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Abstract
Shadow removal from a single image is an ill-posed problem because shadow generation is affected by the complex interactions
of geometry, albedo, and illumination. Most recent deep learning-based methods try to directly estimate the mapping between
the non-shadow and shadow image pairs to predict the shadow-free image. However, they are not very effective for shadow im-
ages with complex shadows or messy backgrounds. In this paper, we propose a novel end-to-end depth-aware shadow removal
method without using depth images, which estimates depth information from RGB images and leverages the depth feature as
guidance to enhance shadow removal and refinement. The proposed framework consists of three components, including depth
prediction, shadow removal, and boundary refinement. First, the depth prediction module is used to predict the corresponding
depth map of the input shadow image. Then, we propose a new generative adversarial network (GAN) method integrated with
depth information to remove shadows in the RGB image. Finally, we propose an effective boundary refinement framework to
alleviate the artifact around boundaries after shadow removal by depth cues. We conduct experiments on several public datasets
and real-world shadow images. The experimental results demonstrate the efficiency of the proposed method and superior per-
formance against state-of-the-art methods.

CCS Concepts
• Computing methodologies → Image processing; Computational photography;

1. Introduction

Shadow removal is a fundamental and challenging task in computer
vision. Shadow is a very common natural phenomenon in daily life,
which is caused by light being partially or completely blocked.
Therefore, we inevitably obtain a number of shadow images and
shadow videos when we use cameras or smartphones. The shadow
in these images and videos will have a certain impact on computer
vision tasks, such as visual odometry [MAT17,EKC17], object de-
tection and tracking [XRG∗17, CGPP03, NB04, HFY20], relight-
ing [WSL∗20, YME∗20], and object recognition [NB04, HFY20],
etc. The aim of shadow removal is to restore the illumination,
color, and texture in the shadow regions. Therefore, the challenge
of shadow removal is how to restore the original detail and keep
consistency in the shadow region after shadow removal.

Previous shadow removal methods are generally based on phys-
ical models and adopt the prior information such as gradient, illu-
mination, and regions to remove shadows. However, these hand-
crafted shadow removal methods can not achieve satisfactory re-
sults for shadow images with complex shadows or cluttered back-
grounds. Xiao et al. [XTT14] first introduced the depth infor-
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mation into the shadow removal task, which assumed that pix-
els with similar normal and close spatial locations should have
similar color and illumination. This method can generate satisfac-
tory shadow-free images for complex scenes. However, the im-
age obtained in advance usually has no corresponding depth map,
which is difficult to be extended to practical applications. In re-
cent years, the emergence of deep learning has greatly improved
the performance of shadow removal. Auto-Exposure [FZG∗21]
first estimated multi-exposure images for the shadow image. Then
they fused multi-exposure images to predict the shadow-free im-
age. G2R-ShadowNet [LYW∗21] used a weakly supervised shadow
generation network for shadow removal by using a set of shadow
images and corresponding shadow masks without shadow-free im-
age supervision. DC-ShadowNet [JST21] proposed an unsuper-
vised domain-classifier-guided shadow removal network, which in-
tegrated the domain classifier into GAN to predict the shadow-
free image. These deep learning-based methods are very effective
for simple scenes and shadows. However, for complex scenes and
shadows, these methods are hard to obtain satisfactory shadow re-
moval results, as shown in Figure 1.

To solve the aforementioned issues, we propose a novel end-to-
end depth-aware shadow removal method, which can effectively
handle shadow images with complex shadows or backgrounds
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(a) Input Image (b) G2R-ShadowNet

(e) Ours (f) Ground Truth

(c) Auto-Exposure

(d) DC-ShadowNet

Figure 1: Shadow removal results of state-of-the-art methods, in-
cluding Mask-ShadowGAN [HJFH19], Auto-Exposure [FZG∗21],
DC-ShadowNet [JST21] and the proposed method.

based on the guidance of predicted depth information. The pipeline
of the proposed method contains three modules: depth predic-
tion, shadow removal, and boundary refinement. First, we intro-
duce a depth-aware network to predict the depth information for
the shadow image. Second, we use the predicted depth image as
structural guidance and propose a multi-modality shadow removal
architecture based on the generative adversarial network (GAN).
We extract features from the color image and the predicted depth
image respectively, and design an effective cross-modal feature fu-
sion module for shadow removal. Finally, we design a boundary
refinement module using predicted depth cues to alleviate the arti-
facts around shadow boundaries. We demonstrate the effectiveness
of the proposed method on the public datasets (ISTD [WLY18],
SRD [QTH∗17]) and several real-world scenes. The experimental
results show that the proposed method achieves superior perfor-
mance to state-of-the-art methods.

The main contributions of this work are listed as follows:

• We propose a novel end-to-end depth-aware shadow removal
method without requiring the existence of depth images, which
can effectively deal with shadow removal for complex scenes.
• We propose a boundary refinement strategy using depth cues

to mitigate the artifacts around shadow boundaries caused by
shadow removal.
• The experimental results demonstrate that our method achieves

leading shadow removal performance in qualitative and quanti-
tative evaluation.

2. Related Work

Due to shadows widely existing in images and videos, shadow re-
moval methods have been extensively studied in recent decades.
In this section, we revisit some recent approaches that are closely
related to the proposed method.

Hand-crafted shadow removal. Early shadow removal methods

are mostly based on physical models and the prior information,
such as illumination [SL08, ZZX15a, FWZ∗20, ZZX15b], gradi-
ent [FHLD05,FDL09] and color transfer [VHS17,WTBS07]. Some
other methods adopt user interaction for shadow removal tasks.
Gong et al. [GC17] proposed a shadow removal method using user-
defined flexible strokes covering the shadow and non-shadow pix-
els. Murali et al. [MGK21] presented an interactive technique for
shadow removal from images, which also needed user input in the
form of rough strokes on the shadow region and its correspond-
ing non-shadow region. However, shadows are highly coupled with
geometry, albedo, and illumination. These physical-based methods
only model the intrinsic image priors without considering geomet-
ric information. Therefore, it is difficult to achieve promising re-
sults for some complex shadows and scenes. Xiao et al. [XTT14]
first introduced depth information to assist shadow removal, which
was based on the assumption that pixels with similar normals and
locations should have similar colors. However, this method needs
to obtain the corresponding depth image with the shadow image in
advance, which greatly limits its practical application.

Learning-based shadow removal. In recent years, more and more
methods [ZLZX20, VRVGT21, LYM∗21, CLZX21] have begun
to use deep learning to improve the performance of shadow re-
moval owing to the powerful representation ability of CNN. Zhu et
al. [ZXF∗22] proposed a new shadow illumination model con-
sidering the spatially-variant property for shadow removal. They
reformulated shadow removal as a variational optimization prob-
lem. Le et al. [LS20] proposed a patch-based deep learning model
to remove the shadow from images, which can be trained using
shadow and non-shadow patches cropped from shadow images.
Wang et al. [WLY18] proposed a stacked conditional generative
adversarial network (ST-CGAN) to jointly learn shadow detection
and shadow removal. They also proposed a public dataset ISTD
to train the network. BEDSR-Net [LCC20] used the special at-
tributes of the document image to recover the shadow areas by
attention mechanism. DSC [HFZ∗19] used direction-aware spa-
tial context (DSC) for detecting and removing shadows. Mask-
ShadowGAN [HJFH19] proposed a mask-guided generative ad-
versarial network, which learned to produce a shadow mask from
the input and took the mask to guide the shadow generation
and removal. Liu et al. [LYW∗21] proposed a network named
G2R-ShadowNet, which leveraged shadow generation for weakly-
supervised shadow removal using a set of shadow images and their
corresponding shadow masks. These learning-based methods have
achieved promising performances in shadow removal.

Depth-aware methods. As complementary information to RGB
images, some works have begun to pay attention to use depth
map as complementary information to improve the performance
of computer vision tasks. However, most captured color images
do not have corresponding depth images. Therefore, many vision
tasks cannot achieve satisfactory results. So the depth estimation
from color images based on deep learning has become an alterna-
tive solution for vision tasks in recent years and has been widely
studied. Hu et al. [HZW∗21] designed an end-to-end deep neural
network to learn the depth-guided non-local features and produce
a rain-free output image. Qian et al. [QYL∗21] proposed a deep
depth-aware long-term tracker and achieved state-of-the-art track-
ing performance. Zhang et al. [ZZJ∗21] proposed a depth predic-
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Figure 2: The overview of the proposed network architecture.

tion network to estimate the depth information and leveraged the
depth feature to enhance the saliency detection performance. In-
spired by these works, we propose a novel depth-aware shadow
removal method and use the depth feature as guidance to improve
the shadow removal performance.

3. Methodology

In this section, we will illustrate our proposed network architecture
in detail. Intuitively, the depth information in the shadow regions
and non-shadow regions will not be affected by shadow. Therefore,
we propose an end-to-end depth-aware shadow removal method,
including three modules: depth prediction, shadow removal, and
boundary refinement. The depth prediction network is pre-trained,
and the shadow removal and boundary refinement networks are
trained in an end-to-end manner. Figure 2 shows the network ar-
chitecture of the proposed method.

3.1. Depth Prediction Module

Most traditional shadow removal methods adopt intrinsic priors of
the image such as gradient and illumination to explore the phys-
ical properties. Although these methods are promising for simple
scene shadow images, they are limited to some simple shadow im-
ages. The main reason is that these methods intend to ignore the
geometry prior, although it is closely related to shadow genera-
tion. Because the depth image needs an extra depth sensor, and
most of the images acquired in advance have no corresponding
depth images. Therefore, the traditional shadow removal methods
rarely adopt depth prior. With the rise of deep learning, it is pos-
sible to obtain a predicted depth image from a single RGB im-
age [RBK21, DC19, XZW∗20]. In order to better handle shadow
images, we propose a novel shadow removal network that uses the
predicted depth maps as guidance.

For depth prediction, we introduce DPT-Net [RBK21] to pre-
dict the corresponding depth map to the input shadow image. DPT-
Net is a dense prediction architecture based on a vision transformer

(ViT). They utilize the vision transformer substitute for convolu-
tional networks as the basic backbone. The backbone of DPT-Net
processes image-like feature representations at high resolution with
a global receptive field at every stage, which promises to provide
finer-grained and globally coherent predictions. However, due to
the illumination degradation in the shadow regions, it may gener-
ate unsatisfactory results if we directly use this method in shadow
image depth prediction. Therefore, we create a synthetic dataset
to fine-tune the DPT-Net so that the network can adapt to the
depth prediction for shadow images. The depth prediction results
of shadow images are shown in Figure 3.

To fine-tune the depth prediction network, we use the depth es-
timation dataset NYU Depth v2 [SHKF12] to synthesize the depth
prediction dataset for shadow images. NYU Depth v2 dataset con-
sists of paired color images and depth images, which is unsuitable
for our shadow image depth prediction. First, we randomly select
a shadow mask from the shadow removal dataset ISTD [WLY18].
Then, inspired by G2R-ShadowNet [LYW∗21], we use the shadow
generation method to generate a shadow using the selected shadow
mask onto the color image selected from the NYU Depth v2
dataset. Finally, we can obtain the dataset composed of triplets of
shadow images, shadow masks, and ground truth depth images.
Then we use this synthesis dataset to fine-tune the DPT-Net. Af-
ter training, the parameters of the depth prediction network will be
fixed in all the next experiments.

3.2. Shadow Removal Module

We use a generative adversarial network (GAN) to design the
shadow removal module, which includes a generator and a dis-
criminator. Furthermore, to make full use of the complementary
information between depth and color features to improve the per-
formance of shadow removal, we introduce both multi-scale fea-
ture fusion and cross-modal feature fusion strategies into our dual
encoder-decoder architecture.

We adopt a symmetric encoder-decoder architecture to construct
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Figure 3: The shadow images and the predicted depth maps.

the generator. The generator consists of two parallel backbone net-
works: the encoder-decoder of the depth image and the encoder-
decoder of the shadow image. Both networks adopt the same en-
coder and decoder architectures. In the encoder stage, a cross-
modal fusion strategy is used to capture inter-dependent comple-
mentary information between the depth and appearance features.
In the decoder stage, multi-scale feature fusion is used to aggregate
more detailed information to improve performance. At the end of
the decoder, the cross-modal feature maps merged at the top of the
two decoders are used to aggregate and output the predicted non-
shadow images. Next, the non-shadow image is sent to the bound-
ary refinement module to refine the shadow boundaries. Finally,
the predicted non-shadow image is fed into the discriminator for
identification. We use a discriminator and the ground truth shadow-
free image to supervise and train the network. The pipeline of the
shadow removal module is shown in Figure 2.

The input of the shadow image backbone network is the shadow
image, and the input of the depth backbone network is the depth
image predicted from the depth prediction module. For simplicity,
we also define the output feature of each encoder component in the
shadow image backbone network as rci and in the depth backbone
network as rdi. The output of the fusion module is f ci or f di, where
i(i = 1,2,3,4,5) represents the index of convolution layer.

Fusion Module (FM). To make full use of the complementary in-
formation between the depth image feature and the shadow image
feature, we introduce a cross-modal fusion strategy according to
the attention mechanism proposed by [CCXH20], as shown in Fig-
ure 4.

Figure 4 shows the architecture of the fusion module. f1 indi-
cates the output rdi or rci, and f2 represents the opposite one. We
first feed f1 and f2 into a spatial attention to highlight the feature re-
sponse, and use the ReLU activation function to obtain the outputs
f3 and f4, respectively. Then we send f4 into a self-attention model
to capture a spatial weight for f3 from a cross-modal perspective.
This sub-module can make RGB and depth information features
provide useful information to each other. These feature maps f1
and f2 are fed into two attention modules, which can generate a
spatial weight for the other feature map and provide complemen-
tary information for cross-modal fusion. The output of the fusion
module can be defined as:

fout = SP( fi)+ f , (1)
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Figure 4: The fusion module (FM) architecture.

where SP means spatial attention operation. fi represents rdi or rci
in turn.

For the shadow image feature rci, we feed it as f1 and rdi as f2
into the fusion module to obtain the spatial weight from depth in-
formation. We exchange the input rci and rdi, which can obtain the
spatial weight from the shadow image feature for the depth feature.

Multi-scale Feature Fusion. The advantage of multi-scale fusion
is that we can use different information contained at different levels
to improve the results of our task. The low-level features can pro-
vide more detailed information, and the high-level features contain
more semantic information. Therefore, we also use a multi-scale
feature fusion strategy in the decoder stage. We use the output of
the fusion model to skip connecting to the decoder, as shown in
Figure 2.

3.3. Boundary Refinement Module

Depending on the different occlusion of the light source, the
shadow usually forms umbra and penumbra regions. The umbra re-
gion is a hard shadow completely obscured by the occlusion object.
The illumination in the umbra region is uniform, and most shadow
removal algorithms can handle it very well. On the contrary, the
penumbra region is formed by the diffraction of light at the bound-
ary of occluding object. Therefore, the illumination in this region
changes gradually, and the brightness in this region is nonuniform.
Thus the penumbra region of the shadow, namely the soft shadow,
is challenging to the existing shadow removal methods. Therefore,
most state-of-the-art shadow removal methods will introduce arti-
facts or pseudo-color in these penumbra regions. In order to effec-
tively alleviate the artifacts in the shadow removal, we propose a
new boundary refinement network using depth cues to deal with
this issue, as shown in Figure 5.

We design an encoder-decoder network that uses depth cues as
a guide to optimizing shadow boundaries to make full use of depth
information. The input to the network is the predicted shadow-
free image (I f ), the original shadow image (Is), and the predicted
depth map (Id). In order to better deal with the artifacts of shadow
boundaries, we refer to the method of producing soft shadow masks
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mentioned in the DC-ShadowNet [JST21] method. We generate a
single-channel shadow mask (Ms) by computing the difference be-
tween the predicted shadow-free image (I f ) and the shadow image
(Is). Then, we concatenate the single-channel shadow mask with
the predicted shadow-free image (I f ) as the input to the encoder
branch. To use the depth map as guidance to refine the boundary of
shadows, we feed the predicted depth map (Id) into a similar en-
coder branch. In order to make full use of cross-modal features, we
first combine two model features (d fi and r fi) from each encoder
layer i = {2,3,4,5}. Then we feed the cross-modal feature to a re-
finement block (RB) to generate multi-scale cross-modal attention
for shadow boundaries. Finally, we add multi-scale cross-modal at-
tention to the decoder to refine the shadow boundaries.

Inspired by the method of [QCHX19], we design the refine-
ment block module to capture multi-scale cross-modal attention for
shadow boundaries, as shown in Figure 6. Since our main purpose
is to optimize the shadow boundary, we use max-pooling (MP) to
highlight the feature of the boundary. We also introduce different
step sizes for max-pooling to change the size of feature maps and
receptive fields, which can effectively extract multi-scale features
to prevent information loss. Then, we upsample multi-scale fea-
tures to the original size and concatenate them. In addition to this,
we utilize a spatial attention mechanism to refine feature maps by
spatially exploiting weights. Finally, we obtain the final output of
the refinement block by a skip connection, which is effective for
preventing image blur.

3.4. Loss Function

We use GAN to design the shadow removal architecture. The gen-
erator is composed of a multi-modality encoder-decoder network,
and the discriminator D is constructed with five-layer convolutions.
By distinguishing the difference between the predicted non-shadow

image and the ground truth shadow-free image, the discriminator is
optimized to recognize the predicted image. Thus, the generator
is promoted to generate a more realistic shadow-free image. We
use L1 loss for generator G to calculate the difference between the
predicted non-shadow image and the ground truth to optimize the
generator. The discriminator is mainly used to distinguish the dif-
ference between the predicted non-shadow image by the generator
and the ground truth. Therefore, we use the binary cross-entropy
loss function to optimize the discriminator. The objective functions
of training the shadow generator G and discriminator D are defined
as:

LG =λ1|y−G(x,E(x))|+λ2 logD(G(x,E(x)),y) (2)

LD = λ3 logD(G(x,E(x)),y)

+λ4 log(1−D(G(x,E(x)),y))
(3)

where x represents the shadow image, E(x) represents the depth
image predicted from depth prediction module, y is the ground truth
shadow-free image. In all experiments, we set λ1,λ2,λ3,λ4 to 5,
0.1, 0.1, 0.1, respectively.

4. Experiments

4.1. Implementation details

The proposed network is implemented with PyTorch on a PC with
8 NVIDIA GeForce GTX 1080Ti GPU. In our experiments, we use
the Adam optimizer with the batch size 8 and 1500 epochs to train
the proposed network. The first momentum value and the second
momentum value are set to 0.5 and 0.999, respectively. The initial
learning rate is set to 2× 10−4. We apply random cropping and
flipping to the shadow image for data enhancement to avoid over-
fitting problems. The random cropping is achieved by first scaling
each image to 286×286, and then randomly cropping a 256×256
area from the scaled result. To ensure a fair comparison, we use the
same input image size for all methods.

4.2. Datasets and evaluation metrics

We train and evaluate the proposed method on two public datasets:
ISTD [WLY18] and SRD [QTH∗17].

ISTD. The ISTD dataset is proposed for shadow detection and
shadow removal, which is collected under different lighting con-
ditions with varying shapes of shadow. The ISTD dataset is com-
posed of image triplets, including shadow image, shadow mask,
and shadow-free image. The training set has 1870 image triplets
from 135 various scenes, and the test set has 540 image triplets
from 45 different scenes.

SRD. The SRD dataset consists of shadow and shadow-free image
pairs. We use 2680 shadow from SRD image pairs for training and
408 shadow image pairs for testing.

Evaluation Metrics. For qualitative and quantitative analysis, we
use root mean square error (RMSE), structural similarity (SSIM),
and peak signal-to-noise ratio (PSNR) as the evaluation metrics
on ISTD and SRD datasets. The RMSE calculates the root mean
square error between the ground truth shadow-free image and the
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: Visual comparison results of shadow removal on SRD dataset. (a) Input. (b) Mask-ShadowGAN [HJFH19]. (c) Auto-
Exposure [FZG∗21]. (d) DHAN [CPS20]. (e) DC-Shadow [JST21]. (f) Ours. (g) Ground Truth.

predicted non-shadow image in the LAB color space. Generally
speaking, the smaller value of RMSE means the better performance
of the shadow removal method. We also calculate the SSIM and
PSNR metrics in RGB space to further demonstrate the effective-
ness of the proposed method.

4.3. Shadow removal evaluation on SRD dataset

We first compare the shadow removal results of the proposed
method on the SRD dataset with state-of-the-art methods, includ-
ing the methods of Gong et al. [GC14], DSC [HFZ∗19], DeShad-
owNet [QTH∗17], DHAN [CPS20], Auto-Exposure [FZG∗21],
DC-ShadowNet [JST21], and Zhu et al. [ZXF∗22]. To demon-
strate the effectiveness of the proposed methods, we report three
metrics (SSIM, PSNR, and RMSE) values for each method in the
shadow region, non-shadow region, and the whole image (All), re-
spectively. For a fair comparison, all metric values are provided
by the authors and their reports in their manuscripts. As can be
seen from Table 1, the proposed method exceeds state-of-the-art

methods. The proposed method outperforms existing methods on
both metrics, PSNR and RMSE, whether in shadow, non-shadow,
or all image regions. For the SSIM metric, the method is compara-
ble to other methods. The results show that our method has the best
shadow removal performance in both shadowed and non-shadowed
regions, resulting in the lowest RMSE for the entire image.

Figure 7 shows the visual comparison results of the pro-
posed method and other state-of-the-art methods for shadow
removal on the SRD dataset. We can see that the results
of Mask-ShadowGAN [HJFH19], Auto-Exposure [FZG∗21] and
DHAN [CPS20] methods are obvious artifacts in the shadow re-
gions. The results of DC-Shadow [JST21] also produce some slight
inconsistencies in the non-shadow regions, as shown in Figure 7(e).
However, the proposed method can recover high-fidelity back-
grounds in shadow regions and obtain consistent shadow removal
results on boundaries, as shown in Figure 7(f).
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Table 1: Shadow removal results of our method compared to state-of-the-art shadow removal methods on the SRD dataset. The best and the
second best values are marked with bold and underline, respectively.

Method
Shadow Region Non-Shadow Region All

SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓
Gong et al. [GC14] - - 25.43 - - 6.91 - - 12.35
DSC [HFZ∗19] 0.904 26.42 10.89 0.773 24.67 4.99 0.655 21.52 6.23
DeShadowNet [JST21] 0.947 31.97 10.81 - - 4.85 - - 6.10
DHAN [CPS20] 0.978 33.67 8.98 0.979 34.79 4.80 0.949 30.51 5.67
Auto-Exposure [FZG∗21] 0.966 32.26 8.55 0.945 30.59 5.74 0.893 27.74 6.50
DC-ShadowNet [GC14] - - 7.70 - - 3.39 - - 4.66
Zhu et al. [ZXF∗22] 0.979 34.94 7.44 0.981 35.85 3.74 0.952 31.72 4.79
Ours 0.982 42.48 4.59 0.960 38.69 3.38 0.934 36.19 3.69

Table 2: Shadow removal results of our method compared to state-of-the-art shadow removal methods on the ISTD dataset.

Method
Shadow Region Non-Shadow Region All

SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓
Guo [GDH12] 0.960 26.89 18.65 0.975 35.48 7.76 0.924 25.51 9.26
ST-CGAN [WLY18] 0.979 31.70 10.33 0.956 26.39 6.93 0.927 24.75 7.47
SP-M-Net [LS19] 0.984 35.08 10.30 0.979 36.38 7.47 0.953 31.89 7.79
Mask-ShadowGAN [HJFH19] 0.984 32.19 12.67 0.974 33.44 6.68 0.946 28.81 7.41
LG-ShadowNet [LYM∗21] 0.982 32.44 11.32 0.971 33.68 8.05 0.945 29.20 8.35
DSC [HFZ∗19] 0.984 34.71 8.70 0.970 31.27 5.10 0.944 29.08 5.61
Le and Samaras [LS20] 0.983 33.09 11.82 0.977 35.26 7.53 0.950 30.12 7.94
G2R-ShadowNet [LYW∗21] 0.988 36.12 6.75 0.977 35.21 4.78 0.957 31.93 5.15
Auto-Exposure [FZG∗21] 0.959 34.66 7.77 0.904 26.22 5.56 0.897 25.81 5.92
Zhu et al. [ZXF∗22] 0.986 36.95 8.29 0.977 31.54 4.55 0.959 29.85 5.09
Ours 0.981 41.59 4.92 0.976 36.12 3.91 0.963 34.34 4.15

4.4. Shadow removal evaluation on ISTD dataset

In this section, we compare the proposed method with several state-
of-the-art shadow removal methods on the ISTD dataset, and the
quantitative results are shown in Table 2. We use pretrained models
of these methods to obtain evaluation metrics or author reports in
their manuscripts. From Table 2, it can be seen that the proposed
method has the lowest RMSE in the shadow area, non-shadow area
and the whole image. This means that the results after shadow re-
moval in our method are closer to the ground truth, that is, the pro-
posed method has the best performance.

4.5. Real-scene dataset

To demonstrate the effectiveness of the proposed method, we also
conduct experiments on real-scene datasets and compare the re-
sults with state-of-the-art shadow removal methods. For quantita-
tive analysis, we fixed the camera position to take an image pair:
shadow image and shadow-free image. First, we put an object un-
der sunlight to make a shadow and take a shadow image. Then we
take the object away to capture a shadow-free image.

Figure 8 shows the visual comparison results with state-of-
the-art methods on real-scene datasets, which contain complex
backgrounds and soft shadows. We can see that the method
of Mask-ShadowGAN [HJFH19], Auto-Exposure [FZG∗21], and
DC-Shadow [JST21] produce obvious artifacts for shadow images
with complex shadows, as shown in Figure 8(b), (c) and (d). How-

ever, the proposed method can effectively deal with these compli-
cated shadows and produce better results, as shown in Figure 8(e).

4.6. Ablation study

To verify the benefits of each component in the proposed frame-
work, we conduct ablation studies on the SRD dataset.

The proposed method is based on the theory that the geometry
structure is an important factor in shadow generation. So we first
conduct experiments to verify the specific impact of depth infor-
mation on shadow removal through quantitative analysis. We use a
black image with all pixels set to 0 as the prediction depth image,
which indicates that the predicted depth map is not used in the ex-
periment (w/oD). Moreover, we conduct experiments to verify the
effectiveness of the boundary optimization strategy (w/oB indicates
that we do not use the boundary refinement strategy). The effective-
ness of each module is verified by comparing the values of RMSE,
SSIM, and PSNR, as shown in Table 3.

From Table 3, we can see that the depth information plays an
important role in the framework through the results in the first row.
Especially for shadow areas, adding depth information improves
the performance of RMSE from 5.37 to 4.59. Then, by compar-
ing the data in the second row and the last row, we find that the
proposed shadow boundary optimization strategy can improve the
shadow area by reducing the RMSE from 5.08 to 4.59. Finally, by
comparing the data in the third row and the last row, we verify the
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(a) (b) (c) (d) (e) (f)

Figure 8: Shadow removal results of the real scenes captured by ourselves. (a) Input. (b) Mask-ShadowGAN [HJFH19]. (c) Auto-
Exposure [FZG∗21]. (d) DC-Shadow [JST21]. (e) Ours. (f) Ground Truth.

Table 3: Results of ablation studies on the SRD dataset.

Model
Shadow Region Non-Shadow Region All

SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓ SSIM↑ PSNR↑ RMSE↓
(w/oD) 0.970 41.56 5.37 0.944 36.77 5.07 0.914 34.34 5.32
(w/oB) 0.981 41.82 5.08 0.950 37.02 3.69 0.921 34.62 4.02
Ours 0.982 42.48 4.59 0.960 38.69 3.38 0.934 36.19 3.69

impact on the results when the depth map estimation is inaccurate.
When we add the predicted depth map as a guide, the performance
of the proposed method is significantly improved. However, when
we add gaussian noise to the predicted depth map to simulate the
predicted depth errors, which demonstrates the effect of predicted
depth error on performance.

Figure 9 shows the visual comparison results of the boundary op-
timization strategy. From Figure 9 we can find the effectiveness of
the boundary refinement module. If we do not adopt the boundary
optimization strategy, the results of shadow removal will have in-
distinct artifacts at the shadow boundaries, as shown in Figure 9(b).
When we add the boundary optimization strategy, the artifacts at
the shadow boundary will be significantly alleviated and close to
Ground Truth, as shown in Figure 9(c).

4.7. Limitations

Our method uses depth information to guide the shadow removal,
which can bring great benefits to shadow removal from the experi-
mental results. However, the depth information is directly estimated
from the shadow image by a depth prediction network. Therefore,
if the training dataset is insufficient and the depth estimation error
is significant, the predicted depth information with large errors may
hurt the proposed shadow removal method.

5. Conclusion

In this work, we propose a novel depth-aware shadow removal
framework without using depth images, which is composed of
depth prediction, shadow removal, and boundary refinement. First,
we design a depth prediction network to predict the depth of the
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(a) (b) (c) (d)

Figure 9: Visual comparison of ablation experiments for boundary
optimization models. (a) Shadow images. (b) Without boundary re-
finement module. (c) With boundary refinement module. (d) Ground
Truth.

shadow image. Second, we propose a shadow removal network
based on the GAN architecture. For the generator, we design a dual
encoder-decoder structure, one backbone for depth image feature
extraction and the other for shadow image feature extraction. Then
we introduce the multi-modality feature fusion and multi-scale fea-
ture fusion strategies to aggregate the complementary information
between modules, which can effectively improve the performance
of the proposed shadow removal framework. Finally, we propose a
boundary refinement network using depth cues to refine the bound-
ary within the penumbra region, which can further improve the re-
sults of shadow removal. Extensive experiments demonstrate that
our method achieves superior shadow removal performance against
state-of-the-art methods on public datasets and real-world scenes.
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