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In this supplementary material, we provide more experiments to
demonstrate the efficiency of the proposed method.

1. Shadow removal evaluation on ISTD+ dataset

The adjusted ISTD dataset (ISTD+) [LS19] has the same number
of triplets as ISTD [WLY18]. The ISTD+ adjusts the color incon-
sistent between the shadow images and the shadow-free images of
the ISTD dataset.

Figure 1 shows visual comparison results of shadow removal
on the ISTD+ dataset between the proposed method and other
state-of-the-art methods, including G2R-ShadowNet [LYW∗21],
Auto-Exposure [FZG∗21], and DC-ShadowNet [JST21]. From
Figure 1, we can see that the results of the methods G2R-
ShadowNet [LYW∗21], Auto-Exposure [FZG∗21], and DC-
ShadowNet [JST21] introduce some artifacts after shadow removal.
However, the proposed method can generate more fidelity shadow
removal results in the shadow regions.

Table 1 shows the quantitative results of the proposed method
and several state-of-the-art shadow removal methods on the ISTD+
dataset. We use the RMSE metrics to evaluate the performance of
the shadow removal method in the shadow region, non-shadow re-
gion, and the whole image. From Table 1, we can see that the pro-
posed method achieves the best performance than the other method
in the shadow regions and the whole image. However, the shadow
and shadow-free image pairs are captured at different times, which
results in slightly color inconsistency in the ISTD dataset. The
RMSE between the shadow image and the non-shadow image in
the non-shadow area is 12.9 according to [LS19]. To mitigate the
color inconsistency, the ISTD+ dataset transforms the pixel values
in the non-shadow region of each shadow-free image to map into
their counterpart values in the shadow image to reduce the RMSE
between the shadow-free image and the shadow image in the non-
shadow region. Therefore, all shadow removal methods can achieve
satisfactory results in non-shadow regions. The proposed method
is not trained on the ISTD+ dataset, but we obtain the best perfor-
mance in the shadow regions, which demonstrates the effectiveness
and generalization of the proposed method.

Table 1: Shadow removal results of our networks compared to state-
of-the-art shadow removal methods on the ISTD+ dataset (RMSE)

Method Shadow Non-shadow All
ST-CGAN [WLY18] 13.4 7.7 8.7

DeshadowNet [QTH∗17] 15.9 6.0 7.6
Mask-ShadowGAN [HJFH19] 12.4 4.0 5.3

Auto-Exposure [FZG∗21] 6.5 3.8 4.2
DC-ShadowNet 10.3 3.5 4.6

Our 5.1 3.8 4.1

2. The number of models parameters

Table 2 reports the number of parameters of each model in the pro-
posed method.

Table 2: The number of models parameters

Model Params (M)

shadow removal 184.88

boundary refinement 579.54

depth predition 482.86

all 1247.28

In Table 3, we compare the number of parameters with several
state-of-the-art shadow removal methods.

Table 3: Comparison of our model parameters with other model
parameters

Method Params (M)
G2R-ShadowNet [HJFH19] 211.1

Auto-Fusion [FZG∗21] 524.3
DC-ShadowNet [JST21] 1318.1

Ours 1247.2
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Figure 1: Visual comparison results of shadow removal on ISTD+ dataset. (a) Shadow images. (b) G2R-ShadowNet [HJFH19]. (c) Auto-
Exposure [FZG∗21]. (d) DC-ShadowNet [JST21]. (e) Ours. (f) Ground Truth.
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