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Figure 1: Image generated by our method with disentangled shape and appearance synthesis. Texture of the corresponding semantic com-
ponents can be correctly transferred between different shapes with topology variations. See the accompanying video for multiview results.

Abstract

3D-aware generative models have demonstrated their superb performance to generate 3D neural radiance fields (NeRF) from
a collection of monocular 2D images even for topology-varying object categories. However, these methods still lack the capa-
bility to separately control the shape and appearance of the objects in the generated radiance fields. In this paper, we propose
a generative model for synthesizing radiance fields of topology-varying objects with disentangled shape and appearance vari-
ations. Our method generates deformable radiance fields, which builds the dense correspondence between the density fields of
the objects and encodes their appearances in a shared template field. Our disentanglement is achieved in an unsupervised man-
ner without introducing extra labels to previous 3D-aware GAN training. We also develop an effective image inversion scheme
for reconstructing the radiance field of an object in a real monocular image and manipulating its shape and appearance. Ex-
periments show that our method can successfully learn the generative model from unstructured monocular images and well
disentangle the shape and appearance for objects (e.g., chairs) with large topological variance. The model trained on synthetic
data can faithfully reconstruct the real object in a given single image and achieve high-quality texture and shape editing results.

CCS Concepts
• Computing methodologies → Rendering; Shape modeling; Image manipulation;

† Work done when ZW and YD were interns at MSRA.

1. Introduction

3D-aware GANs [SLNG20, CMK∗21, WCH∗22] are capable of
learning neural radiance field (NeRF) [MST∗20] of an object cate-
gory with topology variations, given only a collection of monoc-
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ular 2D images as supervision. With the advantages brought by
the NeRF representation, they can easily generate images at arbi-
trary viewpoints and maintain multiview consistency when varying
camera views, which greatly improves the prospects of GAN-based
methods in applications like VR&AR.

However, a shortcoming of these methods is lack of control-
lability over factors beyond viewpoints, especially a disentangled
control over shape and appearance. Such a limitation is not only
seen in NeRF-based 3D-aware GANs, but also commonplace in
existing methods that utilize NeRF representation for object mod-
eling [LZZ∗21,JA21]. This reduces their practical values when ap-
plied to image editing tasks such as texture transfer and shape ma-
nipulation. Although some methods [SLNG20, WCH∗22] address
this problem by designing separate latent codes for shape and ap-
pearance and send them to different layers of the NeRF generator,
they still cannot guarantee independent changes because the pre-
dicted shape and color still share some common hidden features
within the network.

Another line of works [BV99, LMR∗15, GFK∗18, JHTG20,
ZYDL21, DYT21] for shape modeling have shown that deriving
dense correspondence via deformations between object surfaces or
their implicit fields can well address the disentanglement between
appearance and shape. By learning reasonable correspondence be-
tween different shape surfaces, textures can be correctly transferred
between corresponding semantic regions or structures, thus achiev-
ing high-quality disentanglement between shape and appearance
control. However, most of these methods are trained with a 3D
auto-decoding paradigm where ground truth 3D shapes with ade-
quate geometry clues can be utilized for reasonable deformation
learning. It is unclear how to model the dense correspondence be-
tween radiance fields and whether these methods can be adapted to
the challenging 3D-aware GAN scenario without direct 3D super-
vision.

In this paper, we propose a novel generative deformable radiance
fields that introduces 3D deformation into adversarial learning of
NeRF-based GANs using only 2D images. With our method, dis-
entangled control over shape and appearance can be achieved for
image synthesis of objects with topology changes. The key idea is
to encode the shapes of generated instances via deformation of a
template radiance field shared across the category, and model the
appearance within the shared template radiance field. Nevertheless,
previous methods [GFK∗18, ZYDL21, DYT21] have shown that
pure deformation cannot handle correspondences for objects with
topology difference and hence leads to undesired results for shape
and texture editing. Therefore, we further add a correction field
on top of the deformed radiance fields to handle structure changes
and allow reasonable dense correspondence reasoning. To incorpo-
rate these modules into the 3D-aware GAN framework, we develop
a set of carefully-designed loss functions to effectively learn the
deformed radiance field with disentangled shape and appearance
latent vector from unstructured monocular 2D images. With the
learned generative deformable radiance fields, we further design
an effective inversion initialization method to achieve high-quality
image embedding and editing results.

We evaluate the proposed method on multiple datasets
of topology-varying objects, including Photoshape [PRFS18],

ShapeNet [WSK∗15], and CARLA [DRC∗17,SLNG20]. We show
that our method can not only generate 3D-consistent multiview im-
ages of these objects, but can also control their shapes and appear-
ance in a disentangled manner, which greatly improves the control-
lability for NeRF-based image synthesis. In addition, we demon-
strate the ability of our proposed image inversion scheme which can
faithfully reconstruct real objects in an image and achieves high-
fidelity texture editing and novel-view synthesis, even though we
only trained our generative models on synthetic data. This reveals
the strong potentials of our method for realistic virtual content cre-
ations and manipulations in future applications.

2. Related Work

Neural scene representations. Neural scene representation meth-
ods have witnessed significant progress in recent years, from
the early black-box CNNs [KWKT15, DSTB16, TDB16, IZZE17,
STH∗19] to the latest neural implicit fields [PFS∗19, MON∗19,
SZW19, SMB∗20, MST∗20, WLL∗21] and hybrid representa-
tions [YFKT∗22, PNM∗20, CLC∗22, PZX∗21, LSS∗21, MESK22].
A representative method among them is neural radiance field
(NeRF) [MST∗20], which leverages an MLP to predict color and
density of each point in a 3D volumetric space for scene rep-
resentation. NeRF and its follow-up works [BMT∗21, BMV∗22,
PSB∗21,TCY∗22,SLNG20,CMK∗21,LZZ∗21,JA21] have demon-
strated their strong capabilities in learning novel view synthesis
of 3D scenes given only 2D images for training. However, they
do not address explicit control over other properties of the scene
such as shape and appearance. Several methods utilize two indi-
vidual latent codes and send them to different layers of the radi-
ance field network for certain degree of disentanglement between
shape and appearance. They achieve color transfer at a global
level but cannot handle detailed textures. Some recent methods
adopt deformation fields for better shape and appearance disen-
tanglement, but they either target at single scene reconstruction
and editing [XXH∗21] or object categories without large topol-
ogy changes [XPMBB21, TPF∗22]. We propose a new method to
model topology-varying object categories and independently con-
trol the shape and appearance within a 3D-aware generative mod-
elling scheme.

3D-aware image synthesis. Recent 3D-aware GANs [NPLT∗19,
SLNG20, CMK∗21, NG21, DBS∗21, DYXT22, CLC∗22] are ca-
pable of learning multiview image generation of an object cat-
egory from a monocular image set, which greatly simplifies the
training configuration and demonstrates their potentials for large-
scale image synthesis applications. Among them, images synthe-
sized by NeRF-based generators [SLNG20, CMK∗21, DBS∗21]
have demonstrated more strict 3D-consistency when varying cam-
era views, which is an indispensable feature for the multiview im-
age generation task. However, they still cannot achieve satisfac-
tory control over shape and appearance. Perhaps the most relevant
method to ours is in a very recent work of Tewari et al. [TPF∗22]
that is concurrent to ours. In this method, a deformation network
is used to separate shape variations from a canonical radiance field
that handles appearance changes, and an inverse deformation field
is applied to enforce invertible mapping for reasonable deforma-
tion learning. However, this method does not deal with objects that
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Figure 2: Overview of our generative deformable radiance field. It consists of a template radiance field conditioned on a appearance code
za, and a deformation field and a correction field conditioned on a shape code zs. A discriminator is introduced for adversarial learning
between generated images and real ones. All networks are train end-to-end on a collection of color images.

have structure variance. In this paper, we incorporate both defor-
mation field and correction field into NeRF-based 3D-aware GAN
to handle more complex objects such as chairs.

Shape modeling via deformations. Deformation-based modeling
of a category of 3D shapes is a longstanding task in the literature
and still an active topic to date. The deformations build dense cor-
respondence between different shapes thus appearance of them can
be easily defined on a shared template to achieve strong disentan-
glement with the geometry. Early works [BV99,VBPP06,ASK∗05,
PKA∗09, LMR∗15, ZKJB17] build linear subspace to characterize
deformations between registered meshes. They are restricted to ob-
ject categories with consistent topology and structures such as face
and human body. Later works [GFK∗18, YFST18] handle more
complex objects by learning nonlinear mesh deformations from a
large number of 3D shapes via deep neural network. Recently, some
methods [DYT21,ZYDL21,ZYHC22,YTB∗21] combine deforma-
tions with implicit shape representations. Among them, [DYT21]
introduces an extra correction field to deal with structure discrep-
ancies between shapes that are difficult to handle by continuous
deformations. It shows promising results for detailed texture trans-
fer between 3D shapes. Different from the aforementioned meth-
ods, we learn deformations and corrections in 3D space given only
2D images as training data, which is significantly more challenging
than their 3D auto-decoding setup with ground truth 3D meshes for
supervision.

Disentangled image synthesis and manipulations. A large vol-
ume of methods focus on disentangled control over multiple at-
tributes of 2D image contents. Some methods [CDH∗16,HMP∗16]
propose to learn disentangled representation by 2D CNNs in a
fully unsupervised manner but often cannot guarantee disentangle-
ment between semantically meaningful attributes. More of existing
works [DSTB16, TYL17, PAM∗18, SLY∗18, PLWZ19, DYC∗20,
AZMW21] leverage certain kinds of attribute labels as guidance to
achieve controllable image synthesis and editing of desired proper-
ties. Nevertheless, they show inferior results for 3D pose disentan-
glement compared to methods based on state-of-the-art 3D repre-
sentations. Our method utilizes the NeRF representation thus can

not only achieve disentangled image manipulation of shape and ap-
pearance but also synthesize their novel views with high 3D con-
sistency.

3. Overview

Given a monocular image collection of an object category with
topology variations, we aim to learn an image generator G that can
synthesize multiview images of virtual instances and control their
shape and appearance attributes independently. Specifically, given
a shape code zzzs ∈ Rds , an appearance code zzza ∈ Rda , and a camera
pose θθθ ∈ R3 sampled from prior distributions as input, the genera-
tor G outputs an image I bearing the corresponding properties:

G : (zzzs,zzza,θθθ) ∈ Rds+da+3 → I ∈ RH×W×3. (1)

To achieve 3D-consistent image generation given different cam-
era poses, we adopt radiance field as our underlying 3D represen-
tation and follow a typical 3D-aware GAN training paradigm as
in [CMK∗21]. To achieve separate control of shape and appearance
during image synthesis, we propose a novel generative deformable
radiance field to represent these two attributes in a disentangled
manner, as shown in Fig. 2. The generative deformable radiance
field consists of a template radiance field conditioned on the ap-
pearance code zzza that handles texture variations (Sec. 4.1), together
with a deformation field and a correction field dealing with shape
variations (Sec. 4.2), both conditioned on the shape code zzzs. With
the above architecture, an image can be obtained via a standard vol-
umetric rendering process (Sec. 4.3). Considering that the whole
framework is trained with a weak image-level adversarial loss, we
further introduce a set of dedicated loss functions as the regulariza-
tion of the two fields to ensure the deformation field and correction
field characterize reasonable shape changes (Sec. 4.4). Based on
our learned generator, we develop a novel image inversion scheme
that faithfully recovers the input image meanwhile maintains the
inherent properties of the underlying deformable radiance field rep-
resentation thus capable of high quality shape and texture editing
(Sec. 5).
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4. Generative Deformable Radiance Field

Our generative deformable radiance field models a category of
topology-varying objects and synthesize images of new instances
with a disentangled control over shape, appearance, and camera
viewpoints. It consists of a template radiance field, a deformation
field, and a correction field, described as follows.

4.1. Template Radiance Field

The template radiance field T determines the appearance of objects
in a shared template volumetric space. It is represented by an MLP
which takes an appearance code zzza as input, along with a 3D posi-
tion xxxt ∈R3 in the template space and a view direction ddd ∈R3, and
predicts the color and density (ccc,σt) ∈ R4 of xxxt :

T : (zzza,xxxt ,ddd) ∈ Rda+6 → (ccc,σt) ∈ R4. (2)

The network structure of T is shown in Fig. 2. The first several
layers of the network are not conditioned on the appearance code,
which are used to generate a shared density field for all objects
within the category as their template shape. To characterize appear-
ance changes of the template, we inject the appearance code into
the FiLM-SIREN blocks [CMK∗21] starting from an intermediate
layer using modulations of frequencies γa and phase shifts βa pro-
duced by an appearance code mapping network Ma (see [CMK∗21]
for details). With the above network structure, Eq. (2) can be re-
written as:

Tσ : xxxt ∈ R3 → ( fff t ,σt) ∈ Rd f +1. (3)

Tc :(zzza, fff t ,ddd) ∈ Rda+d f +3 → ccc ∈ R3, (4)

where fff t is the intermediate feature, and Tσ and Tc denote the two
sub-nets.

4.2. Deformation Field and Correction Field

The deformation field and the correction field are responsible for
modeling shape variations within the class. As our underlying rep-
resentation is an implicit one, we define an “inverse" deformation
field, which deforms a 3D position in the target space (i.e., the ob-
ject space for image rendering) into the shared template space. In
addition, since both the deformation and correction are used to de-
rive shape (density) changes given the shape code zzzs, we represent
them via a single network Φ. The network takes the shape code zzzs
and a 3D point xxx ∈ R3 in the target space as input, and predicts a
corresponding deformation vector ∆xxx∈R3 and a density correction
∆σ ∈ R:

Φ : (zzzs,xxx) ∈ Rd+3 → (∆xxx,∆σ) ∈ R4. (5)

Φ is also an MLP with a set of FiLM-SIREN blocks [CMK∗21]
where the hidden layer features are modulated by frequencies γs
and phase shifts βs produced by an shape code mapping network
Ms. With the predicted deformation ∆xxx and correction ∆σ, the final
density σ ∈ R and color ccc ∈ R3 of the target space point xxx with
view direction ddd can be obtained via:

σ(zzzs,xxx) = T [σt ]
σ

(
xxx+Φ

[∆xxx](zzzs,xxx)
)
+Φ

[∆σ](zzzs,xxx), (6)

ccc(zzzs,zzza,xxx,ddd) = Tc
(
zzza,T

[ fff t ]
σ

(
xxx+Φ

[∆xxx](zzzs,xxx)
)
,ddd
)
, (7)

where the superscripts denote the corresponding outputs of the net-
works when there are multiple ones. In a nutshell, the deformation
field deforms a point in the target space to the template radiance
field to obtain its density and color, and meanwhile the correc-
tion field modifies its density to handle topology variations that
cannot be well modelled by deformation. It is worth mentioning
that [DYT21] also combines deformation and correction, but their
method only models 3D shape without considering appearance, and
it uses an auto-decoder framework to learn signed distance fields
for a given 3D mesh collection. In contrast, we learn 3D deforma-
tion and correction using unstructured 2D images with generative
radiance field modeling and we handle both shape and appearance.

It can be seen from Eq. 6 that our deformable radiance field ar-
chitecture completely disentangles shape variations from appear-
ance, as the final density of a point only depends on the shape
code zzzs and is not affected by zzza. Also note that although the fi-
nal color of the point x appears to also depend on the shape code
zzzs per Eq. (7), it is actually determined by the color code zzza and
the deformed position of xxx in the template space. As a result, as
long as Φ can deform the points on different shapes that are cor-
respondences to the same position in the template space, a desired
full disentanglement between shape and appearance control can be
achieved. In Sec. 4.4, we introduce several regularizations to learn
such a deformation.

4.3. Image Rendering

We render images of the radiance field via a standard volumetric
rendering process as in [MST∗20,CMK∗21]. Given a camera pose
θθθ, we cast rays in the target object space following the camera in-
trinsics and extrinsics and sample points along each ray using the
hierarchical sampling strategy of [MST∗20]. For a camera ray rrr
with sampled points {xxxi} sorted from near to far, its corresponding
color C(rrr) can be obtained via:

C(rrr) =
n

∑
i=1

W (xxxi)(1− exp(−σ(xxxi)δi))ccc(xxxi,dddi), (8)

W (xxxi) = exp(−
i−1

∑
j=1

σ(xxx j)δ j), (9)

where σ(xxxi) and ccc(xxxi,dddi) are corresponding density and color of xxxi
obtained via Eq. (6) and (7), and δi is the distance between xi and
its adjacent point. Note the shape and color codes are omitted here
for brevity.

4.4. Training Strategy

We follow a typical 3D-aware GAN’s training strategy to learn our
generative deformable radiance field using unstructured 2D image
collection. Specifically, we sample shape code zzzs, color code zzza,
and camera pose θθθ from prior distributions and generate corre-
sponding images G(zzzs,zzza,θθθ) via Eq. (6)–(9). We send the gener-
ated images as well as real images sampled from the training data
to a discriminator D and apply a non-saturating GAN loss with R1
regularization [KLA19, MGN18] and a pose regularization follow-
ing [DYXT22]. To ensure that the deformation field derives reason-
able correspondences for shape and appearance disentanglement,
we further design several regularizations described below.
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Normal consistency. Inspired by [DYT21], we enforce a normal
consistency regularization between the target space radiance field
and the template radiance field to ensure that the corresponding
points in the two spaces derived by the deformation field have sim-
ilar normal directions. For objects in a same category, their cor-
responding surface points with similar semantic meaning usually
have similar surface normals. Therefore, the normal consistency
regularization encourages the deformation field to establish corre-
spondence between points sharing similar semantic meaning. How-
ever, our radiance fields do not characterize well-defined object sur-
faces compared to the signed distance field in [DYT21]. To tackle
this problem, we propose a new normal consistency regularization
tailored for our radiance field representation (Fig. 3):

Lnormal =
R

∑
r=1

∑
xxxi∈N (x̃xxrrr)

(1−< sg(∇σ(xxxi)),∇T [σ]
σ (xxxi +∆xxxi)|>),

(10)
where R is the total number of rays. ∆xxxi is the deformation of point
xxxi as described in Eq. (5) which derives the correspondence be-
tween xxxi and xxxi + ∆xxxi. For σ and ∆xxxi, the dependency on latent
code is omitted for brevity. ∇ denotes the spatial gradient of a vol-
umetric field, which can be effectively calculated via auto-gradient
of a deep learning framework such as Pytorch [PGM∗19], sg de-
notes the stop-gradient operator, < ·, ·> is the cosine distance, and
N (x̃xxr) denotes the neighborhood of the approximated surface point
x̃xxrrr along ray rrr. The approximated surface point can be obtained via
weighted average over all points {xxxi} along the ray [MST∗20]:

x̃xxr =
n

∑
i=1

W (xxxi)(1− exp(−σ(xxxi)δi))xxxi. (11)

We only apply the normal consistency loss for points near the ap-
proximated surface as the normals in the free space of a radiance
field can be arbitrary. In practice, We adopt a hierarchical sampling
strategy following [MST∗20] and only select 5% of total samples
that are closest to the surface point to calculate this loss. Moreover,
we do not propagate the gradient back to the final density σ(xxxi) to
ensure that the loss only regulates the learned deformation field and
template radiance field.

Deformation smoothness. We also apply a smoothness constrain
on the deformation field to avoid irregular deformation:

Lsmooth =
n

∑
i=1

∥∇Φ
[∆xxx](xxxi)∥2. (12)

where ∥ · ∥2 denotes the L2 norm.

Deformation rigidity. We further apply a new rigidity regulariza-

tion to ensure that the learned deformation is locally rigid:

Lrigid =
n

∑
i=1

∥JT
i Ji − I∥F , (13)

where Ji =∇(xxxi+Φ
[∆xxx](xxxi)) is the Jacobian matrix of the deformed

point in the template space with respect to the original point in the
target space. ∥ · ∥F denotes the Frobenius norm.

Minimal correction. We follow [DYT21] to impose a mini-
mal correction prior to encourage shape modeling via deformation
rather than correction:

Lcorrection =
n

∑
i=1

|∆σ(xxxi)|. (14)

5. Real Image Inversion and Editing

Although our generative deformable radiance field is learned in a
GAN training paradigm, it can be applied to disentangled editing
of real images. To this end, we propose a novel image inversion
scheme that can faithfully reconstruct the details of a given image
meanwhile maintaining the shape and appearance disentanglement
for image editing task. Figure 4 shows the overview of the method.

5.1. Inversion Strategy

Given a real image Î of an object with camera pose θθθ, we aim
to find its corresponding deformable radiance field representation
that can not only recovery the image content under the given view-
point, but also support disentangled editing of shape and appear-
ance and produce plausible results under novel views. To achieve
this, a straightforward solution is to find the shape code zzzs and
color code zzza that describe the real image. However, obtaining
such codes with high-fidelity reconstruction result for a real im-
age is almost impossible as shown by previous GAN inversion
methods [AQW19, KLA∗20, Zho21]. On the other hand, repre-
senting the image with intermediate features produces more faith-
ful reconstruction result but may sacrifice the image editing qual-
ity [ZSZZ20, CMK∗21].

Our generative deformable radiance field naturally disentangles
shape and appearance for image editing. Therefore, we only need to
guarantee that the recovered shape is reasonable for novel view syn-
thesis and the recovered appearance is of high fidelity. We achieve
this by optimizing the following objective function:

argmin
wwws,γγγa,βββa

∥I(wwws,γγγa,βββa,θθθ)− Î∥2
2 +LPIPS(I(wwws,γγγa,βββa,θθθ), Î)

+∥wwws −www0
s∥2

2 +∥γγγa − γγγ
0
a∥

2
2 +∥βββa −βββ

0
a∥

2
2,

(15)

where wwws is the last hidden feature of the shape mapping net-
work, γγγa and βββa are output features of the appearance mapping
network which are also the frequencies and phase shifts of each
FiLM-SIREN block of the template field network, and ·0 denotes
the initial features for optimization (see Sec. 5.2). I(wwws,γγγa,βββa,θθθ)
denotes the generated image and LPIPS(·, ·) is the perceptual loss
from [ZIE∗18]. We optimize the hidden features of the mapping
network instead of the frequencies and phase shifts for shape to en-
sure that the recovered 3D geometry is more plausible under novel
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Figure 4: Overview of our image inversion pipeline. In the first stage, we train a 2D CNN using pairs of generated images and their
corresponding shape and appearance features, where wwws denotes the last hidden feature of the shape mapping network. In the second stage,
given a real image, we use the pre-trained 2D CNN to predict a shape feature as initialization. Then, we optimize the shape and appearance
features to faithfully reconstruct the given image. Green color indicates the components to be optimized in each stage.

views, and we directly optimize the frequencies and phase shifts
for appearance to obtain high-fidelity textures.

5.2. Inversion Initialization

For object categories with diverse structures such as chairs, a proper
initialization of the features to be solved in the inversion optimiza-
tion is important. The following feature initialization strategy is
proposed in this work. First, we randomly generate a collection of
images {Ii} using our trained deformable radiance field genera-
tor and record their corresponding camera poses {θθθ

i} and features
{wwwi

s}, {γγγ
i
a}, and {βββ

i
a}. Then, we train a CNN F that predicts feature

wwws using the following loss function:

argmin
F

∥F(Ii)−wwwi
s∥2 +∥I(F(Ii),γγγi

a,βββ
i
a,θθθ

i)− Ii∥2

+LPIPS(I(F(Ii),γγγi
a,βββ

i
a,θθθ

i), Ii),

(16)

which enforces F to reproduce the shape features wwwi
s and the image

Ii. After training, given a real image Î, we predict its corresponding
shape feature F(Î) as the initial value www0

s in Eq. (15). For the ap-
pearance features, we empirically found that their initialization has
minor influence on the inversion result, so we directly sample 10K
random appearance codes zzza and calculate their average frequen-
cies and phase shifts as the initial values γγγ

0
a and βββ

0
a in Eq. (15).

5.3. Disentangled Image Editing

Given a real image Î, we can first obtain its corresponding shape
and appearance features wwws, γγγa, and βββa via Eq. (15). Then, we can
achieve a disentangled editing over its shape and appearance by
simply replacing the features with those of another image, and syn-
thesize multiview images of the editing results given arbitrary cam-
era viewpoints. For instance, given two real images Îi and Î j, we
can easily obtain a new editing result I(wwwi

s,γγγ
j
a,βββ

j
a,θθθ), which has the

shape of Îi and the appearance of Î j.

6. Experiments

6.1. Implementation Details

We evaluate our methods on four datasets: PhotoShape
chair [PRFS18], CARLA [SLNG20, DRC∗17], ShapeNet car,
and ShapeNet plane [CFG∗15]. For PhotoShape chair, we render
a single view image for each chair instance with a random camera
viewpoint sampled from the upper hemisphere with 30 degrees
pitch variation, and obtain 15K images in total. For CARLA, we
use the 10K rendered images provided by the dataset. For ShapeNet
car and plane, we render three views for each object and obtain
10K and 12K total images respectively, following a similar camera
distribution as in PhotoShape chair. Our deformation network is an
MLP with 4 layers with the FiLM-SIREN structure [CMK∗21].
The template network has 5 layers with sine activation for density
generation, and another 4 FiLM-SIREN layers for color output.
Our discriminator is adapted from [CMK∗21], and the inversion
initialization CNN is a ResNet-34 network. During training, we
sample shape code zzzs and appearance code zzza from a normal
distribution of dimension 256. We use a single random code for
both shape and appearance of a generated instance. We randomly
sample camera pose θθθ from the same distribution used to generate
training data. We use Adam optimizer and train the model progres-
sively from 64×64 resolution to 128×128 with batchsize 32 on 8
Nvidia Tesla V100 GPUs with 32GB memory. The training takes
3 to 6 days.

6.2. Random Generation Results

Figure 5 shows the random image generation results by our method
on four different datasets. Our method can generate images of vari-
ous objects with diverse structures and freely change camera view-
points. The multiview generation results can be found in the ac-
companying video.
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Figure 5: Random image generation results of our method on four different datasets. (Best viewed with zoom-in)
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Figure 6: Qualitative comparison with the 3D-aware GAN model pi-GAN. Note that pi-GAN does NOT address shape-appearance disentan-
glement as we do, and that our method is trained on the same data without extra labels for disentanglement.

6.3. Disentangled Generation Results

Our method enables a disentangled control over shape and appear-
ance attributes of the generated images. We achieve this by varying
either the shape code or appearance code and keeping the other un-
changed. The corresponding generation results are shown in Fig. 1
and Fig. 7 (see video for multiview results). With our generative
deformable radiance field and the carefully designed training strat-
egy, we obtain plausible dense correspondence between different
objects. Textures can be correctly transferred between shape struc-
tures of similar semantic meaning. Note that our method is only
trained with 2D images without any semantic labels.

In Fig. 8, we illustrate the the learned template fields for dif-

Table 1: Quantitative comparison with pi-GAN.

Methods
PhotoShape 128 ShapeNet-car 128 CARLA 128
FID KID FID KID FID KID

pi-GAN 19.4 0.71 18.9 0.81 41.5 2.10
Ours 23.8 1.09 27.7 1.54 41.2 2.07

ferent categories and how different shapes are generated through
deformation and correction.

We further show the latent space interpolation results in Fig. 9.
Our disentanglement design makes it possible to interpolate either
shape and appearance while keeping the other unchanged. The in-
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EditNeRF CodeNeRF Ours

Figure 7: Qualitative comparison of code swapping results on CARLA. The images on the diagonal are the reference instances and others
are generated by combining the row-wise shape code and column-wise appearance code. Our method achieves much better shape and
appearance disentanglement than EditNeRF and CodeNeRF (e.g., see the color of car roof in the column-wise texture swapping results)

Template +Deform +Deform
+Correction

Template +Deform +Deform
+Correction

Figure 8: The learned templates and generated shapes by our
method. (Best viewed with zoom-in)

terpolation produces reasonable intermediate results for two shapes
with topology difference.

6.4. Comparison with Prior Art

Comparison with pi-GAN. First, we compare our uncurated gen-
eration results with pi-GAN [CMK∗21], and Fig. 6 shows the vi-

Figure 9: Latent space interpolation of our method on four differ-
ent datasets. Shape and appearance interpolations are in odd and
even rows, respectively. (Best viewed with zoom-in)

sual results. Our method achieves competitive generation quality,
but further enables shape and appearance disentanglement which
cannot be achieved by pi-GAN. Table 1 further shows the quan-
titative comparison, where we evaluate the FID [HRU∗17] and
KID [BSAG18] scores using 5K real images and 5K generated
images. Compared to pi-GAN, our method achieves disentangled
control of shape and appearance with only a slight increase of FID
and KID.

Comparison with CodeNeRF and EditNeRF. To further vali-
date the disentangled image synthesis ability of our method and
compare with the state-of-the-art methods, we conduct shape and
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Input Initial Inversion Novel views Shape editing Appearance editing

Figure 10: Real image inversion and disentangled editing results from our method.

Table 2: Ablation study on different network components and train-
ing losses on PhotoShape-chair 64×64.

Setting FID KID (×100)
no deformation 24.6 1.28
no correction 18.4 0.59
w/o deformation smooth. loss 17.7 0.70
w/o rigidity loss 15.8 0.56
w/o normal consist. loss 18.6 0.82
w/o minimal correction loss 16.0 0.61
Full model 15.6 0.56

appearance code swapping experiments and compare with CodeN-
eRF [JA21] and EditNeRF [LZZ∗21], both of which can separately
control the shape and appearance attributes of an instance. Figure 7
shows the code swapping results of the generated CARLA objects.
CodeNeRF and EditNeRF can hardly maintain a correct texture
transfer result when swapping the appearance code between dif-
ferent instances (e.g., see the roof of the cars). By contrast, our
method well keeps the texture consistency between corresponding
semantic parts of different objects.

6.5. Real Image Inversion and Editing

Figure 10 shows some typical real image inversion and editing
results by our method. Since our model is trained without back-
ground, we remove the irrelevant background content before inver-
sion. As shown, our method can faithfully reconstruct the shape
and appearance of the given real images and render plausible novel
views of them, even though it is only trained with synthetic data. In
addition, we can further edit the shape and appearance of the real
images by replacing the inverted shape or appearance features with
randomly generated ones.

No 
Correction

No 
Deform.

No
Deform.
Smooth.

No
Deform.
Rigidity

No
Normal 

Consistent

No
Minimal 

Correction

Full
Model

a) Source b) Target c) Template

Figure 11: Visualization of the learned dense correspondence and
template radiance field under different setups.

6.6. Ablation Study

We evaluate the efficacy of our deformable radiance field architec-
ture and training regularization on PhotoShape chairs with 64×64
resolution. Table 2 shows the influence of different components on
image generation quality. Our full model with deformation field,
correction field, and all regularization losses yields the best result.
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V3 pdf v3

Mean Init.
Opt. 𝑤𝑤𝑠𝑠

Mean Init.
Opt. 𝛾𝛾𝑠𝑠,𝛽𝛽𝑠𝑠

Encoder Init.
Opt. 𝑤𝑤𝑠𝑠

Input Init Inversion Novel views Input Init Inversion Novel views

Figure 12: Comparison of different inversion initialization methods.

We further evaluate the influence of each component on the
learned dense correspondence between different shapes in Fig. 11.
To visualize dense correspondence, we extract isosurfaces from the
density fields via MarchingCubes [LC87] and manually painted
some textures on the extracted meshs, as shown in Fig. 11(a). With
a textured mesh as source shape, we can transfer its appearance
to other generated instances using the dense correspondence de-
rived from the learned deformation field, and Fig. 11(b) shows the
texture transfer results. We also visualize the learned template radi-
ance fields in Fig. 11(c) where we render the corresponding color
and depth images.

As shown in in Fig. 11, the correspondence is poor without
the deformation or correction. The model without deformation can
only derive correspondence by absolute spatial location, and with-
out correction it is unable to separate parts with topology differ-
ence. The deformation smoothness and rigidity losses alleviate ir-
regular deformation and local distortions. The normal consistency
loss encourages the deformation field to learn a more precise cor-
respondence, and the minimal correction loss prevents the density
from being compensated mainly by the correction field and hence
also leads to improved correspondence. Our full model ends up
with a semantically informative template and yields the best quality
in terms of dense correspondence.

To further verify the effectiveness of our proposed CNN-based
inversion initialization, we compare it with the commonly-used
mean latent code initialization strategy. Specifically, we first obtain
a mean shape latent feature www0

s by averaging the features of 10K
randomly generated instances. Then we test two settings: directly
optimizing wwws with www0

s as initialization (i.e., same as ours defined
in Eq. 15), or optimizing the latent features (γγγs,βββs) with the cor-
responding values derived from www0

s as initialization. As shown in
Fig. 12, the former strategy leads to poor image reconstruct quality
with inaccurate geometry and appearance. The latter one can well
reconstruct the given image, but the geometry is erroneous and un-
natural as can be seen from the novel view renderings. In contrast,
our CNN-based initialization scheme can estimate a good starting
point for the inversion process in the wwws space, which leads to our
high-quality reconstruction and novel view rendering results.

Input Encoder Inversion Input Encoder Inversion

Figure 13: Some failure cases of real image inversion from our
trained model.

6.7. Running time

It takes our method 0.4 seconds to render a 128×128 image on a
Nvidia Tesla V100 GPU. For image inversion, we use 2K optimiza-
tion steps which takes about 15 minutes for a single instance. For
our image editing experiments, we simply replace the shape or ap-
pearance features and hence they take the same amount of time as
image rendering.

6.8. Failure Cases

We illustrate two failure cases of image inversion in Fig. 13. Our
method may not be able to recover the correct geometry when the
shapes in the input images are rare or the local structures are too
complex. These cases are difficult to handle for both our trained
generator and the inversion initialization CNN.

7. Conclusion

We have presented a novel generative deformable radiance field
that can generate multiview images of an object category with
topology variations, and achieve disentangled control over shape
and appearance attributes of the synthesized images. The shape-
appearance disentanglement is achieved in an unsupervised manner
through our deliberate architecture and training loss design and no
additional label is introduced compared to previous 3D-aware GAN
training. We also demonstrated that our method can be applied to
disentangled editing of real images by leveraging our proposed im-
age inversion scheme. We believe that our method has strong po-
tentials for realistic virtual content creations and manipulations in
future applications.
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