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Abstract

Adverse weather conditions such as haze, rain, and snow often impair the quality of captured images, causing detection net-
works trained on normal images to generalize poorly in these scenarios. In this paper, we raise an intriguing question — if the
combination of image restoration and object detection, can boost the performance of cutting-edge detectors in adverse weather
conditions. To answer it, we propose an effective yet unified detection paradigm that bridges these two subtasks together via
dynamic enhancement learning to discern objects in adverse weather conditions, called TogetherNet. Different from existing
efforts that intuitively apply image dehazing/deraining as a pre-processing step, TogetherNet considers a multi-task joint learn-
ing problem. Following the joint learning scheme, clean features produced by the restoration network can be shared to learn
better object detection in the detection network, thus helping TogetherNet enhance the detection capacity in adverse weather
conditions. Besides the joint learning architecture, we design a new Dynamic Transformer Feature Enhancement module to
improve the feature extraction and representation capabilities of TogetherNet. Extensive experiments on both synthetic and
real-world datasets demonstrate that our TogetherNet outperforms the state-of-the-art detection approaches by a large margin
both quantitatively and qualitatively. Source code is available at https://github.com/yz-wang/TogetherNet.
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1. Introduction

Object detection has been widely used in various practical real-
world applications [CSKX15, HZL*21, BK21, WYB*22]. Despite
the success of learning-based detectors on normal images, they usu-
ally fail to detect objects in images with adverse weather condi-
tions, especially in hazy images [CLS*18,HLJ21]. This can be at-
tributed to the noticeable degradation in image visibility and con-
trast caused by variant weather, which in turn drops the perfor-
mance of object detectors. How to improve the accuracy of cutting-
edging detectors in adverse weather conditions has attracted a great
deal of attention [SOYP20, HR21,LRY *22, SCN21].

To tackle this challenging problem, an intuitive solution is to
mitigate the effects of weather conditions by pre-processing the
images using the restoration techniques such as image dehazing
[LMSC19,LDR*20, DPX*20, RLHS20b, LLZX21]. Most of them
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Figure 1: Detection results by different methods on two typical
examples of adverse weather conditions. From (a) to (c): the detec-
tion results by (a) Semi-YOLOXs [LDR*20] ("dehaze+detect"), (b)
MS-DAYOLO [HR21], and (c) our TogetherNet.
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can enhance the overall visibility of these degraded images. But,
can the restored images serve the downstream object detection
task effectively? The answer may be not positive. That is because
the restored images lose some important details which are bene-
ficial to object detection [LRF*18]. We consider the good way to
serve object detection is to make object detection itself involve im-
age restoration. However, if simply combining a dehazing network
with a detection network in a cascaded manner will increase the
computational overhead and slow the inference time, which is un-
desirable in resource-constrained applications. We further consider
the good way to serve object detection in adverse conditions is to
bridge image restoration and object detection together in a unified
yet joint learning paradigm.

In this paper, we respond to the intriguing learning-related ques-
tion: combining a low-level image restoration task with a high-
level object detection task to develop a multi-task joint learning
paradigm will improve the performance of cutting-edge detection
models in adverse weather conditions. Accordingly, we propose a
novel unified paradigm that bridges these two subtasks together
via dynamic enhancement learning for discerning objects in ad-
verse weather conditions, termed a TogetherNet. Specifically, To-
getherNet employs a cutting-edge object detector (i.e., YOLOX
[GLW*21]) as the detection module, and exploits a feature restora-
tion module to share the feature extraction module (backbone) with
the detection network for image restoration. We train Together-
Net in an end-to-end fashion to simultaneously learn about image
restoration and object detection. In this way, the latent information
hidden in degraded images can be restored to benefit the detec-
tion task. In turn, the training of the detection task helps the back-
bone network to extract deeper structural and detailed features, thus
facilitating the image restoration task. Moreover, considering that
the performance of object detectors under adverse weather is usu-
ally limited, a Dynamic Transformer Feature Enhancement module
(DTFE) is proposed to further enhance the feature extraction and
representation capabilities of the model, thus improving its detec-
tion accuracy in such scenarios.

Recently, some approaches [SUHS19,LRY *22,HR21,RSA*21]
cast object detection in adverse weather conditions as a task of
learning models from a source domain (clean images) to a target
domain (under adverse weather), i.e., unsupervised domain adap-
tation. These methods consider that compared with the clean im-
ages (source domain) used to train the detectors, the images (tar-
get domain) captured in adverse weather suffer from an obvious
domain shift problem [GLC11,CLS*18]. They mostly employ do-
main adaptation strategies such as adversarial training to alien the
target features with the source features. Despite the promising re-
sults achieved by domain adaptation under adverse weather, they
usually ignore the latent information hidden in the degraded im-
ages which can also provide additional beneficial information for
the detection task. As exhibited in Figure 1, compared with the
“dehaze + detect”, and domain adaptive-based detection models,
the proposed TogetherNet can detect more objects with higher con-
fidence, which demonstrates that our model outperforms the other
algorithms for detecting objects in adverse weather. Note that Semi-
YOLOXSs is a typical “dehaze + detect” method that first restores
the image and then detects the object, so the results in Figure 1 look
different from other methods.

Extensive experiments on both synthetic benchmark (VOC-
FOG-test) and real-world datasets (Foggy Driving Dataset
[SDVG18] and RTTS [LRF*18]) demonstrate that our TogetherNet
is far superior to the state-of-the-art object detection approaches. In
summary, the main contributions are threefold:

e An effective yet unified detection paradigm is proposed for dis-
cerning objects in adverse weather conditions, which leverages a
joint learning framework to perform image restoration and object
detection tasks simultaneously, called, TogetherNet.

e We propose a Dynamic Transformer Feature Enhancement mod-
ule (DTFE) to enhance the feature extraction and representation
capabilities of TogetherNet.

e We compare TogetherNet with various representative state-of-
the-art object detection approaches via extensive experiments,
including “dehaze +detect”, domain adaptive-based, multi-task-
based, and image adaptive-based detection models. Consistently
and substantially, TogetherNet performs favorably against them.

2. Related Work

In this section, we briefly summarize state-of-the-art object detec-
tors that have produced encouraging results in general scenarios
and under adverse weather conditions.

2.1. Object Detection

As along-standing and fundamental task in computer vision, object
detection has attracted extensive research attention in academia and
industry [ZZXW19, LOW*20]. Recently, with the rapid develop-
ment of convolutional neural networks (CNNs), learning-based de-
tectors have dominated the modern object detection field for years.

Current object detection methods can be broadly categorized into
two major groups, namely region proposal-based and regression-
based. For region proposal-based approaches, they typically first
employ methods such as selective search [UVDSGS13] to produce
the candidate proposals, and then refine them for subsequent ob-
ject detection. R-CNN [GDDM14] is the most representative re-
gion proposal-based detector, which adopts a CNN to extract fea-
tures for the produced proposals, and then applies a support vector
machine to perform classification. Inspired by the success of R-
CNN in object detection, numerous variants based on this frame-
work have sprung up, including Fast R-CNN [Girl5], Faster R-
CNN [RHGS15], Libra R-CNN [PCS*19] and Dynamic R-CNN
[ZCM*20]. Despite achieving encouraging detection accuracy, re-
gion proposal-based approaches are not satisfactory in terms of
inference speed, which are undesirable in real-time applications.
Therefore, to achieve a better speed-performance trade-off, vari-
ous regression-based methods are developed for real-time detec-
tion. Representative approaches including YOLO series [RDGF16,
RF17,RF18,BWL20,JSB21,GLW*21], SSD [LAE*16], RetinaNet
[LGG*17], CenterNet [ZWK19], etc. In a nutshell, regression-
based detectors are generally faster, but their detection performance
is slightly weaker than region proposal-based detectors.

2.2. Object Detection in Adverse Weather

Compared with general object detection, few research efforts have
been explored on object detection in adverse weather conditions.
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Figure 2: The architecture of TogetherNet. It consists of both the object detection and image restoration networks. Note that the restoration
module is only activated during the training phase. CSP/CSP-conv refers to Cross Stage Partial Network [WLW*20] with/without residual
networks, DTFE refers to Dynamic Transformer Feature Enhancement module, and SC Cony refers to self-calibrated convolutions [LHC* 20].

Early methods mainly focused on pre-processing the degraded
images by existing restoration algorithms such as image dehaz-
ing [HSTI11, QWB*20, WYG*22, SZB*22] or image deraining
[LQS*19, RLHS20a, DWW™*20], and then sending the processed
images to the subsequent detection network for object detec-
tion. Although employing image restoration approaches as a pre-
processing step can improve the overall quality of degraded im-
ages, these images may not definitely benefit the detection perfor-
mance. A few prior-based efforts [LPW*17,HLJ21] have attempted
to jointly perform image restoration and object detection to mit-
igate the effects of adverse weather-specific information. Sindagi
et al. [SOYP20] develop a prior-based unsupervised domain adap-
tive framework for detecting objects in hazy and rainy conditions.
Liu et al. [LRY*22] propose an image-adaptive detection network
for object detection in adverse weather conditions, which com-
bines image restoration and object detection into a unified frame-
work and achieves very promising results. Recently, several meth-
ods [SLC19,ZPY*19,RCS*19,ZTHJ21] have begun to exploit do-
main adaption to overcome this problem. Zhang et al. [ZTHJ21]
treat object detection in adverse weather as a domain shift problem
and propose a domain adaptive YOLO to improve cross-domain
performance for one-stage detectors.

3. TogetherNet

To boost the detection capacity of object detectors in adverse
weather conditions, we come up with such a solution - is it possible
to develop a unified detection paradigm that incorporates such de-
tection task as a joint learning framework, while encouraging image
restoration and detection tasks to benefit each other? If the answer
is positive, our method can effectively address the detection of ad-
verse weather scenarios. It is the focus of this work.

In this section, we first introduce the overview of the proposed
unified detection paradigm, called TogetherNet, to demonstrate
how we address the detection problem under adverse weather con-
ditions. Next, the proposed restoration network is described in
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detail. After that, we elaborate on the proposed Dynamic Trans-
former Feature Enhancement module (DTFE) to explore the poten-
tial of deformable convolutions and self-attention mechanisms in
feature extraction and representation. Finally, we describe the self-
calibrated convolutions and Focal loss for optimizing our network
to further improve the detection performance in adverse weather.

3.1. Overview of TogetherNet

The overall architecture of the proposed TogetherNet is depicted
in Figure 2. Different from existing detection efforts, we consider
overcoming the detection task from the following three perspec-
tives. First, we employ an image restoration module to mitigate
the influence of weather-specific information on the detection task.
Second, a multi-task joint learning paradigm is developed to en-
courage low-level image restoration and high-level object detection
tasks to collaborate and promote each other. Finally, a feature en-
hancement module is exploited to improve the feature extraction
and representation capabilities of the model, such that more latent
features can be revealed from degraded images to benefit image
restoration and detection tasks.

YOLO series detectors [RDGF16,RF17,RF18, BWL20,JSB21,
GLW™21] are the most representative regression-based detection
models, which have been successfully applied in numerous sce-
narios. Recently, YOLOX [GLW*21] has been released as the lat-
est version of the YOLO series detectors. Despite the promising
results achieved by YOLOX in various benchmark datasets (e.g.,
MSCOCO [LMB*14], PASCAL-VOC [EVGW ™ 10]), there are still
many challenging yet unsolved problems. First, the YOLOX fam-
ily detectors are originally designed for object detection in gen-
eral yet easy scenes, without considering how to cope with the
object detection in adverse weather conditions. Second, similar to
most existing detectors, the YOLOX family detectors are suscepti-
ble to the weather-specific information in the detection task under
adverse weather, resulting in a significant drop in detection accu-
racy. Third, YOLOXs (the smallest version of the YOLOX family)
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is very lightweight and efficient, which is promising for resource-
constrained mobile devices. But its detection performance is thus
largely dropped for the adverse weather scenes.

To this end, we start from these three aspects and propose a
novel unified detection paradigm for discerning objects in adverse
weather conditions, called TogetherNet. To attain this objective, the
proposed TogetherNet adopts one of the best object detectors, i.e.,
YOLOXs as our detection network to perform detection task. Our
TogetherNet has the potential to benefit from a more complex ver-
sion of the YOLOX family (e.g., YOLOXm and YOLOX]I) to fur-
ther improve its detection performance. However, we choose the
smallest version of YOLOX because a lightweight model is more
desirable in resource-limited/real-time applications.

As depicted in Figure 2, the proposed TogetherNet consists of
two main modules, i.e., the detection network and the restoration
network. Given a hazy input image, we first employ the focus op-
eration in the backbone module to separate the image into different
granularities and regroup them together to enhance the image fea-
tures. Then, several cross stage partial modules (CSP) [WLW*20]
and a Dynamic Transformer Feature Enhancement module (DTFE)
are employed to extract the complex and latent features from the re-
structured feature map. DTFE is a novel feature enhancement mod-
ule developed to expand the receptive field with adaptive shape and
enhance the model’s feature representation capability for better de-
tection and image restoration. After that, the extracted features are
transmitted to both the restoration module and the neck module to
perform different tasks. In this way, TogetherNet can benefit from
the joint learning framework, where the clean features produced by
the restoration module can be shared to learn better object detec-
tion in the detection network. Finally, the detection head module
will produce the final class probability scores, bounding boxes, and
confidence scores.

Moreover, to further improve the detection capacity of Together-
Net and well address the challenge of detecting objects in adverse
weather, we introduce a multi-scale feature enhancement module,
namely, self-calibrated convolutions and the well-known Focal loss
into our model. Both of them have been widely used in object de-
tection networks and proved to be effective in improving detection
accuracy, which will be described in the following sections. We
emphasize that, since this work mainly focuses on object detection
in adverse weather, and introducing the image restoration module
in the testing phase would significantly slow down TogetherNet’s
inference speed, the restoration module is only activated during the
training phase.

3.2. Restoration Network

In our design, the restoration network is responsible for recovering
the clean images and sharing these restored features with the detec-
tion network during joint learning to promote the model’s detection
accuracy in adverse weather conditions. To attain this objective, we
employ the backbone network to extract the complex and latent fea-
tures hidden in the input image for simultaneously learning image
restoration and object detection.

Considering that the features extracted by the backbone network

(a) Input

(b) Ours w/o restoration loss (c) Ours

Figure 3: Visualization of feature maps.

may be degraded by weather-specific information (i.e. haze), re-
sulting in poor detection performance, a decoder-like network is
developed as our restoration module to eliminate these effects as
much as possible. As demonstrated in Figure 2, to restore the clean
image features, three deconvnet, an up-sampling operation, and a
Tanh activation function are adopted to produce the final clean im-
ages. Moreover, we also introduce the skip connection strategy to
facilitate the detection task by revealing multi-scale latent features
while avoiding the gradient vanishing problem.

To perform image restoration, the mean square error (MSE) loss
is employed to train the restoration network, which can be ex-
pressed by:

n
Le= Y (YY), M
i=1

where n denotes the batch size, SA(,- refers to the ground truth image,
and Y; refers to the estimated clean image. Actually, using a more
complex network architecture or loss function may enhance the de-
hazing performance of current models, we prefer to adopt a simple
CNN-based network and MSE loss to achieve a better parameter-
performance trade-off.

To better understand the effectiveness of the proposed restora-
tion network, we visualize the features of the last layer in our back-
bone module (with/without restoration loss). As depicted in Figure
3, features with restoration loss mitigate the influence of weather
information on them to some extent, and can still focus on regions
containing objects (see the red regions in Figure 3), allowing for
better performing detection tasks.

Furthermore, we have tried to send the clean images recovered
by the restoration network directly to the detection module for
object detection, but the detection accuracy appears to be greatly
dropped. We argue that the restored clean image weakens some
features of the original image, and even creates a new domain
shift problem during the image restoration, prohibiting such a strat-
egy from achieving optimal performance. In light of this, we con-
sider employing the restoration network to produce the latent clean
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features from the backbone network through learning the image
restoration task. As a consequence, the improved detection perfor-
mance of TogetherNet can be achieved by jointly optimizing image
restoration and object detection.

3.3. Dynamic Transformer Feature Enhancement Module

Fundamentally, the feature extraction and representation capabil-
ities of the network directly determine the performance of the
model. Hence, we argue that there are two solutions to reduce the
impact of weather-degradations on detection tasks under adverse
weather. The first approach is to expand the receptive field of the
network to help the model fuse more spatially structured informa-
tion, so that the objects can be discerned from the area less affected
by weather-specific information. Another approach is to enhance
the feature extraction capability of the network so that objects can
be detected directly from these areas with poor visibility. To this
end, we develop a novel Dynamic Transformer Feature Enhance-
ment module (DTFE) to improve the model’s feature extraction and
representation capabilities for better image restoration and object
detection. The DTFE module mainly consists of two parts, i.e., a
dynamic feature transformation network (DFT) and a Transformer-
based feature enhancement network (TFE), as depicted in Figure 4.
Specifically, we employ two deformable convolutions [DQX"17]
to form the dynamic feature transformation network, which can ex-
pand the receptive field of the model with adaptive shape and im-
prove its transformation ability. For the feature enhancement net-
work, we adopt the Vision Transformer block [DBK*20] to ex-
plore the potential of the self-attention mechanisms in improving
the model’s feature representation capability.

Different from conventional CNNs, the kernels in deformable
convolutions are dynamic and flexible, which can capture more
spatially structured information. Moreover, the work [ZSL*20] has
demonstrated that dynamic and flexible convolution kernels can
effectively improve the feature transformation capabilities of net-
works, such that the deformable convolutions are employed to en-
hance the feature for object detection. Therefore, we develop a dy-
namic feature transformation network based on deformable convo-
lutions to expand the receptive field with adaptive shape and im-
prove the model’s transformation capability (see Figure 4). In this
way, our model can focus on more areas that are less affected by
weather-specific information, thus reducing the impact of weather-
degradations on detection accuracy.

Recently, Vision Transformers (ViTs) have become one of the
dominant models in computer vision owing to their ability to learn
complex dependencies between input features via self-attention
mechanisms. Given this, we consider adopting the ViT module in
the design of the backbone network to boost its feature represen-
tation ability, thus improving the performance of the subsequent
image restoration and object detection tasks. In particular, we in-
troduce a feature enhancement network via the Vit module in the
last layer of the backbone network to further enhance the extracted
features. It enables the backbone network to build complex and
long-range spatial dependencies between the input features, thus
improving the detection capacity of our TogetherNet.
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Figure 4: The architecture of the Dynamic Transformer Feature
Enhancement module (DTFE). DTFE can help the backbone net-
work improve its feature extraction and representation capabilities
for better image restoration and object detection. DFT refers to dy-
namic feature transformation network, TFE refers to Transformer-
based feature enhancement network.

3.4. Self-calibrated Convolutions

The self-calibrated convolution network is an improved CNN struc-
ture proposed by Liu et al. [LHC*20], which can build long-range
spatial and inter-channel dependencies around each spatial loca-
tion. Therefore, it can enlarge the receptive field of each convolu-
tional layer and enhance the feature extraction ability of CNNs. In
light of this, we consider adopting the self-calibrated convolution
network as a multi-scale feature extraction module to cope with the
weather-degradation problem in the detection task and improve the
detection performance of TogetherNet.

The architecture of the self-calibrated convolution network is ex-
hibited in Figure 5. Given an input feature map X with channel C,
we first split it into two feature maps X; and X, with channel C/2.
Then, we send X to the self-calibrated branch for feature transfor-
mation and fusion. In this branch, three filters (K;, K3, and K) are
employed to extract and fuse multi-scale features from X;. Next,
we employ a filter K; to transmit and extract features from X, to
obtain the other half of the result ¥». Finally, Y| and Y, are concate-
nated to produce the final output Y. In our designation, we introduce
self-calibrated convolutions in front of the three decoupled YOLO
heads to expand the receptive field of the convolutional layer and
extract multi-scale features for better object detection (see Figure
2). In this way, our TogetherNet can well address the challenge of
discerning objects in adverse weather conditions.
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Figure 5: The architecture of the self-calibrated convolutions.
It can build long-range spatial and inter-channel dependencies
around each spatial location, thus expanding the receptive field of
each convolutional layer and enhancing the feature extraction ca-
pability of CNNs.

Moreover, inspired by RetinaNet [LGG*17] with high effective
Focal loss, we introduce the Focal loss in the design of our Togeth-
erNet to address the problem of imbalance between positive and
negative samples in object detection tasks. Therefore, the total loss
function can be formulated as:

Lrotai = Lae + Lre, 2
where L, refers to the detection loss, which can be expressed by:
Lye = MIOU + Lcis + Lrocal 3)

where A is loss weight, and we set A = 5 here. Ly, and Ly refer
to regression loss and classification loss, respectively.

In our experiments, we are surprised to find that the image
restoration loss Ly is very helpful in improving the performance
of the detection task, here we set the loss weight of L. to 0.8, and
the loss weight of L;, to 0.2. For these two loss weights, exten-
sive experiments are performed to ensure their optimum values (see
Section 4.5). Therefore, developing a joint learning paradigm that
combines these two tasks is very effective to improve detection ca-
pacity in adverse weather conditions.

4. Experiments

In this section, comprehensive experiments are performed to eval-
uate the detection performance of TogetherNet and other detection
approaches under adverse weather conditions. To conduct exper-
iments, a dataset for detecting objects in foggy weather is estab-
lished, called VOC-FOG. For evaluation, Both the synthetic foggy
dataset (VOC-FOGe-test) and real-world foggy datasets (Foggy
Driving dataset [SDVG18] and Real-world Task-driven Testing Set
(RTTS) [LRF*18]) are employed as the testing set. All the experi-
ments are implemented by PyTorch 1.9 on a system with an Intel(R)
Core(TM) 17-9700 CPU, 16 GB RAM, and an NVIDIA GeForce
RTX 3090 GPU.

4.1. Dataset

Considering there are few publicly available datasets for object de-
tection in adverse weather conditions, to train and evaluate the pro-
posed TogetherNet, we establish a foggy detection dataset based on

Table 1: Details about training and testing dataset. The object
classes are bic (bicycle), bus, car, mot (motorcycle), and per (per-
son). FDD is the abbreviation of Foggy Driving Dataset.

Dataset Images Bic  Bus Car Mot Per

VOC-FOG 9578 836 684 2453 801 13519
VOC-FOG-test 2129 155 156 857 131 3527
FDD 101 17 17 425 9 269
RTTS 4332 534 1838 18413 862 7950

(b) Synthetic foggy images

Figure 6: Example images in the proposed VOC-FOG dataset.

the classic VOC dataset [EVGW*10], dubbed VOC-FOG. Specif-
ically, we employ the well-known atmospheric scattering model to
generate the foggy images / (x), which can be obtained by the fol-
lowing formula:

1(x) =J ()t (x) +A(1 =1 (x)), 4)

where J(x) denotes the clean image, A refers to the global at-
mospheric light, and #(x) refers to the medium transmission map,
which can be calculated by:

t(x)= e P, 5)

where [ denotes the atmosphere scattering parameter, and d (x)
refers to the scene depth, which can be defined as:

d(x) = —0.04 x p + +/max(w,h), (6)

where p denotes the Euclidean distance from the current pixel to
the central pixel, w and 4 refer to the numbers of rows and columns
of the image. In our experiments, we set the global atmospheric
light parameter A to 0.5, while randomly setting the atmospheric
scattering parameter B between 0.07 and 0.12 to control the fog
level. Moreover, considering there are five annotated object classes
(i.e., car, bus, motorcycle, bicycle, and person) in the RTTS dataset,
to form our training dataset, we select the images containing these
five categories to add haze. After processing these clean images on
the original VOC dataset, we obtain 9578 foggy images for train-
ing (VOC-FOG) and 2129 images for testing (VOC-FOG-test), as
depicted in Table 1 and Figure 6.

As observed, the fog in the central area appears to be thicker than
in the surrounding areas, which can be explained by the principle of
synthetic fog. When employing the atmospheric scattering model to
generate fog, we first need to select a point as the starting point and
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Table 2: Comparison of TogetherNet with state-of-the-art detection models on the VOC-FOG-test dataset. * denotes that the model is trained
with clean images from the VOC-FOG dataset. Red and blue colors are used to indicate the 1*' and 2 ranks, respectively.

Method Publication Type Person  Bicycle Car Motorbike Bus mAP
YOLOXs [GLW*21] arXiv’21 Baseline 80.81 74.14 83.63 75.35 86.40  80.07
YOLOXs* [GLW*21] arXiv’21 Baseline 79.97 67.95 74.75 58.62 83.12 72.88

DCP-YOLOXs* [HST11] TPAMI'11 Dehaze 81.58 78.80 79.75 78.51 85.64  80.86
AOD-YOLOXs* [LPW*17] ICCv’17 Dehaze 81.26 73.56 76.98 71.18 83.08 77.21
Semi-YOLOXs* [LDR*20] TIP’20 Dehaze 81.15 76.94 76.92 72.89 84.88  78.56
FFA-YOLOXs* [QWB*20] AAAT20 Dehaze 78.30 70.31 69.97 68.80 80.72  73.62

MS-DAYOLO [HR21] IC1IP°21 Domain adaptive ~ 82.52 75.62 86.93 81.92 90.10  83.42
DS-Net [HLJ21] TPAMI’21 Multi-task 72.44 60.47 81.27 53.85 61.43  65.89
IA-YOLO [LRY*22] AAAT22 Image adaptive 70.98 61.98 70.98 57.93 6198  64.77
TogetherNet ours Multi-task 87.62 78.19 85.92 84.03 93.75  85.90

then spread the synthetic fog around it. Considering that the center
of natural images is generally the position with the largest depth
value, it is common to use the center point as the starting point
when synthesizing fog. Therefore, the fog in the center is usually
thicker.

Testing set. To evaluate the detection performance of Togeth-
erNet and other detection methods in adverse weather conditions,
both the synthetic foggy dataset (VOC-FOG-test) and two real-
world foggy datasets (Foggy Driving dataset and RTTS) are em-
ployed as our testing set.

e VOC-FOG-test contains 2129 foggy images synthesized from
the clean images in the VOC dataset. Different from the above-
mentioned VOC-FOG training set, to further verify the general-
ization ability of TogetherNet, we set atmosphere scattering pa-
rameter B to a wider range to simulate extreme foggy and misty
weather conditions. Specifically, the value of  is randomly set
between 0.05 and 0.14 to adjust for different fog levels.

e Foggy Driving Dataset [SDVG18] is a real-world foggy dataset
that is used for object detection and semantic segmentation. It
involves 466 vehicle instances (i.e., car, bus, train, truck, bicycle,
and motorcycle) and 269 human instances (i.e., person and rider)
that are labeled from 101 real-world foggy images. Furthermore,
although there are eight annotated object classes in the Foggy
Driving Dataset, we only select the above-mentioned five object
classes for detection to ensure consistency between training and
testing.

e RTTS [LRF"18] is a relatively comprehensive dataset available
in natural foggy conditions, which comprises 4322 real-world
foggy images with five annotated object classes. Considering
hazy/clean image pairs are difficult or even impossible to capture
in the real world, Li et al. proposed the RTTS dataset to evaluate
the generalization ability of dehazing algorithms in real-world
scenarios from a task-driven perspective.

4.2. Implementation Details

Training details. TogetherNet is trained using the SGD optimizer
with a batch size of 16. The initial learning rate / is set to 1 X
1072, We empirically set the total number of epochs to 100 and
adopt a Cosine annealing decay strategy to adjust the learning rate
[. In addition to feeding foggy images to TogetherNet for training
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the detection task, we also send the original clean images from the
VOC-FOG dataset for training the image restoration task. Both the
training and testing images are resized to 640 x 640. Moreover, we
did not add the mosaic data augmentation strategy in the training
process as YOLOX defaults, because adopting this approach would
increase the difficulty of training our image restoration network,
which in turn drops the performance of the object detection task.

Evaluation Settings. To quantitatively evaluate the performance
of the proposed TogetherNet, we adopt the mean Average Pre-
cision (mAP) as the evaluation metric, which is the most widely
used objective evaluation index in object detection tasks. We com-
pare TogetherNet with various state-of-the-art object detection ap-
proaches. These object detection methods can be classified into
four categories: 1) “dehaze + detect” methods: Here, we employ
several dehazing algorithms as a pre-processing step and per-
form object detection by YOLOXs trained on clean VOC im-
ages (the original clean images from VOC-FOG dataset). For pre-
processing, we chose four popular dehazing approaches, namely,
DCP [HST11], AOD-Net [LPW*17], Semi-dehazing [LDR*20],
and FFA-Net [QWB*20] to combine with the YOLOXs detec-
tor for forming four combination models called DCP-YOLOXs,
AOD-YOLOXs, Semi-YOLOXs, and FFA-YOLOXSs, respectively;
2) domain-adaptive-based MS-DAYOLO [HR21]; 3) multi-task-
based DS-Net [HLJ21]; and 4) image adaptive-based IA-YOLO
[LRY *22]. Note that all the dehazing algorithms are trained on the
entire ITS (Indoor Training Set) [LRF*18] dataset according to the
settings in their papers.

4.3. Comparison with State-of-the-arts

Comparison on Synthetic Dataset. The mAP metric of ten de-
tection algorithms on the proposed VOC-FOG-test dataset are re-
ported for quantitative evaluation, as demonstrated in Table 2. To
make a fair comparison, we retrain all compared methods (except
“dehaze + detect” methods) on the proposed VOC-FOG dataset
according to the settings in their papers. For “dehaze + detect”
methods, we found that if the baseline YOLOXs is trained on the
foggy dataset (VOC-FOG), the final detection results on the test-
ing set will be dropped no matter what dehazing algorithm is em-
ployed. This could be an obvious domain shift between the train-
ing set (hazy images) and testing set (dehazed images), result-
ing in a significant decrease in detection accuracy. Therefore, we
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Figure 7: Detection results by different methods on both synthetic and real-world foggy datasets. From (a) to (e): the detection results by (a)
YOLOXs [GLW*21], (b) Semi-YOLOXs [LDR*20], (c) MS-DAYOLO [HR21], (d) IA-YOLO [LRY*22], and (e) our TogetherNet, respectively.
Clearly, the proposed TogetherNet can discern more objects with higher confidence.

Table 3: Quantitative comparisons (mAP) with state-of-the-art de-
tection approaches on the Foggy Driving Dataset.

Method Person Bicycle Car Motorcycle Bus mAP

YOLOXs 2326 2655 55.04 7.14 4571 31.54
YOLOXs* 26.69 23.04 56.27 2.38 41.98 30.07
DCP-YOLOXs* 2224  10.78 56.34 7.14 50.66 29.43
AOD-YOLOXs* 24.54 3382 56.75 4.76 36.04 31.18
Semi-YOLOXs* 2239  27.73 5647 4.76 4493 31.26
FFA-YOLOXs* 19.18  18.07 50.83 2.38 4277 26.65
MS-DAYOLO  21.52 3458 56.39 8.33 47.68 33.70
DS-Net 26.74  20.54 58.16 7.14 36.11 29.74
IA-YOLO 1620 11.76 41.43 4.76 17.55 18.34
TogetherNet 3044  28.44  58.24 14.29 43.23 3493

Table 4: Quantitative mAP values of the proposed TogetherNet and
various state-of-the-art detection approaches on the RTTS dataset.
Clearly, our TogetherNet achieves the best performance.

Method Person Bicycle Car Motorbike Bus mAP

YOLOXs 7723  40.55 68.72 40.83 28.81 51.23
YOLOXs* 76.07 4847 63.88 41.03 22.76 50.44
DCP-YOLOXs* 76.81 50.03 62.84 40.62 23.73 50.81
AOD-YOLOXs* 7649 4332 61.03 34.54 22.16 47.51
Semi-YOLOXs* 75.71  46.72 62.74 40.37 24.51 50.01
FFA-YOLOXs* 76.52 48.13 64.31 39.74 23.71 50.48
MS-DAYOLO 7422  44.11 69.73 37.54 36.45 5241
DS-Net 68.81 18.02 46.13 15.15 15.44 3271
IA-YOLO 6725 3528 41.14 20.97 13.64 35.66
TogetherNet 8270  57.27 75.32 55.40 37.04 61.55

adopted clean images from the VOC-FOG dataset to train the base-
line YOLOXs for these methods. As observed, our TogetherNet
outperforms other state-of-the-arts by a large margin in accuracy
rate.

Comparison on Real-world Dataset. We also compare our To-
getherNet with several state-of-the-art methods on two real-world
foggy datasets, namely, Foggy Driving Dataset and RTTS dataset.
Table 3 and Table 4 exhibit the mAP metric of all compared meth-
ods on these two real-world foggy datasets. Different from the re-
sults in the VOC-FOG-test dataset, the “dehaze + detect” meth-
ods are very limited in improving detection accuracy in real-world
degraded scenarios, validating that these processed images do not
always guarantee improved object detection performance. clearly,
our TogetherNet achieves the highest mAP values again on both
datasets, compared to the SOTAs.

For qualitative comparisons, we exhibit three detection results
from the VOC-FOG-test, Foggy Driving, and RTTS datasets in
Figure 7. Our TogetherNet is compared with YOLOXs baseline,
Semi-YOLOXs, MS-DAYOLO, and IA-YOLO. As observed, To-
getherNet can detect more objects with higher confidence, which
demonstrates that our approach performs well in both synthetic and
real-world foggy datasets. Similar to Semi-YOLOXs, IA-YOLO is
also a paradigm of first enhancing the image and then detecting the
object, thus they look different from the other approaches.

4.4. Experiments on Rainy Images

To demonstrate that the proposed model can generalize well un-
der other adverse weather conditions, we adopt the RainCityscapes
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Table 5: Comparison of TogetherNet with baseline YOLOXs and
Syn-YOLOXs ("derain+detect”) methods on the RainCityscapes
dataset. * denotes that the model is trained with clean images from
the RainCityscapes dataset.

Method Person Bike

YOLOXs 21.89 3037 52.36 1.26 21.15 2541
YOLOXs* 23.04 15.14 64.47 0.03 13.61 23.26
Syn-YOLOXs* 17.11 1329 62.22 2.03 24.55 23.84
TogetherNet 19.64 19.98 64.38 12.94 25.28 28.44

Car Motorbike Bus mAP

(a) YOLOXs (b) Syn-YOLOXs (c) Ours

Figure 8: Detection results by different methods on the RainCi-
tyscapes dataset. From (a) to (c): the detection results by (a)
YOLOXs [GLW*21], (b) Syn-YOLOXs [YSP20] ("derain+detect"),
and (c) our TogetherNet.

dataset [HZW™*21] to evaluate the detection performance of To-
getherNet in rainy weather. RainCityscapes dataset contains 10,620
synthetic rainy images (295 images with 36 variants) with eight an-
notated object classes: car, train, truck, motorbike, bus, bike, rider,
and person. In our experiments, we randomly choose 2,500 rainy
images (250 images with 10 variants) for training and 450 images
(45 images with 10 variants) for testing. As in the previous exper-
imental setup, we only select the aforementioned five object cate-
gories for detection.

We compare our TogetherNet with the baseline YOLOXs and
a “derain + detect” (Syn2Real [YSP20]) method on the test-
ing set. The mAP metric of these 3 detection algorithms is re-
ported in Table 5. As can be seen, our TogetherNet outperforms
other approaches by a large margin again in accuracy rate. Fig-
ure 8 exhibits three visual examples of the baseline YOLOXs, the
“derain + detect” method, and our TogetherNet. As observed, the
proposed TogetherNet can discern more objects with higher confi-
dence, which demonstrates that our approach generalizes well un-
der rainy weather conditions.

4.5. Ablation Study

Effect of different components in TogetherNet. The proposed
network exhibits superior detection performance compared to the
state-of-the-art detection methods. To further evaluate the effec-
tiveness of TogetherNet, we conduct extensive ablation studies
to analyze the different components, including the image restora-
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Table 6: Ablation study of different training strategies on the RTTS
dataset. Clearly, our full model (V) outperforms other alternatives.
IR is the abbreviation of the image restoration module.

Variants Base V) 1% \%] V4 Vs Ve \ %

IR w/o v v v v w/o v v

DTFE wlo  wlo v v v v w/o v
Focalloss w/o  w/o  w/o v v v v w/o

SCConv w/o w/o w/lo wlo v v v v

mAP  51.23 56.05 57.73 59.83 61.55 54.97 56.57 56.75

Table 7: Ablation study on the object detection loss Ly, and image
restoration loss Lye (loss weight Ay and A ).

M&N, 1&1 0.7&0.3 0.5&0.5 0.2&0.6 0.2&0.8 0.2&1.0 0.1&1.2

mAP 5379 57.44 5773 5830 6155 60.08 58.09

tion module, Dynamic Transformer Feature Enhancement module
(DTFE), Focal loss, and self-calibrated convolutions.

We first construct our base network with the original YOLOXs
detector as the baseline of the detection network, and then we train
this model with the implementation details mentioned above. Next,
we incrementally add different components into the base network
as follows:

. base model + image restoration module — V7,

. Vi + DTFE — V,,

. V» + Focal loss — V3,

. V3 + self-calibrated convolutions — V4 (full model),
. V4 - image restoration module — Vs,

. V4 - DTFE — Vg,

. V4 - Focal loss — V7,

~N NN R WD =

All these variants are retrained in the same way as before and tested
on the RTTS dataset. The performances of these models are de-
picted in Table 6.

As observed, each component in TogetherNet helps in improv-
ing object detection performance, especially the proposed image
restoration module, which achieves 4.82 mAP gains over our base
model. The introduction of the proposed DTFE, Focal loss, and
self-calibrated convolutions also greatly improved the performance
of the model. In short, if we make full use of the implementation de-
tails in this paper, the detection results will outperform other com-
petitive approaches.

Effect of the weights in loss functions. To improve the detec-
tion performance of TogetherNet in adverse weather conditions, we
exploit an effective unified loss function that contains object detec-
tion loss Ly, and image restoration loss Ly.. Accordingly, two loss
weights (A; and A;) are employed to balance the performance of
these two loss functions. For A and A, extensive experiments are
conducted on the RTTS dataset to ensure their optimum values, as
exhibited in Table 7. As observed, the image restoration loss is very
helpful in improving the detection capacity of the proposed method.
Therefore, when setting A; = 0.2 and A, = 0.8 in our experiments,
the performance of TogetherNet is the best.
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(a)YOLOXs (b) Semi-YOLOXs

(c) MS-DAYOLO

(d) IA-YOLO ) (e) Ours

Figure 9: Typical failure cases of different detection algorithms. None of the detectors can discern all the objects in such images.

Table 8: Runtime (in seconds) and FPS comparisons of different
detection methods tested on an image of 550 x 400 pixels. * indi-
cates the platform used for image dehazing.

Method

YOLOXs [GLW*21]
DCP-YOLOXs [HST11]
AOD-YOLOXs [LPW*17]
Semi-YOLOXs [LDR*20]
FFA-YOLOXs [QWB*20]
MS-DAYOLO [HR21]
DS-Net [HLJ21]
TA-YOLO [LRY*22]
TogetherNet (ours)

Platform Runtime FPS

PyTorch (GPU) 0.018 55.6
Python (CPU)* 1.238 0.8
PyTorch (GPU)* 0.121 8.3
PyTorch (GPU)* 1.108 0.9
PyTorch (GPU)* 0.366 2.7
Caffe (GPU) 0.037 27.0
PyTorch (GPU) 0.035 28.6
Tensorflow (GPU) 0.039 25.6
PyTorch (GPU) 0.031 32.3

4.6. Efficiency Analysis

Considering efficiency is essential for a computer vision system,
we evaluate the computational performance of various state-of-the-
art detection methods and report their average running times and
frames per second (F'PS) metrics in Table 8. All the approaches are
implemented on a system with an Intel(R) Core(TM) i7-9700 CPU,
16 GB RAM, and an NVIDIA GeForce RTX 3090 GPU. It can be
seen that our TogetherNet takes about 0.031s to infer an image of
550 x 400 pixels on average. The proposed TogetherNet is fast and
efficient since it ranks second among the ten detection algorithms.

4.7. Limitation and Discussion

Although TogetherNet has achieved encouraging results on both
synthetic and real-world foggy datasets, our model is not very ro-
bust for the heavily foggy scene. We provide two typical failure
cases in Figure 9. It can be observed that the heavy fog degrades
the performance of various object detectors. Even humans have
difficulty discerning the objects in such challenging images. This
limitation might be solved by introducing more effective feature
enhancement modules in our network. In near future, we will make
efforts to solve this limitation.

5. Conclusion

We propose an efficient unified detection paradigm for discerning
objects in adverse weather conditions, named TogetherNet. It lever-
ages a joint learning framework to perform image restoration and
object detection tasks simultaneously. From a different yet new per-
spective, TogetherNet casts such detection task as multi-task joint
learning, where these two tasks are collaborated and contributed to
each other. To better cope with the weather-degradations in this de-
tection task, we develop a Dynamic Transformer Feature Enhance-
ment module (DTFE) to enhance the feature extraction and repre-
sentation capabilities of our model. In addition, the self-calibrated
convolution network is introduced to expand the receptive field of
each convolutional layer and enrich the output features, thus reduc-
ing the impact of weather-specific information on detection accu-
racy. Furthermore, we also employ the well-known Focal loss to ad-
dress the problem of imbalance between positive/negative samples
in detection tasks. Experiments on both synthetic and real-world
foggy datasets demonstrate that our TogetherNet performs favor-
ably against state-of-the-art detection algorithms.
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