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Figure 1: Bi-variate noise vector fields generalize scalar noise fields and enable to generate procedural micro-patterns. Using two input
noises (bottom left) and a bi-dimensional color-map (top left) provides a much larger variety of patterns (large images), including Gaussian
patterns, profiled waves, concentric and non-concentric patterns. Discontinuities in the color-map yield structured micro-patterns. Both
generation and filtering are real-time.

Abstract

Stochastic micro-patterns successfully enhance the realism of virtual scenes. Procedural models using noise combined with
transfer functions are extremely efficient. However, most patterns produced today employ 1D transfer functions, which assign
color, transparency, or other material attributes, based solely on the single scalar quantity of noise. Multi-dimensional transfer
functions have received widespread attention in other fields, such as scientific volume rendering. But their potential has not
yet been well explored for modeling micro-patterns in the field of procedural texturing. We propose a new procedural model
for stochastic patterns, defined as the composition of a bi-dimensional transfer function (a.k.a. color-map) with a stochastic
vector field. Our model is versatile, as it encompasses several existing procedural noises, including Gaussian noise and phasor
noise. It also generates a much larger gamut of patterns, including locally structured patterns which are notoriously difficult
to reproduce. We leverage the Gaussian assumption and a tiling and blending algorithm to provide real-time generation and
filtering. A key contribution is a real-time approximation of the second order statistics over an arbitrary pixel footprint, which
enables, in addition, the filtering of procedural normal maps. We exhibit a wide variety of results, including Gaussian patterns,
profiled waves, concentric and non-concentric patterns.

CCS Concepts
• Computing methodologies → Rendering; Antialiasing; Texturing;

1. Introduction

Rendering images that look as realistic as possible is an impor-
tant goal in Computer Graphics. Textures are an efficient way
to improve objects’ appearance. Procedural modeling of textures
has many advantages compared to the use of classical texture
maps (discrete data arrays). By construction, they are generally
resolution-independent, not bounded in space and, yet, extremely
compact. They allow the generation of almost infinite variants

through the use of random number generators. By calling a single
procedure on every pixel of an image, it is possible to obtain a large
amount of details at a low cost. Procedural texture generation can
be based on procedural noises, used as random number generators.
They offer many advantages in terms of real-time evaluation and
compactness in memory. Last, procedural noises come with real-
time filtering methods, as filtering is needed to ensure coherence
and avoid flickering during movement and zoom in the rendered
scene.
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However, several difficulties limit the use of procedural textures,
especially for real-time applications. They are generally defined by
graphs as introduced by Cook in 1984. These graphs contain in-
put nodes (noises, color maps, ...) and operation nodes (heart of
the graph, that compute operations between the input to create
the output). Graphs representing rich patterns are often too time-
consuming to be evaluated in real-time and most of the opera-
tion nodes are difficult/impossible to filter (especially non-linear
nodes). Therefore most real-time applications do not use directly
procedural textures, but rather "bake" them into classical texture
maps, which can be then pre-filtered and rendered using fast tex-
ture fetches. Often, only when memory is critical, as for 3D textures
such as clouds, a truly procedural expression is kept in the shader.
In this case, the graph is enforced to be as simple as possible: only
a sum of a few noises is used and eventually combined with a very
simple 1D color/transparency transfer function stored as a 1D tex-
ture. But in this case, the limited expressiveness of noises combined
with simple 1D transfer functions represents an important break in
the use of procedural textures in real-time applications. An indus-
trial implementation of these kinds of graphs is used in Substance
Designer, among others. Our pattern model can be easily imple-
mented as a new atomic node for texture graphs.

In this paper, we propose a novel approach to the use of noise in
combination with transfer functions. Our key contribution is to in-
troduce a 2D vector noise combined with a subsequent more com-
plex, two-dimensional transfer function. Our bi-variate approach
significantly increases the range of patterns that can be modeled us-
ing only noises yet keeping the shader program very simple (thus
adapted to real-time applications). Furthermore, it also comes with
a known filtering method.

After a review of the literature (section 2), this paper presents the
following contributions:

• a new stochastic pattern model, based on the composition of a
2D transfer function by a vector noise (section 3);

• a real-time method to estimate the footprint statistics (section 4),
which allows for accurate real-time filtering;

• a practical GPU implementation using WebGL (section 5);
• a series of results (section 6) exhibiting a variety of new proce-

dural patterns, as well as improvements for known techniques
(LEAN mapping, phasor noise).

2. Previous work

Procedural noises are popular tools in computer graphics since
long [Per85]. They provide generation of texture over an arbitrary
large surface and do not require storage. Several families of meth-
ods exist [LLC*10]. Sparse convolution techniques are based on
the use of kernels convoluted by a random distribution [LLDD09;
GSV*14]. Other methods are based on the blending of discrete ker-
nels [GLM17; HN18]. These methods are limited in the range of
structured patterns they can produce.

The extreme compactness of noise makes it an ideal tool for vol-
umetric texturing. Many natural phenomena modeling systems use
noise to enhance models with high-frequency geometric details,
which is often called amplification. Historically, this has been intro-
duced by hypertextures [PH89]. Hypertextures also introduced 1D

transfer functions, like the gain and bias functions. Beyond adding
color to noise (as previously stated), it turns out to be also a suc-
cessful way of modifying the appearance of noise, and in the case
of hypertextures, the shape of 3D details. Noise-based amplifica-
tion addresses various phenomena such as cloudscapes [Sch17],
running water flows [PDG*19], or moss and soils [GD09]. Com-
pactness is generally the core reason why an explicit procedural
model is kept in the renderer, even for applications requiring high
performance like games, as in [Sch17].

Transfer functions are used for long to map material properties
to scalar fields. Especially scientific volume visualization applies
this technique. In this area, it has been early understood that 1D
transfer functions have a too limited scope. Early on, higher di-
mensioned transfer functions have been introduced [KKH02]. It
was shown that 2D (or higher) transfer functions significantly im-
prove the segmentation of features. In addition to the scalar value,
these functions are indexed by gradient or curvature, or any other
multi-variate information. A survey of multidimensional transfer
functions in scientific volume visualization is out of our scope but
can be found in [LKG*16].

Inspired by scientific volume visualization, our goal is to push
forward the use of transfer functions and explore novel possibilities
to design fast and compact patterns by using more complex multi-
dimensional functions composed with noise vector fields. We are
not aware of any other work that explicitly uses higher dimensioned
transfer functions for procedural modeling and rendering of micro-
patterns, which is our core motivation.

Some previous methods were proposed to generate structured
micro-patterns. Local random-phase noise [GSV*14] partially con-
trols the phases in a Gaussian process. The tiling and blending al-
gorithm [HN18] uses histogram transfer functions to reproduce non
Gaussian histograms. Phasor noise [TEZ*19] extracts the instanta-
neous phase of a complex Gabor noise, allowing for direct control
of the profile of waves. Until now, phasor noise is not suited to
real-time rendering because no filtering technique is available. Our
model generates micro-patterns with more variety and control than
local random-phase noise and tiling and blending. It can also repro-
duce and filter the phasor profiled noise in real-time.

Filtering is necessary to avoid aliasing problems such as flick-
ering. It ensures consistency during movement and zoom. Several
methods exist for textures [BN11]. Procedural noises come with
real-time filtering methods. Noises defined by their power spectrum
such as Gabor noise [LLDD09] can be filtered using frequency
clamping. Noise algorithms using discrete kernels such as Texton
noise [GLM17] or Tiling and blending [HN18] are filtered using
MIPmapping [Wil83].
Several methods were also proposed for filtering the composition
by a transfer function. Bergner et al. [BMWM06] present a method
to estimate the Nyquist frequency of the composition using spectral
analysis. Heitz et al. [HNPN13; HNPN14] propose a technique to
pre-filter non-linear composition functions stored in a color map.
Filtering methods need statistical information about the noise in
the pixel footprint, such as mean and variance. Some procedural
noise algorithms [LLDD09] own a closed form of the variance, but
only over an infinite extent, not over an arbitrary footprint. Deliot
et al. [DH19] approximate the variance as a constant for each level
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of detail. However, this erases many local variations and the results
are over-smoothed. The noise model presented in this paper can be
filtered using Heitz et al. method [HNPN14] with two-dimensional
function and we present a real-time estimation of the required sta-
tistical information in the pixel footprint. This real-time estima-
tion allows us to obtain a real-time implementation of the LEAN-
mapping algorithm for the filtering of normal-maps [OB10].

3. Color-mapped noise

In this section we present our noise model and the filtering method
used to make it usable in real-time rendering. This filtering method
was proposed by Heitz et al. [HNPN14]. In Section 3.2 we present
the formalization of their process to our 2D model.

3.1. Model

Our noise is defined as a composition

S(u) = H ◦N(u) (1)

where

N(u) =
[

Nx(u)
Ny(u)

]
(2)

associates a noise vector field N with any position u ∈ R2. The
transfer function H is defined on an interval of R2. It maps a 2D
vector onto an intensity in Rc, where c is the number of channels. In
this paper we show examples of greyscale (c = 1) and color (c = 3)
patterns. Figure 2 illustrates the model in the context of texture
synthesis. u are the texture coordinates, and H is encoded as a look-
up table, a.k.a. color map.

Figure 2: The noise vector field N (left) is evaluated at position
u and the intensities are used as coordinates in the color map H
(right).

This model encompasses several known procedural noises. A
Gaussian noise G can be reproduced trivially by setting Nx = G and
H(x,y) = x (Figure 3a). Note that the frequently used ridged noise
is also trivially obtained by setting Nx = G and H(x,y) = abs(x).
The phasor noise [TEZ*19] is reproduced by setting N equal to
the phasor field and H = P◦ antan2(x,y) with P a periodic profile
function (Figure 3b). Classical color mapped textures are repro-
duced by fixing a 1D color map along the x-axis in H (Figure 3c).
These results are marginal applications of our model, which can ad-
dress many new patterns by leveraging the richness of 2D transfer
functions (Figure 3d-3f). Thus, adding a second dimension to the
color-map provides a much wider range of possible layouts for the
colors. For example, uni-dimensional color-maps are restricted to

concentric patterns (Figure 3c). It is not possible to draw three dis-
tinct areas, all in contact with each other that produce mixed blots,
as in Figure 3d.

(a) (b) (c) (d) (e) (f)

Figure 3: Our model encompasses several procedural stochastic
patterns, including Gaussian noise (3a), phasor noise (3b), and
color mapped textures (3c). It can also generate new patterns by
leveraging the 2D transfer function (3d-3f).

3.2. Filtering

In real-time applications, procedural patterns are generated and fil-
tered on-demand at rendering time. To this end, it is mandatory to
have a real-time down-sampling process. In this section, we present
such a process for our patterns generator. The goal is to compute the
average

S(P) =
∫

H ◦N(u)ωP (u)du (3)

over an arbitrary pixel footprint P , which is represented by a non-
negative and compactly supported function ωP that integrates to 1
–usually a box or a clamped Gaussian. The challenge is to compute
Equation (3) in constant time. This is difficult because H is non-
linear (it cannot move out of the integral) and N is procedural (H ◦N
cannot be stored and pre-filtered). To achieve this, we apply the
filtering method developed by Heitz et al. [HNPN14]. They have
shown that Equation (3) is equal to the combination of the colors in
the color map H weighted by the filter and their presence in N over
the pixel footprint P . This way, Equation (3) is equal to

S(P) =
∫

H(n)DN,P (n)dn, (4)

where the weighting function DN,P is the probability distribution
of N over P .

To determine DN,P , Heitz et al. hypothesized that the input noise
N is gaussian. Thus, they approximate the distribution over P with
a gaussian distribution GµP ,ΣP , where µP and ΣP are the mean
and covariance matrix of N over P . This is only an approximation,
crude for small footprints, good for large ones. Thus Equation (4)
is approximated by a convolution

S(P)≈
[
H ∗G0,ΣP

]
(µP )

def
= Ŝ(µP ,ΣP ). (5)
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(a) Reference filtering S

(b) Approximate filtering Ŝ(µ,Σ)

(c) Approximate filtering Ŝ(µ̂, Σ̂)

Figure 4: Comparison of the filtering approximations Ŝ with the
reference S. From left to right: increasing footprint from 1 up to
1282 (image size 10242). The color-coded error maps use the 2-
norm ||Ŝ−S||2. The reference (4a) is computed with Equation (3).
The approximation (4b) is defined by Equation (5) and exact µ and
Σ. The approximation (4c) is defined by Equations (5), (8), and
(12).

Figure 4b shows that the filtering approximation Ŝ closely
matches the reference S. For small footprints (left) the error is very
low because S is locally almost linear. As the footprint size ap-
proaches the noise wavelength (fourth and fifth column), the error
grows because the Gaussian approximation over P loses accuracy.
For large footprints (right) the error drops because the distribution
over P approaches the theoretical Gaussian distribution.

Computing Equation (5) still requires a real-time evaluation of
the convolution. For that, Heitz et al. proposed to pre-compute the
convolution for a discrete set of mean and variance values, and store
it as

H(µP ,ΣP ). (6)

Our practical implementation of this idea is detailed in section 5,
and illustrated in Figure 5 right. Note that there is only two sam-
pling dimensions σx and σy for the covariance matrix, because
the independence of Nx and Ny make the covariance vanish so

ΣP =

[
σx 0
0 σy

]
is diagonal.

4. Real-time estimators of the footprint statistics

The last brick we need for computing Equation (5) in real-time is an
estimate of the mean µ and the covariance matrix Σ for an arbitrary
footprint P , which depends on the noise synthesis algorithm. Exact
values of µ and σ can be computed, but not in real-time, because the
complexity grows linearly with regard to the size of the footprint.
For real-time applications, the challenge is to provide an estimation

Figure 5: Estimation of S over P (left; dark red region) by Ŝ. Using
independent noises Nx and Ny allows to neglect the covariance and
to consider only mean and variance of the noises for the filtering.
The means and standards deviation (middle; µx, µy, σx and σy) are
used to fetch and interpolate pre-computed values H (right; red
cross).

in constant complexity whatever the size of the footprint. Most of
the algorithms that implement a Gaussian noise come along with an
estimate formula for the mean. Algorithms based on band-limited
kernels, such as Gabor noise [LLDD09] or LRP-noise [GSV*14],
use frequency clamping. Algorithms based on discrete kernels or
tiles, such as texton noise [GLM17] or tiling and blending [HN18],
use a MIPmap of the discrete example. Conversely, the variance is
usually known only for an infinite extent (i.e. the theoretical vari-
ance of the stochastic process). Only Deliot et al. [DH19] propose
to pre-compute a constant variance per level-of-detail, but it does
not vary across the texture. To the best of our knowledge, real-time
estimation of the variance over an arbitrary footprint is still an
open problem. Here, we propose a first real-time variance estima-
tor for the tiling and blending algorithm [HN18]. We explain only
the main formulas, useful for understanding and implementation.
We refer the reader to the supplemental document for a detailed
derivation of these formulas.

4.1. Tiling and blending background

We recall here the background about the tiling and blending algo-
rithm [HN18; DH19; Bur19]. This algorithm synthesizes a noise
N from a discrete input example E by tiling the infinite plane with
overlapping hexagonal tiles trimmed in E. Without loss of gener-
ality, it is assumed E has zero mean (otherwise both E and N are
shifted). Assuming that E is the realization of a Gaussian process,
N is evaluated at any location u as a weighted average of three
overlapping tiles :

N(u) =
3

∑
i=1

wi(u)Ei(u) (7)

The tiles Ei are trimmed at random locations in E. The weighting
functions wi decrease from 1 at the center of the tile to 0 at the
boundary, with ∑i w2

i (u) = 1 for all u.

4.2. Mean estimation

To filter N in real-time, a MIPmap of E is pre-computed, as sug-
gested in [HN18]. We denote {E0,E1,E2, . . .} the MIP hierarchy,
with E0 = E the finest level. Then, for a texel at level l, having a
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square footprint P with center Ṗ the mean over P is approximated
by

N(P)≈
3

∑
i=1

wi(Ṗ)El,i(P)
def
= N̂l(P) (8)

The tile El,i has the same shape as Ei but is trimmed in El . The
approximation is due to wi which is considered constant over the
footprint and evaluated at its center. At this stage, we can estimate
the mean over a square footprint P.

More advanced filtering, including anisotropic footprints and
weighting functions, requires an estimation over an arbitrary foot-
print P . Let P =

⋃
P be the coverage by several texels P at level l,

weighted by wP (P) > 0 that sum up to 1. The mean is estimated
by

N̂l(P) = ∑
P∈P

wP (P)N̂l(P). (9)

Equations (8) and (9) formalize the algorithm of Deliot et
al. [DH19]. We now move on to our contribution, which is the esti-
mation of the second order statistics, i.e. the covariance matrix.

4.3. Variance estimation

The purpose of this section is to derive a variance estimator sim-
ilar to the mean estimator in section 4.2. However, conversely to
the mean, the variance is not linear so its estimation is challenging.
Specifically, the derivations imply the estimation for mixes of ran-
dom variables (due to tile blending) and union of samples (due to
union of footprints). In the following, we provide the main results.
We refer the reader to the supplemental document for a detailed
derivation of these formulas.

First, a MIPmap of variances {V0,V1,V2, . . .} is pre-computed. It
is defined for any texel footprint P at level l, by

Vl(P)
def
=

1
#P ∑

u∈P
(E(u)−El(P))

2 . (10)

The variance over a texel

σ
2(P) = 1

#P ∑
u∈P

(
N(u)−N(P)

)2 (11)

is then estimated by

σ̂2
l(P)

def
=

3

∑
i=1

w2
i (Ṗ)Vl,i(P). (12)

This implies approximating wi over P by a constant and neglecting
the covariance between tiles. Note how wi is squared compared to
Equation (8).

Let P be an arbitrary footprint, discretized as P =
⋃
P with

weights wP (P). The variance

σ
2(P) = N2(P)−

(
N(P)

)2 (13)

is approximated by

σ̂2
l(P)

def
= N̂2

l(P)−
(

N̂l(P)
)2

, (14)

where N̂l(P) is defined by Equation (9), and

N̂2
l(P)

def
= ∑

P∈P
wP (P)

(
N̂l(P)

2 + σ̂2
l(P)

)
. (15)

4.4. Covariance estimation

Let’s have a second noise N′ synthesis using tiling and blend-
ing method from a discrete input example E′. We denote
{E′

0,E
′
1,E

′
2, . . .} the MIP hierarchy, with E′

0 = E′ the finest level.
The estimation of covariance between N and N′ is similar to the
variance estimation.

We define a MIPmap of covariance {C0,C1,C2, . . .} as

Cl(P)
def
=

1
#P ∑

u∈P
(E(u)−El(P))

(
E′(u)−E′

l (P)
)
. (16)

The covariance over a texel is estimated by

ĉovl(P)
def
=

3

∑
i=1

w2
i (Ṗ)Cl,i(P) (17)

The covariance over P =
⋃
P is estimated by

ĉovl(P)
def
= N̂N′

l(P)− N̂l(P)N̂′
l(P) (18)

with

N̂N′
l(P)

def
= ∑

P∈P
wP (P)

(
N̂l(P)N̂′

l(P)+ ĉovl(P)
)

(19)

5. Implementation and performance

To allow easy experimentation of our method for all readers, we
choose to do the implementation using WebGL2.0. (based on the
specification of OpenGL ES 3.0). This allows us also to ensure
that it could really be implemented on almost any graphics hard-
ware. The tiling and blending part has been inspired by the orig-
inal code from Deliot et al. [DH19]. The input textures (noises,
variances, and color-maps) can be stored on 1-byte fixed precision
channel as usage of 32 bits floating-point storage does not improve
visual quality. As the variance values are always below 0.05 we
multiply it by 16 to optimize the fixed precision of the eight bits
channel. All intermediate computations are done and temporarily
stored with floating-point precision to avoid approximation. The
pre-computations of variances MIPmap and Gaussian filtering of
the color-map are done on GPU by multiple passes of drawing in
Frame Buffer Objects. A single clipped triangle is drawn to traverse
the texture. Results are then copied from floating-point textures into
the final 1-byte storage.

In our implementation, the noise values Nx and Ny lie in [0;1].
µx and µy are uniformly sampled with 256 values in [0;1]. As the
changes are more sensitive for small variance values than large
ones, we sample σx and σy exponentially, at 2k/256 for 0 ≤ k ≤ 5.
It results in 62 pre-filtered color maps H(·, ·,σx,σy) of size 2562, as
illustrated in Figure 5 right. The total storage for three 8-bit color
channels amounts to 7MB. Then, for an arbitrary set of parameters,
Ŝ is fetched in H.

Rendering is straightforward. The actual bottleneck of the
method is memory bandwidth usage. As the noises and their vari-
ances are 1-channel textures, they are compacted in one 4-channel
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8-bits texture. This does not reduce memory usage but reduces the
spreading of data in memory, and allows this part of the algorithm
to be equivalent to the implementation of Deliot et al. [DH19].
Theoretically, we do four more texel fetches than in the origi-
nal method, but in practice, we just use four channels instead of
three. The two variances of generated noise textures can be com-
puted with only one matrix vector product. Once we get mean and
variance values for both the two input noises, we can just fetch
the value in the color-map filtered images. They are stored in a
Texture2DArray, which is an array of textures internally managed
by OpenGL. We use bilinear interpolation with respect to (µx,µy),
while nearest level selection proved to be sufficient with respect to
(σx,σy). It results in 7 fetches: 3 in the MIP-mapped noises and 4
in the pre-filtered color-maps.

The filtering of variance cannot be done automatically by
OpenGL. We have implemented the anisotropic filtering algorithm
as explained in the OpenGL specification. This allows us to com-
pute the variance following Equation (14). Results on mean values
are visually equivalent to the use of OpenGL filtering. In the case
of anisotropic filtering (×K), we must do a maximum of 3K fetches
in the MIPmap. All tiling and blending computations are also done
K times. The access and computation done on the color-map is not
impacted.

We benchmarked on three different GPUs: NVidia 2080Ti, AMD
Radeon Pro 5500M (Apple MacBook pro) and Intel UHD 630. Fig-
ure 6 reports the performances in Giga-texels per second.

Figure 6: Performance in Giga-texel per second on different GPUs.

Our implementation allows us to obtain 3D rendering of patterns
(Figure 15). The WebGL2.0 implementation can be found on the
project web page.

6. Results

In this section, we first evaluate the performance of our model.
Then we investigate the impact of the color map and the noise
spectra while exploring a variety of stochastic patterns. We also
reproduce the phasor noise and provide unprecedented real-time
filtering. We show a valuable combination of our variance estima-
tors with LEAN mapping. Eventually, we discuss limitations and
avenues for future works.

6.1. Error measurements

Table 1 shows approximations errors for the first order moment µ̂
and the standard deviation σ̂. Note that we measure standard devia-
tion (not variance) for commensurability with the mean. Note also
that we measure mean errors (not RMSE, which would be much
lower) because they are known to be more meaningful visually. For
each level of filtering (rows), we measure the absolute error and the
relative error (in parenthesis). Absolute errors are quite low for both
mean and standard deviation. Due to low reference values for σ, the
relative error may increase up to 30%. However, once composed
with the color map, the results are much less sensitive to the errors
in σ than in µ. Figure 4c shows that the visual difference remains
low. The errors concentrate on the edges of micro-patterns, which
correspond to the discontinuities in the color map that increase the
approximation error of Equation (5). A crucial observation is that
the approximations are spatially coherent, which implies that the
rendering is temporally coherent as the camera moves. Extremely
contrasted color-maps provoke some few residual shimmers. As ex-
pected, anisotropic filtering improves the image sharpness. This can
be observed in the video and in the WebGL demo that accompanies
the paper.

low frequency high frequency

µ̂ σ̂ µ̂ σ̂

P= 2×2
0.0108 0.0014 0.0455 0.0111

(0.0230) (0.3269) (0.0910) (0.3973)

P= 4×4
0.0181 0.0027 0.1131 0.0283

(0.0383) (0.2902) (0.2261) (0.4534)

P= 8×8
0.0330 0.0056 0.1018 0.0394

(0.0698) (0.3085) (0.2035) (0.3345)

P= 16×16
0.0453 0.0117 0.0322 0.0459

(0.0959) (0.3265) (0.0643) (0.2820)

P= 32×32
0.0818 0.0248 0.0063 0.0477

(0.1732) (0.3660) (0.0127) (0.2793)

P= 64×64
0.0851 0.0355 0.0017 0.0441

(0.1801) (0.3194) (0.0033) (0.2493)

P= 128×128
0.0619 0.0344 0.0005 0.0342

(0.1310) (0.2444) (0.0009) (0.1882)

Table 1: Approximation error for mean µ̂ and standard deviation
σ̂ estimators. Each cell contains both the absolute and relative (in
parentheses) mean errors. Left / right: a low frequency isotropic
noise and a high frequency anisotropic noise are tested. Top to bot-
tom: increasing footprint size. Mean error values of the approxi-
mation of first order moment and standard deviation.

6.2. Choice of the color map

The results are highly influenced by the layout (Figure 7) and the
palette (Figure 8) of the color map.

Each region in the color-map corresponds to a specific couple of
noise intensities. The borders of the map correspond to the highest
and lowest values of Nx and Ny, while the center of the map corre-
sponds to values close to the average intensity. Coloring the borders
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(a) (b)

(c) (d)

Figure 7: Exploration of different color map layouts (top left). The
same input noises (bottom left) and the same colors are used. Note
how the layout modifies arrangements of blots.

of the color-map (Figure 7a) produces scattered blots that can over-
lap. With concentric regions (Figure 7b), the central color (dark
green) draws a kind of a network partially connected depending on
the size of the central region. The ring-shaped region (light green)
wrapping the central region, creates an edging around the previous
patterns. Drawing a completely horizontal (or vertical) (Figure 7c)
color-map will reproduce a uni-dimensional color-map along x-axis
(respectively y). It brings out completely concentric patterns due to
the utilization of only one of the two input noises and the fact that
one colored band can only be in contact with a maximum of two
other colors. On the contrary, with oblique boundaries (Figure 7d)
all the blots seem intertwined in the same layer.

In Figure 8 we explore different color palettes with the same lay-
out. The generated patterns have the same shape but evoke differ-
ent textures. Three weld colors (Figure 8a) generate adjacent blots.
The green-brown palette (Figure 8b) evokes camouflage patterns.
Adding a uni-color band in the midst of the previous regions (Fig-
ure 8c) creates thin strands between blots, which evoke marble-
like patterns. Bordering the three regions with different colors (Fig-
ure 8d) colors the edging of the blots.

6.3. Choice of the noise spectrum

The spectral characteristics of the noise field N impact the shape of
the elements in the generated pattern. In Figure 9 we explore com-
binations of low/high frequencies and isotropic/anisotropic spectra.
Two low-frequency isotropic noises (Figure 9a) generate isotropic
patterns of the same frequency. Combining low and high frequen-
cies (Figure 9b) creates detailed sub-patterns. Mixing isotropy and
anisotropy (Figure 9c) superposes stripes. Mixing two orientations
(Figure 9d) interleaves stripes like in weaved materials.

(a) (b)

(c) (d)

Figure 8: Exploration of various color palettes for similar layouts
and same input noises (left of each sub-figure).

(a) (b)

(c) (d)

Figure 9: Exploration of different noise spectral contents. On the
left of each sub-figure, the color-map used and parts of the two
input noises.

6.4. Filtering of the phasor noise

Our model can also reproduce the phasor noise [TEZ*19], as shown
in Figure 10. Recall that the phasor noise is defined as a periodic
profile P composed with the argument of a phasor field. We tune
our model S = P◦arctan2(Nx,Ny) where the transfer function H =
P ◦ arctan2 and N equals the phasor field. As a consequence, the
phasor noise can be filtered in real-time with our model (Figure 11).
Phasor noise is thus made suitable for real-time rendering, which is
without precedent.

Our model allows to reproduce the phasor noise with different
profiles, for example using two bi-lobe noises as input and a sine
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(a) sine profile (b) saw teeth profile

(c) square profile (d) saw teeth profile with colors

Figure 10: Reproduction of the phasor noise as a special case of
our model, with different input noises and profiles. Top left is the
color-map and bottom left a crop of the two input noises.

(a) Reference filtering S defined by Equation (3).

(b) Approximate filtering Ŝ(µ̂, Σ̂).

(c) Approximation error ||Ŝ(µ̂, Σ̂)−S||2

Figure 11: Comparison of the reference filtering S (11a) with the
approximation Ŝ (11b) using approximation of µ and Σ, for the
procedural phasor noise with sinus profile. The color-coded error
maps (11c) use the l2-norm.

(Figure 10a) or a saw teeth function (Figure 10b). Figure 10c shows
the result using the sum of two bi-lobe noises as input and a square
profile. Finally, we can use three-channel color-maps (Figure 10d),
to color some parts of the pattern.

6.5. Procedural normal maps

Our variance and covariance estimators (Section 4.3 and 4.4) al-
lows to filter procedural normal maps defined by Gaussian slope
fields in real-time using the LEAN mapping algorithm [OB10]. Re-
call LEAN mapping consists in translating explicit macro-normals
(foreground Figure 12) to micro-normals statistics (background
Figure 12). These statistics (mean and covariance matrix of the
slopes) define an anisotropic roughness when zooming out. Until
now, the covariance matrix was approximated at best by a constant

(a) [DH19] (b) reference (c) ours (d) ours w/o cov.

Figure 12: Accurate real-time filtering of procedural Gaussian
normal-maps using LEAN mapping. On the top row the global view
of the specular lobe and on the bottom row a zoom on the mid-
distance. The previous estimator, from Deliot et al. [DH19], con-
sider the variance as constant by level of detail (12a). Our vari-
ance and covariance estimators allow to preserve mid-distance
details (12c). If we neglect the covariance (considering the input
noises as independent), the shape of the lobe is modified (12d).

for each level of detail [DH19]. As shown in Figure 12a, the details
are lost and it results in a smooth specular lobe. We apply our es-
timators of Section 4 directly to the Gaussian slope field (Nx,Ny)
computed by tiling and blending. As shown in Figure 12c it repro-
duces mid-distance details. Conversely to the color-mapped model,
the input noises are not independent, so neglecting the covariance is
not possible as it would modify the shape of the lobe (Figure 12d).
Note that there is no transfer function H for this application, so
our statistics estimators are used directly in the LEAN mapping. To
the best of our knowledge, we reach unprecedented accuracy for
filtering Gaussian normal maps that are generated procedurally in
real-time.

7. Discussion

Covariance between input noises. In Section 3.2 we formalized
the filtering method using the covariance matrix Σ. Two cases can
be distinguished. If the input noises are independent, we can ne-
glect the covariance and use only the variance of the noises in-
dependently. Visually, it is characterized by an axis-aligned bi-
dimensional distribution DN,P , which can be separated into two
marginal distributions. Our color patterns fall into this case, be-
cause Nx and Ny are independent. Conversely, for the case of nor-
mal map filtering using LEAN mapping, Nx and Ny are the slopes of
a single Gaussian height field. So they are not independent and re-
quire the additional covariance estimator mentioned in Section 6.5.
Using correlated noises as input for color patterns is an interesting
idea for future work as it possibly could further increase the range
of patterns.

Anisotropy. We draw the attention of the reader to three different
types of anisotropy involved in this work, which are mostly inde-
pendent. First, the pre-filtering of H in Section 3.2 is anisotropic be-
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Figure 13: 3D rendering of procedural patterns implemented in
Adobe Substance Designer.

cause, even when Nx and Ny are independent they may have differ-
ent variances σx and σy. Second, the noises may be isotropic or not,
depending on their spectral content (see e.g. Figure 9). Third, in
Section 4.2 anisotropic filtering refers to anisotropic footprints P .

Pattern control. We have shown a variety of patterns that our
model can generate. However the creation process is yet empiri-
cal (the color palette, the layout of the color-map, and the spec-
tral content of the noises). Scientific volume visualization already
pointed out some issues that would require further research. One
is the design of 2D transfer functions using specific interfaces or
automatic mechanisms. For example, specific inverse procedural
modeling techniques could possibly help users create more easily
color patterns using our approach (so-called “by-example synthe-
sis"). This is a promising option, but instantiating the model from
an input seems to be a challenge.

Artistic control over µ and σ. The filtering method needs the
knowledge of first and second-order statistics (mean, variance and
covariance) over the pixel footprint. To obtain a realistic rendering
with spatial and temporal consistency, it is necessary to estimate
values close to the exact values. Thus, we proposed real-time esti-
mators for the second-order statistics. An artistic control over µ and
σ might be an interesting idea for future work. However, it would
be not trivial to design coherent values, as to enforce spatial and
temporal consistency.

Synthesis algorithm. Our model is independent of the algorithm
chosen to generate Nx and Ny. For offline synthesis, any algorithm
for Gaussian processes works. For real-time synthesis, however, we
solved the estimation of variance only for one of them (tiling and
blending, Section 4). Designing real-time variance estimators for
other algorithms (e.g. Gabor noise) is an open question.

Procedural texture graphs. Our model is fully compatible with
industrial implementations of texture graphs. Figure 13 shows a 3D
rendering of a procedural pattern implemented in Adobe Substance
Designer. As shown in Figure 14, it is possible to cascade sev-
eral operation nodes, including our bi-dimensional transfer func-
tions to obtain more complex patterns. However, it may cause non-
Gaussian intermediate noises, that our model is not yet able to filter
in real-time.

8. Conclusions

In this paper, we presented a new stochastic micro-pattern model.
It is defined as a composition of a noise vector field with a bi-
dimensional transfer function. This model allows us to reproduce
several known patterns, including procedural phasor noise, or well-
known colored noises obtained using a uni-dimensional color-map.
By taking advantage of the two dimensions of the color-maps, we
can generate a wider range of patterns, such as non-concentric blots
and interleaved stripes. Our noise model comes with a filtering
technique using Heitz et al. method [HNPN14]. Finally, we pre-
sented estimators of the footprint statistics in real-time, allowing
for procedural real-time generation and rendering. As a bonus, we
are able to filter the phasor noise and to improve LEAN mapping
for procedural Gaussian normal maps.
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