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Figure 1: Large-scale worst-case topology optimization. (a) The Bridge model, i.e., a cuboid mesh with 512×170×170 elements (15M
voxel elements). Its both sides are fixed and the load region is the top surface. (b) The optimization result from a force acting uniformly on the
top surface. (c) The optimized structure from the worst-case topology optimization. The color encodes the stress from a force that leads to
the maximum compliance Eworst. Our method allows the material to be distributed in the middle of the bridge to strengthen and improve the
stiffness (2.554×10−2 vs. 2.754×10−2). It takes about 10 minutes for (b) and 50 minutes for (c) using a desktop computer.

Abstract
We propose a novel topology optimization method to efficiently minimize the maximum compliance for a high-resolution model
bearing uncertain external loads. Central to this approach is a modified power method that can quickly compute the maximum
eigenvalue to evaluate the worst-case compliance, enabling our method to be suitable for large-scale topology optimization.
After obtaining the worst-case compliance, we use the adjoint variable method to perform the sensitivity analysis for updating
the density variables. By iteratively computing the worst-case compliance, performing the sensitivity analysis, and updating
the density variables, our algorithm achieves the optimized models with high efficiency. The capability and feasibility of our
approach are demonstrated over various large-scale models. Typically, for a model of size 512×170×170 and 69934 loading
nodes, our method took about 50 minutes on a desktop computer with an NVIDIA GTX 1080Ti graphics card with 11 GB memory.

Keywords: Worst-case topology optimization, Displacement-oriented problem, Modified inverse power method

1. Introduction

Topology optimization is a fundamental method for structure de-
sign and has been used in a wide variety of applications. To solve
for the best topology or layout, a number of prior numerical opti-
mization methods provided the foundation, such as density-based
methods [Ben89], boundary-based methods [SW00], and topolog-
ical derivative [SZ99]. Especially, density-based methods are the
most widely used based on a binary (0-1) integer optimization.

In practical applications, there are two important factors: (1)
handling high-resolution models containing at least millions of
voxels [MLR∗21, BP01, WDW15] and (2) optimizing the worst

† Corresponding author: xiaoya93@mail.ustc.edu.cn (Xiaoya Zhai)

case [PRZ17,ZPZ13]. Performing large-scale topology optimization
can accurately predict the physical shape properties and adapt to
high-resolution low-cost 3D printing devices. The commonly uncer-
tain load conditions in the real world lead to changing compliance,
so the maximum compliance should be minimized to enhance the
stiffness of the optimized model in the worst case. Thus, our focus is
to optimize the maximum compliance for a large-scale model under
load uncertainty on a desktop computer.

To solve the worst-case topology optimization problem, the ex-
isting methods transform it into a maximum eigenvalue minimiza-
tion problem [Ped00, CC08, TNKK11] or a semi-definite program-
ming problem [BTN97, HTK15, THK15]. However, the compu-
tational cost is extremely high when applying these methods to
high-resolution models. Many methods have been proposed to
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achieve high efficiency for the large-scale topology optimization
problem [MLR∗21], but their goal is not to minimize the worst-case
compliance. To the best of our knowledge, previous methods cannot
efficiently solve the large-scale worst-case topology optimization
under load uncertainty.

Achieving high efficiency for the large-scale worst-case topology
optimization is challenging as the maximum eigenvalue minimiza-
tion problem or the semi-definite programming problem is nonlinear
and large-scale. Taking the maximum eigenvalue minimization prob-
lem as example, the most time-consuming step is to compute the
maximum eigenvalue of a matrix, which changes in each iteration
of the optimization [TNKK11]. In practice, the traditional power
method can be directly used. However, to obtain the changing matrix,
the number of linear systems, whose left side is the stiffness matrix,
to be solved is equal to 3 times the number of the loading nodes.
Since many loading nodes are often used for the high-resolution
model, the time overhead is high despite using a multigrid solver.

In this paper, we propose an efficient method for large-scale
worst-case topology optimization problems with uncertain load-
s. Our method is also to optimize the maximum eigenvalue. The
success to improve efficiency is a modified power method for com-
puting the maximum eigenvalue. As the aforementioned changing
matrix is the multiplication of three matrices, where the middle
is the inverse of the stiffness matrix, we can perform only matrix-
vector multiplication in each iteration of the power method, thereby
avoiding the explicit construction of the changing matrix. Then,
there is only one linear system left to solve. To further reduce the
computational cost of the power method, an inexact solution, e.g.,
performing one V-cycle in the multigrid solver, to the linear system
is used. Although strict conditions are needed to ensure that our
modified power method outputs the maximum eigenvalue in theory,
we find in practice that it always generates the same results as the
power method using the exact solution of the linear system.

With the computed maximum eigenvalue, the Optimality Criteria
method [BS98] is used to solve the topology optimization problem.
Specifically, the adjoint variable method is used to perform the
sensitivity analysis for updating the density variables. Consequently,
our method can efficiently optimize the worst-case compliance for a
large-scale model with uncertain external loads. Code for this paper
is at https://github.com/lavenklau/robtop.

2. Related Work

Topology optimization Searching for optimal material distribution
of structures has been an attractive subject for researchers in recen-
t decades. The Solid Isotropic Material with Penalization (SIMP)
method was first introduced in [Ben89] to solve mechanical topology
optimization problems. They consider structural optimization prob-
lems under specified forces, which is different from our objective.
Besides, evolutionary structural optimization (ESO) [XS93] is also
one well-known method, which was widely used in engineering. The
above two methods are both density-based, i.e., optimizing densities
defined on the voxels after discretization. Other methods also use
implicit or explicit scalar functions to represent the solid part in the
design domain, such as Level Set method [SW00,WWG03], Moving
Morphable Component (MMC) [GZZ14], and Triply Periodic Mini-
mal Surfaces (TPMS) based methods [HWL∗20, YRL∗20]. Usually,

these scalar functions are analogs of the signed distance functions.
In addition, there are some works related to stress constrained topol-
ogy optimization [LNB∗10, ZCW21], but most of these problems
are for fixed load conditions.

Robust topology optimization There are mainly two categories
of methods to solve robust topology optimization problems: s-
tochastic [LSS12, LSD∗16, CLSK20] and deterministic approach-
es [HTK15] (also called worst-case approaches). The worst case
is where the load produces the largest compliance. [ZPZ13] ana-
lyzed the worst case of the structures, but did not perform topology
optimization. Later, [PRZ17] proposed a shape optimization to
detect fragile locations and strengthen them. Optimizing lightweight
structure under force location uncertainty was studied [UMK17].
[SZB18] estimated the loads leading to the weakest structure and
then minimize the failure potential. The method of [Ped00] trans-
forms the min-max problem into a maximum eigenvalue problem
and applies it to a 2D case. [CC08] and [TNKK11] gave a prac-
tical formulation for the derivative of the maximum eigenvalue
with respect to the density and minimized the maximum eigenval-
ue. In general, the evaluation of the maximum eigenvalue is very
time-consuming. [BTN97] transformed the optimization problem
into a linear, semi-definite, convex program and proved to have
polynomial-time complexity. So [OFKK99] and [HTK15] used this
method to deal with the small-scale problem. [THK15] further
transformed the worst-case compliance design into a non-linear
semi-definite problem; but, for a high-resolution model with a large
load area, the time and memory costs are still very high.

Large-scale topology optimization For the sake of accuracy, the
structure’s resolution would reach more than one million or high-
er. Large-scale topology optimization problems usually appear in
industrial applications that need high-performance computing (see
the survey in [MLR∗21]). There are several typical ways, such as
re-analysis [AKS08], multi-grid solvers [WDW15], model reduc-
tion [XLCB15], parallel computing [BP01], narrow-band solver-
s [LHZ∗18,LLL∗21], etc. There are only a few algorithms for large-
scale and robust topology optimization problems [WDW15, MFH-
P16]. However, these methods heavily rely on computer hardware
devices that are difficult to transplant to ordinary desktop computers.

3. Method

3.1. Problem and formulation

Inputs Given a model that is voxelized into a high-resolution do-
main Ω, we predefine load regions bearing uncertain external loads
(Figure 2 (a)) and certain boundary conditions. Each voxel element
e is equipped with a density function ρe that is parameterized into
“0-1”. We stack all ρe in the column format to form a density vector
ρρρ as design variables. The external load on each node i is denoted
as fi forming a column vector denoted as f. We assume that the
magnitude of the uncertain load f is bounded, similar to [TNKK11].

Uncertain load conditions Various constraints on fi exist as the
load f varies in value and direction. Here, we consider that fi is only
one of the following three:

• There is no load on the node i, i.e., fi = 0.
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Figure 2: Pipeline of our algorithm. Given an input model with fixed boundaries and load area (a), we first voxelize it into 334×510×302
elements (b) and then iteratively solve the worst-case displacement field and update the density field (c). We show the final optimized density
field in (d) and one section of the resulting structure in (e).

• The load direction of fi is a specified direction di. Then, we have
d1

i · fi = 0 and d2
i · fi = 0, where d1

i and d2
i are two unit vectors

perpendicular to di. In general, di is the normal of the surface
node since the model often bears pressure. We determine di as
the normal at the point computed by projecting the node onto the
input surface.

• There is no constraint for fi.

When no boundary region of Ω is fixed, we further constrain f to be
balanced: R⊤f = 0, where R⊤f computes the total force and torque,
which are zero for a balanced load. The method for computing R is
shown in [ZPZ13, SBR∗15]. We assemble all these constraints into
a linear equation Nf = 0.

Computing Eworst As the load f varies, the compliance changes.
Consequently, the maximum compliance (denoted as Eworst) under
load-uncertainty should be minimized. Given a fixed ρρρ, Eworst is the
objective function of the following optimization problem:

max
f

f⊤K−1f,

s.t. ∥f∥2 = 1,

Nf = 0. (1)

Here, ∥f∥2 = 1 indicates that the load f has a bounded magnitude
and K is the stiffness matrix. Based on the SIMP method [Ben89],
K = ∑i ρ

p
i Ki, where Ki is the element stiffness matrix of ith element

and p is a constant (usually set to 3). According to the theory of
elastic mechanics and finite element method, the balance equation
is Ku = f, where u is the discretized displacement vector.

Reformulating Eworst Let F = kerN include all uncertain loads
satisfying Nf = 0 and H be a set of standard orthogonal bases of F .
Each colume of H is a normalized uncertain load. Then, any f ∈ F
can be represented as Hφφφ, where φφφ is a vector. Consequently, we
reformulate (1) as follows:

max
φφφ

φφφ
⊤(H⊤K−1H)φφφ,

s.t. ∥φφφ∥2 = 1.
(2)

φφφ becomes the new optimization variable. This formulation is equiv-
alent to finding the largest eigenvalue of H⊤K−1H [TNKK11].

Formulation Our goal is to perform a worst-case topology opti-
mization of Ω with uncertain load conditions and bounded volume
constraints. The optimization problem is formulated as follows:

min
ρρρ

Eworst,

s.t. Volume(ρρρ)≤ εV ,

ρe ∈ [ρmin,1],∀e, (3)

where εV is the specified volume fraction threshold and ρmin is the
minimum density (0.001 in the experiments).

Optimization overview The Optimality Criteria method [BS98]
is used to solve (3). In each iteration, the following three steps are
performed in turns:

1. Compute Eworst and the corresponding load vector fworst and
displacement vector uworst by solving (2) (Section 3.2).

2. Perform the sensitivity analysis, i.e., compute the gradient ∂Eworst
∂ρi

(Section 3.3).
3. Update the density ρρρ using the derivatives ∂Eworst

∂ρi
(Section 3.4).

3.2. Modified power method

Revisiting [TNKK11] To solve (2), the method of [TNKK11] first
determines H, then treats H⊤K−1H as a whole matrix (denoted as
A), and finally computes the maximum eigenvalue of A. Although
the detailed method for finding the maximum eigenvalue is not
discussed by [TNKK11], the power method can be directly used:

1. Given an arbitrary vector φφφ
[0] with ∥φφφ[0]∥2 = 1. Set the iteration

number i = 0.
2. Compute φφφ

[i+1]← Aφφφ
[i].

3. Normalize φφφ
[i+1]← φφφ

[i+1]/∥φφφ[i+1]∥2.
4. If ∥φφφ[i+1]− φφφ

[i]∥2 < ε (ε is a small positive threshold), output
φφφ
[i+1] as the eigenvector; otherwise, i← i+1 and go to Step 2.
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The most time-consuming step in [TNKK11] is the construction of
A as many linear systems need to be solved for computing K−1H
despite the use of a multigrid solver. Specifically, the number of
linear systems is equal to the number of the columns in H, which
is usually great in the large-scale topology optimization problem.
However, H is a dense matrix when there are no boundary conditions.
As shown in Table 1, H and A are not capable of being stored in a
desktop computer if the number of load nodes exceeds 105.

Our modification To overcome the explicit construction of H and
A, we introduce a variable y[i] ≜Hφφφ

[i]. Then, φφφ
[i+1]←Aφφφ

[i] becomes
y[i+1] = (HH⊤)K−1y[i], where we multiply H on both sides. Since
P ≜ HH⊤ = I−N⊤N, we omit the computation and storage of
H. To further simplify computation, the following proposition is
proposed.
PROPOSITION 1. PK−1 and H⊤K−1H have the same eigenvalues.

The proof is provided in Appendix A. Then, we use the power
method to compute the maximum eigenvalue of PK−1:

1. Set i = 0 and generate a random normalized vector y[0].
2. Compute x[i+1]← K−1y[i].
3. Update y[i+1]← Px[i+1] and then normalize y[i+1].
4. If ∥y[i+1]−y[i]∥2 < ε, output y[i+1] as fworst and x[i+1] as uworst;

otherwise, set i = i+1 and return to step 2.

Multigrid solver In each iteration of our modified method, a linear
system Kx = y[i] needs to be solved to obtain x[i]. Fortunately, the
memory-efficient geometric multigrid solver [WDW15] can be u-
tilized to solve this linear system. The main idea of multigrid is to
solve a coarse problem by a global correction of the fine grid solu-
tion approximation from time to time to accelerate the convergence.
The fine grid is first obtained by voxelizing the model via CUDA
Voxelizer [Bae17]; then, we construct the coarse grid by quadrupling
or doubling the length of elements until it covers at least one elemen-
t on the previous level. The coarse grid operators are obtained by
Galerkin-based coarsening with trilinear interpolation operator and
its transpose as the restriction operator. We use V-cycles with one
pre- and one post-smoothing eight-color Gauss-Seidel step. This
solver is efficient on both memory and time. However, since the
power method usually converges after dozens of iterations, we still
need to solve many linear systems causing high computational cost.

Acceleration Our key idea for efficiency improvement is to solve
Kx = y[i] inaccurately. To obtain the inaccurate solution, we perform
one V-cycle in the multigrid solver in practice:

x[i+1] = x[i]+V−1(r[i]), (4)

where r[i] = y[i]−Kx[i] and V−1(·) indicates the one V-cycle op-
erator. We use x[i+1] as an approximation of K−1y[i] to update
y[i+1]← Px[i+1]. Besides, x[i+1] is reserved as the starting point of
the V-cycle operator in the next iteration. The pseudocode of our
modified power method is shown in Alg. 1. We terminate the algo-
rithm when ∥y[i+1]−y[i]∥2 < ε and the residual rrel = ∥r[i]∥2 < εr
(εr = 0.01 in the experiments).

Although the number of iterations of the power method increases
due to the inaccurate solutions, the running time of each iteration
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Figure 3: Computing the maximum eigenvalue using the power
method with the accurate or inaccurate solvers for Kx = y[i]. The
Kitten model in Figure 2 is used. We plot the compliance vs. running
time in seconds.

ALGORITHM 1: Modified power method
Input: The matrices K,P
Output: uworst and fworst
Generate random normalized y[0];
x[0]← 0; i← 0; rrel← 1;
while ∥y[i]−y[i−1]∥2 ≥ ε or rrel > εr do

r[i]← y[i]−Kx[i];
rrel←∥r[i]∥2; // rrel is the norm of the residual vector r[i].
x[i+1]← x[i]+V−1(r[i]);
y[i+1]← Px[i+1];
y[i+1]← y[i+1]/∥y[i+1]∥2;
i← i+1;

end
Output uworst← x[i] and fworst← y[i];

decreases significantly, resulting in a more efficient algorithm (Fig-
ure 3). Besides, we find in practice that our accelerated algorithm
always converges to the same maximum eigenvalue as the method
using accurate solutions for Kx = y[i] (see Figure 3).

Theoretical analysis Since we only use the approximation of
K−1y[i], the output may not be the maximum eigenvalue, although
it was not found in experiments. Hence, the following theoreti-
cal analysis is provided. We denote the eigenvalues of PK−1 as
λ1 ≥ λ2 ≥ ...≥ λn ≥ 0 and the eigenvectors as v1,v2, ...,vn, which
form the orthogonal bases of Rn. Then, y[i] can be represented as
y[i] = ∑ j β

[i]
j v j. We introduce e[i] = P(x[i+1]−K−1y[i]), that is rep-

resented by e[i] = ∑ j ε
[i]
j v j. We propose a proposition as follows:

PROPOSITION 2. If y[i] converges to y using our modified power
method, and there exist N ∈ N+ and C > 0 such that |β[N]

j /β
[N]
1 | ≤

C and δ
N = max j supk≥N |ε

[k]
j | ≤

C(λ1−λ j)
1+C

1√
1+C2(n−1)

for j =

2, ...,n, then y is the largest eigenvector of PK−1.

The proof is provided in Appendix B. The conditions in Prop. 2
may be strict and the numerical experiments demonstrate the effec-
tiveness and convergence of our method (Figures 4 and 11).
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Figure 4: The input is an L-beam model voxelized by 431×200×370 elements. The loads are applied on the red region and the top surface is
fixed. Given a density field, we first run Alg. 1 and then plot the compliance vs. the number of iterations (blue line) and the residual rrel vs. the
number of iterations (orange line). As the iteration proceeds, the compliance converges, and the residual decreases to be less than the threshold
εr = 0.01. The nodal forces at each iteration of Alg. 1 are shown in a colormap. A color closer to red indicates a larger magnitude, and vice
versa. The result shows that the worst case occurs when the nodal forces are the largest at the upper surface and the smaller at the side.

Other large-scale eigenvalue solvers The goal of Alg. 1 is to
find the maximum eigenvalue and the corresponding eigenvector of
the matrix PK−1. Several other solvers for computing large-scale
eigenvalue problems are also available to solve this problem, such as
ARPACK [GS97]. The algorithm behind ARPACK is the Implicitly
Restarted Arnoldi Method (IRAM) [Leh01], which searches for
the eigenvector in the Krylov subspace whose dimension is larger
than the number of wanted eigenvectors. This Krylov subspace is
spanned by the Arnoldi vectors and updated in every loop of IRAM,
each of these vectors involves a matrix-vector multiplication which
entails solving the stiffness equation by our multigrid solver. Thus,
it leads to high computation costs due to the larger dimension of the
subspace and loop times. Besides, these Arnoldi vectors use much
memory in large-scale problems.

3.3. Sensitivity analysis

Since ∥fworst∥2 = ∥Kuworst∥2 = 1 and Nfworst = NKuworst = 0, we
introduce two adjoint variables µ and Λ to evaluate ∂Eworst

∂ρi
:

∂Eworst

∂ρi
=

∂

∂ρi
u⊤

worstKuworst, (5)

=
∂

∂ρi

[
u⊤

worstKuworst−µ
(

u⊤
worstK

⊤Kuworst−1
)

−ΛNKuworst

]
,

=
(

2u⊤
worstK−2µu⊤

worstK
⊤K−Λ

⊤NK
)

∂uworst

∂ρi

+u⊤
worst

∂K
∂ρi

uworst−2µu⊤
worst

∂K⊤

∂ρi
Kuworst−Λ

⊤N
∂K
∂ρi

uworst.

We choose proper µ and Λ to avoid computing ∂uworst/∂ρi, i.e.,

satisfy the following equation:

2Kuworst−2µK⊤Kuworst−KN⊤
Λ = 0. (6)

By multiplying u⊤
worst on the both sides of (6) and using the condi-

tions NKuworst = 0 and ∥Kuworst∥2
2 = 1, we get

µ = u⊤
worstKuworst,

N⊤
Λ = 2(uworst−Kuworst).

After putting the computed µ and N⊤
Λ into (5), we have

∂Eworst

∂ρi
=−u⊤

worst
∂K
∂ρi

uworst. (7)

3.4. Algorithm details

Updating densities We follow the classical SIMP model to update
densities. To make sure the solution exists and avoid checkerboard
patterns, we filter the sensitivities, i.e., ∂Eworst

∂ρi
as follows [Sig94]:

gi =
∑ j w(∥xi− x j∥2/r)ρ j

∂E
∂ρ j

ρi ∑ j w(∥xi− x j∥2/r)
,

where xi is the center of ith voxel, r is a positive radius, and w(x) is
a locally supported function [WDW15]:

w(x) =

{
1−6x2 +8x3−3x4,x < 1,

0,x≥ 1.

If ∥xi − x j∥2 ≥ r, w(∥xi − x j∥2/r) = 0 indicating that jth voxel
has no effect on ith voxel in the filtering process. With the filtered
sensitivities, we update the densities by following [BS98]:

ρi← Clamp
(

Clamp
((

gi

ḡ

)η

ρi,ρi−∆ρ,ρi +∆ρ

)
,ρmin,1.0

)
,

(8)
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(d) Duck model with 402×433×412 elements(c) Rad model with 214×304×330 elements

(b) Buste model with 286×214×532 elements

(a) Chair model with 306×296×330 elements

Figure 5: Optimization results of different models. For each model, we show the design domain and boundary conditions (left), the optimized
material distribution (middle), and the corresponding section view (right).

where the threshold ∆ρ is to limit the density change in one iteration,
ρmin is a lower-bound of density to avoid numerical instability, η is
a damping factor (typically 0.5), and ḡ is a multiplier determined by
the binary search in each iteration to make the volume constraint sat-
isfied after all densities are updated. (8) is the well-known Optimal
Criteria method. When the algorithm converges, the KKT condition
of the problem (3) is satisfied. Besides, a step limits ∆ρ is introduced
to stabilize the optimization.

Stopping criterion We represent the computed worst-case com-
pliance in the ith iteration as ci. When the following condition is
satisfied

((ci + ci−1)− (ci−2 + ci−3))/(ci−2 + ci−3)< εc,

for continuous nc times, we regard the iteration converged. We set
εc = 5×10−3 and nc = 2 in all the results shown in this paper. Also,
when solving uworst, the parameter ε is set to 10−4, and εr is set to
10−2 in Alg. 1.

Shell The shell structure is introduced into the optimization of the
interior structure, which ensures the characteristics of the model and
the stability of optimization process. When updating the density,
elements in the shell structures are set as solid. The shell thickness
is user-defined in our algorithm.

4. Experiments

We have computed the optimal structures for various 3D objects in
Figure 5. Models are selected from different categories consisting
of a wide range of typical features and realistic boundary conditions.
All experiments are executed on a desktop PC with a 3.6 GHz Intel
Core i9-9900K, 32GB of memory, and an NVIDIA GTX 1080Ti
graphics card with 11 GB graphics card RAM size. Table 1 sum-
marizes the statistics of the time and memory cost under different
parameters (volume fraction, resolutions, et al. ). In summary, our
algorithm handles 24 million elements while the maximum memory

is less than 8Gb, and the time is controlled within 3 hours. In prac-
tice, the consumed time increases with model detail (e.g., Figures 2
and 5 (b)) and resolution.

4.1. External forces

The force direction constraint in Section 3.1 restricts the worst-
case load along the direction of ni or −ni, which is bidirectional.
However, objects usually bear pressure, and tensile on the objects
almost never happens (Figure 6). When the force is unidirectional,
the worst case should be solved by the following problem:

max
f

f⊤K−1f,

s.t. ∥f∥2 = 1,

Nf = 0,

V⊤f≥ 0, (9)

where each column of V is a direction of the force, e.g., the inward
normal. Here, we assume columns of V are a set of the orthogonal
vectors in kerN, i.e., V⊤V= I and NV= 0. Since optimization prob-
lem (9) cannot be reformulated as a maximum eigenvalue problem,
it is harder to solve. We give the following proposition:
PROPOSITION 3. The maximum compliances of the optimization
model (1) and (9) are denoted as c1 and c2, respectively. Then, we
have 1

2 c1 ≤ c2 ≤ c1.

The proof of Prop. 3 is given in Appendix C. Therefore, our
algorithm can deal with unidirectional forces (Figure 6 (b)).

It also should be noted that our algorithm can handle the worst-
case problem under force from any direction. The external forces
are user-defined according to different situations. Figure 7 shows the
optimized structures of the foot model. In the presence of friction
force, the force in the worst-case problem is not in the normal
direction. The final structure B is more stable for dealing with
friction force conditions over structure A.
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(a) Design model and boundary conditions (b) Optimized structure and its section views
Figure 6: The hook model is voxelized into 406×406×433 elements. The hook has external forces at the ring and is fixed at four points on
the bottom. When an object is suspended from the hook, the force is only along the direction−ni. Thus, the force is unidirectional at each node.

Normal force constraints

Free force constraints

Optimized structure A

Optimized structure B

Section view

Section view
Figure 7: Comparisons between the normal force constraints and
the free force constraints on the Foot model containing 146×432×
180 voxel elements.

4.2. Initial forces

The random normalized force y[0] is taken as the input of the modi-
fied power method (Alg. 1). In Figure 8, given a density field, we
test 20 random normalized forces y[0]. To measure the stability of
Alg. 1, we define a load deviation metric as follows:

∆ = max
1≤ j≤20

∥f j
worst− f̄∥/∥f̄∥, (10)

where f̄ = 1
20

20
∑

i=1
fi
worst is the average worst-case load. Besides, 26

different density fields are tested. Judging from Figure 8, we find that
our algorithm converges to almost the same load as each deviation
metric is less than 10−3 and the variation of the time cost caused by
the random initial forces is small.

4.3. Without fixed boundaries

In daily life, any movable object may bear loads from any direc-
tion on its entire surface. In the work of [WDW15], they consider
touch/grasp interaction at arbitrary locations via uniformly distribut-
ed forces and set the bottom zone of the object as fixed boundary.
Since the bottom zone may not be fixed either, this manually en-
forced fixed boundary and its location affects the final results. One
way to solve this problem is to remove the fixed boundary, yet it
makes the stiffness matrix singular, and generally, there is no solu-
tion of the FEM equation in such a case. To overcome this problem,
we can project the uniformly distributed force to balanced load s-
pace [ZPZ13]. Then, the FEM equation will have the solution, and
the general topology optimization method will work. However, it
ignores the fragile load mode of the object. Instead, our algorithm
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Figure 8: Our modified power method with different random nor-
malized force y[0] on the Duck model in Figure 5. The x-axis indi-
cates the density fields of different iterations during the optimization.
For each density field, we show time statistics by the box-plot.

iteratively optimizes the worst-case load; we think it is more suitable
to perform topology optimization via our method.

We remove the fixed boundary on the Foot model in Figure 7 and
then optimized it. Final results are shown in Figure 10. Compared
with the results in the fixed-boundary setting, the material from the
non-fixed boundary case tends to distribute around the surface to
resist random forces. Figure 9 shows the results of the bunny model
with no fixed boundary at different volume fractions. External forces
are applied on the whole bunny surface. The optimized results show
that the material was preferentially distributed in thin parts such as
ears, followed by head.

4.4. Comparisons

To verify the accuracy of our method, we compare the worst-case
load four computed by our method and the load fcmp computed by
direct eigenvalue decomposition of H⊤K−1H. We define an error
as follows:

err =
∥fcmp− four∥2

∥fcmp∥2
.

A cuboid model in Figure 11 is used. The maximum error is less
than 10−2, indicating that four approaches fcmp. With the proof of
Prop. 2 and the numerical experiments, our algorithm is confirmed
to be feasible and convergent in practice.
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Volume fraction: 35% Volume fraction: 50% Volume fraction: 65%( a ) ( b ) ( c ) 

Figure 9: Different volume fractions for the Bunny model with 288×284×222 elements. The whole surface is taken as the load area, and no
fixed boundary is given.

W/O fixed boundaries Optimized structure

With fixed boundaries Optimized structure
Section views

Figure 10: Large-scale worst-case topology optimization without
fixed boundaries (left) and with fixed boundaries (right) on the Foot
model in Figure 7.

Our goal is to explore the optimal solution of the worst-case
problem formulated in (1). We summarize three methods to solve
this problem in Section 3.2. The essential problem is to solve the
maximum eigenvalue of H⊤K−1H. The first method is to evaluate
the matrix H⊤K−1H explicitly. The second method is to modify
H⊤K−1H into PK−1 equivalently. Both two method compute the
maximum eigenvalue with an accurate multigrid solver. The third
methods is our innovative approach. Taking the Cuboid in Figure 11
as an example, the optimized structures by the above three methods
are shown in Figure 12 which are very similar. The values in the
second row are the largest two eigenvalues of the three methods.
The computational efficiency of these three algorithms is tested and
shown in Figure 13. The difference between the first and second
method is to modify H⊤K−1H into PK−1. However, 99.36% of the
time is saved. Our method is further faster than the second method.
The time reduction is about 65%. Our calculation time is 0.23% of
that of the first method. Thus, our algorithm significantly improves
the computational efficiency while ensuring the accuracy of the
calculation.

We change the area of the load region for the Cuboid in Figure 11
with a fixed resolution and a given density field. Then, the time costs
of the three algorithms for computing the maximum eigenvalue are
compared in Figure 14. As the load area becomes larger, the time
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Optimized structureSection view

Iteration
Figure 11: Validating the accuracy of our method using the Cuboid
model with 100×50×100 elements. In each iteration of our topol-
ogy optimization algorithm, we compute four and fcmp for determin-
ing the error. We plot the error vs. the number of iterations (orange
curve). The time (in seconds) for computing four using our modified
power method is shown using bars.

PK−1+inaccurate MG PK−1+accurate MG H⊤K−1H + accurate MG

1.253×10−3/1.214×10−3 1.283×10−3/1.234×10−3 1.064×10−3/1.036×10−3

Figure 12: Final results with different methods using the Cuboid
model in Figure 11. The values in the second row are the largest
two eigenvalues of the aggregated systems of the final results.

consumption of the first method increases rapidly, while our time
consumption changes slightly. Our modified power method takes
the least time and shows particular advantages in dealing with large
areas of load regions.
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Model εV (%) #Elements #Load nodes r ∆ρ Memory (MB) Time (m) tapm (m) / Speedup tagg (m) / Speedup

Figure 1 35 14.8×106 69934 2 0.06 4614 50 136 / 2.72 -
Figure 2 35 16.7×106 8730 3 0.06 5253 112 652 / 5.82 -
Figure 4 40 24.0×106 10094 2 0.02 7416 63 247 / 3.92 -
Figure 5 (a) 35 11.5×106 48413 2 0.06 3623 83 324 / 3.90 -
Figure 5 (b) 50 9.3×106 262772 4 0.06 3222 162 769 / 4.75 -
Figure 5 (c) 50 8.8×106 35840 2 0.06 2806 56 123 / 2.20 -
Figure 5 (d) 50 10.6×106 44863 3 0.06 3356 28 49 / 1.75 -
Figure 6 65 18.9×106 159873 2 0.06 5976 35 53 / 1.51 -
Figure 7 - Top 50 4.5×106 55434 4 0.02 1462 26 113 / 4.35 -
Figure 7 - Bottom 50 4.5×106 55434 4 0.02 1462 72 348 / 4.83 -
Figure 10 - Top 50 4.5×106 67699 4 0.02 2097 89 212 / 2.38 -
Figure 9 (a) 35 4.8×106 168790 4 0.02 2254 54 166 / 3.07 -
Figure 9 (b) 50 4.8×106 168790 4 0.02 2254 33 102 / 3.09 -
Figure 9 (c) 65 4.8×106 168790 4 0.02 2254 24 69 / 2.88 -
Figure 11 20 0.5×106 121 2 0.06 166 11 12 / 1.09 75 / 6.82

Table 1: Optimization statistics. εV (%) is the volume fraction. #Elements means the number of FEM elements. #Load nodes is the number of
the load nodes. r is the filter radius and is measured in the unit of element length. ∆ρ is the limitation of the change in density. Memory is the
graphics card memory cost. tapm and tagg are the time cost of PK−1 + an accurate multgrid solver and H⊤K−1H + an accurate mutlgrid
solver. "-" means the optimization did not finish in two weeks due to high computation or memory cost.
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Figure 13: Comparison of the time taken by three methods for
computing the maximum eigenvalue of H⊤K−1H. The abscissa
represents the resolution, i.e., the number of elements (#Elements),
and the ordinate represents the logarithmic computational time in
seconds. For one resolution, the three methods run on the same
model with a given density field and the same load region.

5. Conclusion

We propose an approach for large-scale worst-case topology opti-
mization. Given a 3D model with specified load regions and bound-
ary conditions, our method optimizes a structure that minimizes
the maximum compliance produced by the normalized external
loads under a certain volume fraction. By transforming the worst-
case problem into a maximum eigenvalue problem and replacing
H⊤K−1H with PK−1, we solve the maximum eigenvalue of PK−1

with an inaccurate multigrid solver. The accuracy of the proposed
algorithm is verified by numerical tests, and it is much faster than
existing algorithms.

Limitation and future work There are several limitations. First,
convergence could slow down when the eigenvalues are very close
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Figure 14: Comparison of the time taken by three methods for
computing the maximum eigenvalue of H⊤K−1H. The abscissa
represents the number of load nodes, and the ordinate represents
the logarithmic computational time in seconds.

to each other by the modified power method. This means that we
need to spend more time to achieve the final convergence by Al-
g. 1. More efficient algorithms need to be developed, such as the
combination of narrow band strategy. Second, manufacturing con-
straints [ZFS∗02] are not taken into consideration in this work, such
as the minimum length scale constraints [ZLWS15], self-supporting
constraints [BTX20], etc. For more practical requirements, the fabri-
cation of the optimized structures by our method is also very mean-
ingful. In order to meet the needs of manufacturing, we will put
manufacturing constraints into the optimization process in future
work. Third, extending our algorithm using other domain repre-
sentations (e.g., implicit or explicit scalar functions) would be an
intriguing direction for future research.
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Appendix A: Proof of Prop. 1

Proof. Suppose λ is an eigenvalue of H⊤K−1H and the correspond-
ing eigenvector is φ, then

φ = λH⊤K−1Hφ. (11)

Multiplying H on both sides of Eq.(11) and denote y = Hφ, we have

y = λHH⊤K−1y = λPK−1y, (12)

which means λ is an eigenvalue of PK−1, and the corresponding
eigenvector is y .

Suppose µ is an eigenvalue of PK−1 and the corresponding eigen-
vector is z, then

z = µPK−1z. (13)

Since P is a projection and P2 = P, we get

Pz = µP2K−1z = µPK−1z = z. (14)

So Eq.(13) can be rewritten as

z = µPK−1Pz = µHH⊤K−1HH⊤z. (15)

Multiplying H⊤ on both sides of Eq.(15) leads to

H⊤z = µH⊤HH⊤K−1HH⊤z = µH⊤K−1HH⊤z. (16)

which shows that µ is an eigenvalue of H⊤K−1H and the corre-
sponding eigenvector is H⊤z.

Appendix B: Proof of Prop. 2

To prove Prop. 2, we first propose the following proposition:
PROPOSITION 4. Assuming that yi converges to y, then y is an
eigenvector of PK−1P.

Proof. In Alg. 1, the iteration in line 8 can be rewritten as:

x[i+1] = x[i]+V−1(y[i]−Kx[i]). (17)

Note that V−1 is a linear operator, so we get:

x[i+1] = (I−V−1K)x[i]+V−1y[i]. (18)

According to the convergence theorem of the multigrid method

[BSS08], for a fixed linear system Ku = f, we have the following
relation:

∥u∗−u[i+1]∥ ≤ θ∥u∗−u[i]∥, θ < 1, (19)

where u∗ is the true solution of the linear system, and u[i+1] =

u[i]+V−1(f−Ku[i]). Then we get

∥(I−V−1K)(u∗−u[i])∥ ≤ θ∥u∗−u[i]∥, (20)

which implies that ∥I−V−1K∥ ≤ θ < 1 since u[i] is arbitrary. We
denote x = K−1y, and subtract x from both sides of Eq.(18). Then
we have

x[i+1]−x = (I−V−1K)x[i]−x+V−1y[i]

= (I−V−1K)(x[i]−x)+V−1(y[i]−y).
(21)

From Eq.(21), we get the following inequality

∥x[i+1]−x∥ ≤ θ∥x[i]−x∥+η∥y[i]−y∥, (22)

where η = ∥V−1∥. We iteratively expand right hand side of (22)
and get

∥x[k+1]−x∥ ≤ θ∥x[k]−x∥+η∥y[k]−y∥

≤ θ
2∥x[k−1]−x∥+θη∥y[k−1]−y∥+η∥y[k]−y∥

≤ · · ·

≤ θ
k∥x0−x∥+η

k

∑
i=0

θ
i∥y[k−i]−y.∥

(23)

The first item in the last inequality converges to 0. For the second
item, we divide the sum into two parts

k

∑
i=0

θ
i∥y[k−i]−y∥=

⌊k/2⌋

∑
i=0

θ
i∥y[k−i]−y∥+

k

∑
⌊k/2⌋+1

θ
i∥y[k−i]−y∥

≤ sup
i≥⌈k/2⌉

∥y[i]−y∥
⌊k/2⌋

∑
i=0

θ
i +M

k

∑
⌈k/2⌉

θ
i

≤ 1−θ
⌊k/2⌋+1

1−θ
sup

i≥⌈k/2⌉
∥y[i]−y∥+Mθ

⌈k/2⌉

≤ 1
1−θ

sup
i≥⌈k/2⌉

∥y[i]−y∥+Mθ
⌈k/2⌉,

(24)

where M = 2supi ∥y
[i]∥. Since y[i] converges to y, we have

M <+∞,

sup
i≥⌈k/2⌉

∥y[i]−y∥→ 0. (25)

So
k
∑

i=0
θ

i∥y[k−i]− y∥ → 0, which implies that x[k] converges to x

from (23).

As V−1 is non-singular, Eq.(17) shows that r[i] = y[i]−Kx[i]→ 0.
Accordingly, we have:

y = Px/∥Px∥, (26)

y = Kx. (27)

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

539



D. Zhang & X. Zhai & X. Fu & H. Wang& L. Liu / Large-Scale Worst-Case Topology Optimization

We substitute x = K−1y into Eq.(26), then

y =
1
∥Px∥PK−1y =

1
∥Px∥PK−1Py, (28)

where we use the condition that P is a projection and P2 = P.

To ensure that y is the largest eigenvector, we need more assump-
tions. First, we give some definitions. We define

E[i] = y[i]−Kx[i+1]. (29)

Since y[i] and x[i] converge to y and x respectively, we have E[i]→ 0
from Eq.(27). Then x[i+1] = K−1y[i]−K−1E[i], we have

cy[i+1] = PK−1Py[i]+ e[i], (30)

where c is a constant and e[i] = −PK−1E[i]→ 0. Again, we used
the condition that Py[i] = y[i].

Suppose the eigenvalues of PK−1P are λ1 ≥ λ2 ≥ ...≥ λn ≥ 0,
and the corresponding eigenvectors are v1,v2, ...,vn, which are the
orthonormal basis of Rn. We represent y[i] and e[i] under such basis
as

y[i] = ∑
j

β
[i]
j v j, (31)

e[i] = ∑
j

ε
[i]
j v j, (32)

where ε
[i]
j → 0. We define δ

N
j = supk≥N |ε

[k]
j | and δ

N = max j δ
N
j .

We can give the proof of Prop.2 now:

Proof. We first prove by mathematical induction that |β[k]
j /β

[k]
1 | ≤C

for ∀k ≥ N. When k = N, the result is provided in the proposition.
Suppose |β[m]

j /β
[m]
1 | ≤ C for some m ≥ N; When k = m+ 1, we

substitute Eq.(31) into Eq.(30) and get

cy[m+1] = ∑
j
(λ jβ

[m]
j + ε

[m]
j )v j = c∑

j
β
[m+1]
j v j. (33)

For j = 2, ...,n, we have∣∣∣∣∣∣β
[m+1]
j

β
[m+1]
1

∣∣∣∣∣∣=
∣∣∣∣∣∣λ jβ

[m]
j + ε

[m]
j

λ1β
[m]
1 + ε

[m]
1

∣∣∣∣∣∣≤ Cλ j|β
[m]
1 |+δ

N

λ1|β
[m]
1 |−δN

, (34)

where the last inequality holds since δ
N is a decreasing sequence.

Note that

Cλ j|β
[m]
1 |+δ

N

λ1|β
[m]
1 |−δN

≤C ⇐⇒ δ
N ≤

C(λ1−λ j)|β
[m]
1 |

1+C
. (35)

Since |β[m]
j | ≤C|β[m]

1 | and ∥y[i]∥= 1, we have

1 = ∑
j

(
β
[m]
j

)2
≤

(
1+C2 (n−1)

)(
β
[m]
1

)2
. (36)

Hence, β
[m]
1 ≥

1√
1+C2(n−1)

. So the inequality

δ
N ≤

C(λ1−λ j)

1+C
1√

1+C2(n−1)
≤

C(λ1−λ j)|β
[m]
1 |

1+C
, (37)

holds. From (35), we know that∣∣∣∣∣∣β
[m+1]
j

β
[m+1]
1

∣∣∣∣∣∣≤C. (38)

Then by mathematical induction, |β[k]
j /β

[k]
1 | ≤C holds for ∀k ≥ N.

Thus y must be the largest eigenvector since β
[k]
1 ↛ 0 as k→∞

from (36). The propostion is proved.

Since P = HH⊤, the eigenvectors of H⊤K−1H are the same of
PK−1P except by multplying matrix H⊤.

Appendix C: Proof of Prop. 3

Proof. The feasible set of (1) covers the feasible set of (9), thus
c2 ≤ c1. We need to prove 1

2 c1 ≤ c2. For simplicity, we denote φ2(s)
as the maximal objective value of the following problem

max
f

f⊤K−1f,

s.t. ∥f∥2 ≤ s,

Nf = 0,

V⊤f≥ 0. (39)

Hence, c2 = φ2(1). We expand the columns of V to a set of orthonor-
mal basis of Rn as {v1, v2, · · · ,vm, wm+1, wm+2, · · · wn}.

Suppose f∗ is the solution of (1), we can represent it as

f∗ = ∑
i∈I

αivi + ∑
i∈E

αivi + ∑
k∈W

γkwk, (40)

where αi = v⊤i f∗ and γk = w⊤
k f∗, I and E are the index sets which

are defined as

I =
{

i ∈ N+ : i≤ m, αi < 0
}
,

E =
{

i ∈ N+ : i≤ m, αi ≥ 0
}
. (41)

Then, we define

f+ = ∑
i∈E

αivi + ∑
k∈W

γkwk,

f− = ∑
i∈I

αivi. (42)

and get the following relation

1 = ∥f∗∥2
2 = ∥f+∥2

2 +∥f−∥2
2. (43)

Since c(f) = f⊤K−1f is a convex function of f, we obtain

c1 = f∗⊤K−1f∗ ≤ 1
2

(
4f⊤+K−1f++4f⊤−K−1f−

)
≤ 1

2
(4φ2(∥f+∥2)+4φ2(∥f−∥2))

= 2
(
∥f+∥2

2 +∥f−∥2
2

)
φ2(1)

= 2φ2(1)

= 2c2. (44)

where the second inequality in (44) holds since −f− satisfies the
constrain in (39) when s = ∥f−∥, and the third equality holds be-
cause φ2(s) = s2

φ2(1).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

540


