
state-time search regards the neighbors of an individual as static
obstacles, which means its neighbors will not be optimized at the
same time if we use keyframes to constrain it. If the vehicle is
blocked when it tries to meet the keyframes during the state-time
search, the result will be replaced by a trajectory that can reach the
node closest to the actual goal. Though the problem can be solved
by iteratively editing the surrounding vehicles who block the indi-
vidual until it can meet the keyframes, we believe that a optimiza-
tion process taking all the possible vehicles into consideration at
once will be a worthwhile endeavor. Secondly, the simulation re-
sults may become irregular due to users’ arbitrary edits. For exam-
ple, a vehicle may decelerate for safety and comfort when it follows
a path with sharp curves rather than maintaining a high speed in the
real traffic. This problem can also be solved by interactively setting
keyframes or editing vehicle’s desired speed by users to make the
behaviours more perceptually realistic.

5.2. Failure Cases and Refinements

To demonstrate our framework’s capability, even for some failure
cases caused by the aforementioned limitations, our method is still
capable of refining them by manually providing more keyframes.
For more information, please see our supplementary video.

The first scenario is that the vehicle misses the keyframe due
to traffic congestion (see Fig. 8 (a)). We offer two solutions to the
problem. The first solution is to give the vehicle another keyframe
that causes it to overtake the leader (see Fig. 8 (b)). The second
solution is to assign keyframes to its leaders, forcing them to yield
(see Fig. 8 (c)). As a result, both refinements eventually succeed in
getting the vehicle to meet the keyframe.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

549

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

The second scenario is that the vehicle behaves abnormally when
performing a high-speed U-turn (see Fig. 9 (a)). This is due to the
fact that in real-world traffic, drivers tend to slow down for safety
and comfort when following a more curved path. We also provide
two methods for improving the behavior’s perceptual realism. The
first solution is to assign a keyframe that causes the vehicle to sim-
ply decelerate when passing through the curve (see Fig. 9 (b)). The
second solution is to assign two keyframes, one to wait for oncom-
ing vehicles and one to complete the U-turn, to further prevent ag-
gressive driving and maintain polite behavior (see Fig. 9 (c)).

Acknowledgment

Xiaogang Jin was supported by the National Natural Science
Foundation of China (Grant No. 62036010) and the Key Re-
search and Development Program of Zhejiang Province (Grant No.
2020C03096).

References

[AGR∗16] ALAHI A., GOEL K., RAMANATHAN V., ROBICQUET A.,
FEI-FEI L., SAVARESE S.: Social lstm: Human trajectory prediction in
crowded spaces. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2016), pp. 961–971. 3

[APA∗16] ADNAN M., PEREIRA F. C., AZEVEDO C. M. L., BASAK
K., LOVRIC M., RAVEAU S., ZHU Y., FERREIRA J., ZEGRAS C., BEN-
AKIVA M.: Simmobility: A multi-scale integrated agent-based simula-
tion platform. In 95th Annual Meeting of the Transportation Research
Board Forthcoming in Transportation Research Record (2016). 2

[CBL∗20] CHAO Q., BI H., LI W., MAO T., WANG Z., LIN M. C.,
DENG Z.: A survey on visual traffic simulation: Models, evaluations,
and applications in autonomous driving. In Computer Graphics Forum
(2020), vol. 39, Wiley Online Library, pp. 287–308. 2

[CDR∗17] CHAO Q., DENG Z., REN J., YE Q., JIN X.: Realistic data-
driven traffic flow animation using texture synthesis. IEEE Transactions
on Visualization and Computer Graphics 24, 2 (2017), 1167–1178. 3

[CJH∗19] CHAO Q., JIN X., HUANG H.-W., FOONG S., YU L.-F.,
YEUNG S.-K.: Force-based heterogeneous traffic simulation for au-
tonomous vehicle testing. In 2019 International Conference on Robotics
and Automation (ICRA) (2019), IEEE, pp. 8298–8304. 2, 3, 4

[CLH∗21] CHAO Q., LIU P., HAN Y., LIN Y., LI C., MIAO Q., JIN
X.: A calibrated force-based model for mixed traffic simulation. IEEE
Transactions on Visualization and Computer Graphics (2021). 3, 4, 9

[CSC16] COSGUN A., SISBOT E. A., CHRISTENSEN H. I.: Anticipa-
tory robot path planning in human environments. In 2016 25th IEEE in-
ternational symposium on robot and human interactive communication
(RO-MAN) (2016), IEEE, pp. 562–569. 3

[DRC∗17] DOSOVITSKIY A., ROS G., CODEVILLA F., LOPEZ A.,
KOLTUN V.: Carla: An open urban driving simulator. In Conference
on robot learning (2017), PMLR, pp. 1–16. 2

[Fel94] FELLENDORF M.: Vissim: A microscopic simulation tool to
evaluate actuated signal control including bus priority. In 64th Institute
of Transportation Engineers Annual Meeting (1994), vol. 32, Springer,
pp. 1–9. 2

[HCJ21] HAN Y., CHAO Q., JIN X.: A simplified force model for mixed
traffic simulation. Computer Animation and Virtual Worlds 32, 1 (2021),
e1974. 2, 3, 4

[HFV00] HELBING D., FARKAS I., VICSEK T.: Simulating dynamical
features of escape panic. Nature 407, 6803 (2000), 487–490. 3

[HM95] HELBING D., MOLNAR P.: Social force model for pedestrian
dynamics. Physical Review E 51, 5 (1995), 4282. 3

[HRW∗22] HAN Y., REN J., WANG S., SUN W., YANG R., JIN X.:
Traedits: Diversity and irregularity-aware traffic trajectory editing. IEEE
Robotics and Automation Letters (2022). 2, 4, 9

[KEBB12] KRAJZEWICZ D., ERDMANN J., BEHRISCH M., BIEKER L.:
Recent development and applications of sumo-simulation of urban mo-
bility. International Journal on Advances in Systems and Measurements
5, 3&4 (2012). 2

[KSKL14] KIM J., SEOL Y., KWON T., LEE J.: Interactive manipulation
of large-scale crowd animation. ACM Transactions on Graphics (TOG)
33, 4 (2014), 1–10. 2

[LHDJ13] LI S., HUANG J., DESBRUN M., JIN X.: Interactive elastic
motion editing through space–time position constraints. Computer Ani-
mation and Virtual Worlds 24, 3-4 (2013), 409–417. 3

[LPZ∗19] LI W., PAN C., ZHANG R., REN J., MA Y., FANG J., YAN
F., GENG Q., HUANG X., GONG H., ET AL.: Aads: Augmented
autonomous driving simulation using data-driven algorithms. Science
Robotics (2019). 2

[LWL17] LI W., WOLINSKI D., LIN M. C.: City-scale traffic anima-
tion using statistical learning and metamodel-based optimization. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–12. 3

[MM17] MONTANA L. R., MADDOCK S.: Sketching for real-time con-
trol of crowd simulations. In Proceedings of the Conference on Computer
Graphics & Visual Computing (2017), pp. 81–88. 2

[MTPS04] MCNAMARA A., TREUILLE A., POPOVIĆ Z., STAM J.:
Fluid control using the adjoint method. ACM Transactions On Graphics
(TOG) 23, 3 (2004), 449–456. 2, 3

[RXX∗19] REN J., XIANG W., XIAO Y., YANG R., MANOCHA D., JIN
X.: Heter-sim: Heterogeneous multi-agent systems simulation by inter-
active data-driven optimization. IEEE Transactions on Visualization and
Computer Graphics 27, 3 (2019), 1953–1966. 2, 3

[SVDBLM10] SEWALL J., VAN DEN BERG J., LIN M., MANOCHA D.:
Virtualized traffic: Reconstructing traffic flows from discrete spatiotem-
poral data. IEEE Transactions on Visualization and Computer Graphics
17, 1 (2010), 26–37. 2, 3, 6, 8, 9

[THH00] TREIBER M., HENNECKE A., HELBING D.: Congested traffic
states in empirical observations and microscopic simulations. Physical
review E 62, 2 (2000), 1805. 4

[VDBO07] VAN DEN BERG J., OVERMARS M.: Kinodynamic motion
planning on roadmaps in dynamic environments. In 2007 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (2007), IEEE,
pp. 4253–4258. 2, 3

[WMT06] WOJTAN C., MUCHA P. J., TURK G.: Keyframe control of
complex particle systems using the adjoint method. In Proceedings of
the 2006 ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation (2006), pp. 15–23. 2, 3

[WSL13] WILKIE D., SEWALL J., LIN M.: Flow reconstruction for data-
driven traffic animation. ACM Transactions on Graphics (TOG) 32, 4
(2013), 1–10. 3

[ZZZY20] ZHANG Y., ZHANG X., ZHANG T., YIN B.: Crowd motion
editing based on mesh deformation. International Journal of Digital
Multimedia Broadcasting 2020 (2020). 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

550

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

Frame 2800

Frame 3400

Frame 4000

Frame 2800

Frame 3400

Frame 4000

Frame 2800

Frame 3400

Frame 4000

Frame 2800

Frame 3400

Frame 4000

Frame 2800

Frame 3400

Frame 4000

(a)

(b)

(c)

(a)

(b)

(c) Frame 2800

Frame 3400

Frame 4000

Frame 2800

Frame 3400

Frame 4000

Frame 2800

Frame 3400

Frame 4000

Figure 8: The first failure case. (a) The vehicle misses the keyframe due to traffic congestion. (b) The first solution is to give the vehicle
another keyframe that causes it to overtake the leader. (c) The second solution is to assign keyframes to its leaders, forcing them to yield.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

551

Y. Han & H. Wang & X. Jin / Spatio-temporal Keyframe Control of Traffic Simulationusing Coarse-to-Fine Optimization

(a)

(b)

(c)

(a)

(b)

(c)

Frame 1600

Frame 2000

Frame 2400

Frame 1600

Frame 2000

Frame 2400

Frame 1600

Frame 2000

Frame 2400

Frame 1600

Frame 2000

Frame 2400

Frame 1600

Frame 2000

Frame 2400

Frame 3000

Frame 1600

Frame 2000

Frame 2400

Frame 3000

Figure 9: The second failure case. (a) The vehicle behaves abnormally when performing a high-speed U-turn. (b) The first solution is to
assign a keyframe that causes the vehicle to simply decelerate when passing through the curve. (c) The second solution is to assign two
keyframes, one to wait for oncoming vehicles and one to complete the U-turn, to further prevent aggressive driving and maintain polite
behavior.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

552

