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Abstract
Existing stroke-based painting synthesis methods usually fail to achieve good results with limited strokes because these meth-
ods use semantically irrelevant metrics to calculate the similarity between the painting and photo domains. Hence, it is hard 
to see meaningful semantical information from the painting. This paper proposes a painting synthesis method that uses a CLIP 
(Contrastive-Language-Image-Pretraining) model to build a semantically-aware metric so that the cross-domain semantic sim-
ilarity is explicitly involved. To ensure the convergence of the objective function, we design a new strategy called decremental 
optimization. Specifically, we define painting as  a set of  strokes and use a neural renderer to  obtain a rasterized painting by 
optimizing the stroke control parameters through a CLIP-based loss. The optimization process is initialized with an excessive 
number of brush strokes, and the number of strokes is then gradually reduced to generate paintings of varying levels of abstrac-
tion. Experiments show that our method can obtain vivid paintings, and the results are better than the comparison stroke-based 
painting synthesis methods when the number of strokes is limited. 
CCS Concepts
• Computer Graphics → Non-photorealistic rendering; Stroke based rendering;

1. Introduction

Abstraction is an essential technique in painting, requiring the
painter to use a few strokes to convey crucial information about the
target scene, fully reflecting the painter’s wisdom and creativity.
For example, the watercolor painting depicts the target scene with
a few expressive strokes, and each stroke may need to simultane-
ously contain meaningful semantic, geometric, color, and illumina-
tion information. This kind of creation requires a comprehensive
understanding of the target scene and adequate knowledge of the
properties of the brushstroke. People usually need a large amount
of practice and professional training to master such skills. Even
a skilled painter considers carefully to create an excellent abstract
painting. This paper will take the watercolor painting as an example
to explore how to use algorithms to create abstract paintings.

Today, machines can generate paintings by various techniques,
e.g., non-photorealistic rendering [GG01], generative adversarial
networks (GANs) [GPAM∗14], style transfer [GEB15], and dif-
fusion models [DN21]. Existing methods can produce a wide va-
riety of high-quality paintings. However, the literature dedicated
to the generation of abstract paintings is rare. A primary goal in
non-photorealistic rendering is automatically generating a corre-
sponding painting based on a given photo. One technique, called
stroke-based rendering (SBR) [Her03], defines a painting as a set
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of strokes controlled by parameters and then rasterizes the paint-
ing by a stroke renderer, which is similar to human painting. It is
hard to define the abstract level in other techniques. Nevertheless,
for SBR, we can use the number of strokes to define the abstraction
level: fewer strokes refer to a higher abstraction level. Therefore, as
shown in Figure 1, in this paper, we will develop our method based
on the SBR technique.

Target Image 40 strokes 20 strokes 10 strokes

Figure 1: Given a target image, our method can generate abstract
paintings of varying levels of abstraction.

Existing SBR methods usually limit the number of strokes be-
cause the metrics guide these methods in the pixel domain, when
the number of strokes is unlimited, the result will be close to the
given image, which is meaningless. For the same reason, these
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methods usually fail when we need to create abstract paintings with
a minimal number of strokes. Covering the whole image with vague
strokes is the optimal solution for minimizing the pixel distance be-
tween the input photo and the painting. However, it may lose cru-
cial semantic information, which will lead to pointless results. This
problem is particularly acute for the methods that use plain lines to
generate sketches. To solve this problem, CLIPasso [VPB∗22] uses
a pre-trained CLIP [RKH∗21] model to construct the loss function
that focuses on the semantic similarity between photos and sketches
to bridge the gap between the photo domain and the sketches do-
main, and enables the generation of sketches with different levels
of abstraction by using different numbers of strokes.

Inspired by CLIPasso, we will use the CLIP-based loss to guide
the generation of abstract watercolor paintings. However, it is not
trivial because the objective function based on the CLIP model is
highly nonconvex, so the initial values and the optimization strat-
egy may affect the results profoundly. In CLIPasso, the authors use
a saliency-guided initialization strategy to guarantee convergence.
This paper uses a neural renderer to render watercolor strokes,
which differs from the plain lines used in CLIPasso. The complex
watercolor strokes are more difficult to optimize, so we cannot use
the same strategy directly. Therefore, we propose a new decremen-
tal optimization strategy to provide convergence guarantees. For the
SBR methods, when the number of strokes is large, the generated
painting will be close to the target image. These strokes represent
almost the complete information of the target image, so we con-
sider the optimization process of obtaining an abstract painting as
a process of keeping the strokes that provide the most information
and eliminating irrelevant strokes. Specifically, this strategy starts
with an excess of strokes to generate a painting that approximates
the target photo and takes the corresponding stroke control param-
eters as initialization values. Next, at each step of the iterative opti-
mization process, we first take the strokes generated in the last step
and evaluate the contribution of each stroke to the semantic simi-
larity to eliminate strokes that do not contribute much to generating
paintings of higher abstraction level. The step ends with fine-tuning
the remaining strokes using the CLIP-based loss to reduce distor-
tion caused by removing the strokes directly. Our strategy does not
need extra models to get the saliency map or image segmentation
compared to the saliency-guided initialization strategy. Only a re-
inforcement learning-based paint agent is used to accelerate the ac-
quisition of initialized strokes. With this strategy, our method can
build vivid paintings in different abstraction levels and outperform
comparison methods in a limited number of strokes.

Our works are summarized as follows:

• We propose a new decremental optimization strategy combined
with the CLIP-based semantic loss for a stroke-based painting
synthesis method to create paintings at different levels of ab-
straction.

• The proposed method performs surprisingly well, especially in
a limited number of strokes, demonstrating its robustness and
generalization ability, and also validating our motivation.

• Extensive experiments and comparisons show that our method is
very competitive with the recent state-of-the-art methods.

2. Related Work

Style transfer and image translation Style transfer is widely
used for painting synthesis tasks. It is a general image process-
ing technique for transferring the style of one image to another.
When the style is artistic painting, painting synthesis is possible.
Texture transfer techniques achieve style transfer initially. A rep-
resentative method is [EF01], based on texture synthesis and im-
age quilting. Besides that, most of the classic works are devel-
oped on texture synthesis, morphology, or other image process-
ing techniques [YO12, MCO11, MBO14]. More recently, Gatys et
al. [GEB15] proposed a method that extracts content features and
style features of different images by a deep neural network and
fuses them to complete image style transfer. Follow by this work,
[JAFF16] proposed feed-forward convolutional neural networks to
solve the optimization problem approximate. [HB17] implements
arbitrary style transfer by manipulating the statistics of the feature
map. Another line of work is image translation [PLQC21], which
aims at translating images from one domain to another. For the task
of painting synthesis, the target domain is artworks. Most of the
image translation method is a kind of image-conditional generative
model, such as CycleGANs [ZPIE17], Pix2Pix [IZZE17], Bicy-
cleGAN [ZZP∗17], and their variants [LZH∗21]. Generally, these
methods use a network that simultaneously learns stroke and con-
tent to synthesize painting by directly manipulating pixels, which
is different from the human painting process and can not use the
number of strokes to control the abstraction level.

Stroke-based rendering Stroke-based rendering (SBR) con-
verts a given image with a limited number of strokes. As a non-
photorealistic technique, the goal of SBR is not to reconstruct the
image but to represent the image with some artistic style [Her03].
This technique has a long history of research, and earlier work
focused on obtaining stroke parameters by greedy search [Lit97]
or image segmentation [GCS02] methods. Recent work can be di-
vided into two categories. The basis of optimization approaches
is the differentiable renderer. These methods obtain stroke con-
trol parameters by optimizing the loss of the target image and
rasterized painting [ZSQ∗21,MH21,KWHO21]. The feed-forward
approach directly predicts the control parameters of the strokes
through deep neural networks. Some approach model this as a se-
quential process [HE17], Some methods use reinforcement learn-
ing [HHZ19,GKB∗18,ZJH18], and some borrow ideas from object
detection [LLH∗21]. Our approach is in the optimization category.
Besides, because the feed-forward method has a faster speed, this
paper will adopt a feed-forward method to initialize the stroke con-
trol parameters.

Sketch/doodle generation The purpose of sketch generation is
to produce abstract sketches in terms of geometric structure and
semantic features. Require depicting the most critical informa-
tion in a minimal number of strokes, which is very difficult for
computers, so sketch generation has attracted many researchers to
study it. [BSM∗13] using a data-driven approach to learn differ-
ent artists’ styles and abstraction processes to synthesize the por-
trait. [LSHG17] use the model to learn how to combine strokes for a
given category and then transform the edge map of the input image
into a sketch by deformation. [ZFW∗18] use stroke demonstration
and deep Q-learning to train a paint agent that paints in a simulation
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Figure 2: Overview of our method. Given a target image, we first decompose it into a group of strokes using a pre-trained paint agent and
keep the parameters of these strokes. Next, we will use a Decremental optimization strategy with several steps to produce paintings of different
abstraction levels. This strategy starts with the initial adaption, optimizing the parameters generated by the agent using a CLIP-based loss.
In each step that follows, we take the parameters generated in the last step, evaluate every stroke, and eliminate those strokes that do not
contribute much. At last, fine-tune the remaining strokes with the CLIP-based loss to get a higher level of abstraction.

environment. Spiral++ [MPG∗19] is also a reinforcement learning
approach to implement a generative agent in an unsupervised man-
ner. [TH21] uses colored triangles as brush strokes and utilizes a
modern evolutionary algorithm combined with CLIP-based loss to
achieve abstract painting generation. [CDI22] uses CLIP loss as a
semantic constraint and incorporates style loss and geometric loss
to train the GAN model and improve line drawings. Recent work,
CLIPasso, takes abstraction as a central problem in sketch gener-
ation and gives a discussion with insight. Our work is based on
CLIPasso. While CLIPasso uses plain lines as strokes, our method
aims to use complex strokes with color and texture features to gen-
erate abstract watercolor paintings, which are closer to Spiral++. It
should be emphasized that ensuring the convergence is difficult due
to the highly non-convex nature of the CLIP-based objective func-
tion. Therefore, the saliency-guided initialization used in CLIPasso
cannot be applied directly to our problem.

CLIP-guided image synthesis/manipulation CLIP is a neu-
ral network model trained on 400 million image-text pairs col-
lected from the internet based on Contrastive Language-Image Pre-
training technique. The model maps a given text and an image
to the same embedding space, and the semantic similarity could
be evaluated by calculating the cosine distance of the embedding
vectors. Since the data used to train CLIP are collected from vari-
ous sources on the internet and cover various image domains, the
models are found to be powerful for a wide range of image syn-
thesis/manipulation tasks. StyleCLIP [PWS∗21] is based on style-
gan [KLA19] architecture to manipulate the image style by the text
prompt through the CLIP model. Similar to this idea, [ZAFW21]
delves into the problem of domain gap and presents a method com-

bined with the CLIP model for one-shot domain adaptation. The
proposed algorithm can translate any output of the trained GAN
from one domain to another. Other works [NDR∗21, KY21] com-
bined the CLIP model with the modern diffusion generative model
to push text-guided image synthesis to a new stages. [FSW21]
and [SLO21] use the CLIP model to guide an optimization pro-
cess of a stroke-based painting synthesis, which is similar to our
method. However, our method is specifically designed to generate
abstract paintings and is guided by the given target image rather
than a text prompt.

3. Methodology

Figure 2 provides an overview of our method. In general, Our ap-
proach consists of four components: 1) a neural renderer for ren-
dering the given stroke parameters into a rasterized image; 2) a
reinforcement learning agent for generating initialized stroke pa-
rameters; 3) a CLIP-based loss to measure the distance between
the target image and the rendered canvas, which is aware of seman-
tic similarity; and 4) a decremental optimization method combined
with the CLIP-based loss to gradually reduce the number of strokes
to obtain the paintings at different levels of abstraction.

We will introduce each component in the following.

3.1. Stroke Renderer

A differentiable stroke renderer is essential to optimize the param-
eters of the strokes. Many studies have utilized diffvg [LLGRK20]
to render strokes. In this paper, we define discrete strokes based
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on an open-source paint library called libmypaint [lc22] and train
a differentiable neural renderer to imitate it. A major advantage of
libmypaint is that it provides more realistic watercolor strokes than
diffvg. Additionally, an approximate blending method is chosen to
merge the strokes for a fast speed in the optimization process.

Stroke define The trajectory of a single stroke is modelled as a
quadratic Bézier curve:

B(t) = (1− t)2P0 +2(1− t)tP1 + t2P2, (1)

where 0≤ t ≤ 1, and P0 = (x0,y0),P1 = (x1,y1),P2 = (x2,y2) is the
three control points. Then, the control parameter of a single stroke
is defined as the following tuple:

a = (x0,y0,x1,y1,x2,y2,R,G,B, p1, p2,s), (2)

where (R,G,B) is the color of the stroke, and follows the API of
libmypaint, p1, p2 is the start and end pressure, and s is the stroke
size.
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Figure 3: Samples of the stroke.

Neural renderer The neural renderer is a deep convolutional
network R trained to imitate libmypaint engine to generate discrete
stroke, it takes the stroke control parameter a as input, and output
is the stroke foreground S and the alpha map α:

S,α = R(a). (3)

We train our neural renderer with the ℓ2 loss on both the stroke
blended on a white and a black canvas. The objective function used
in training is:

LR(a) = Ea∼U(a)

[
||CW −ĈW ||2 + ||CB−ĈB||2

]
, (4)

where CW and CB are the predicted strokes generated by the neu-
ral renderer blended on the white and the black canvas, ĈW and ĈB
are the ground-truth strokes generated by libmypaint blended on
the white and the black canvas. U(a) is a uniform distribution de-
fined on the parameter space. We use the Adam [KB14] optimizer
to minimize LR in practice. The stroke samples generated by the
trained neural renderer are shown in Figure 3.

Blending As illustrated in Figure 4, given an empty canvas C0
and a sequential of N strokes controlled by the parameters {at}N

t=1,
the soft blending is defined as:

Ct = αtSt +(1−αt)Ct−1, (5)

where St ,αt = R(at), and after N steps of soft blending, we get the

Neural
Renderer

Blending

Neural
Renderer...

...

...

Figure 4: Given an empty canvas C0 and a sequential of N strokes
controlled by the parameters {at}N

t=1, we first use neural to predict
the alpha map α and foreground S of each stroke, then merge the
strokes to get the output canvas CN through a blending method.

final canvas CN as the output painting. Since the recursive process
of soft blending is time-consuming, we use an approximate blend-
ing method to merge the strokes:

CN ≜ B({at}N
t=1) =

N

∑
t=1

αtSt +C0(1−
N

∑
t=1

αt), (6)

which can be calculated in parallel, and speeded-up by GPU easily.
Due to the characteristic of our watercolor stroke, the αt will usu-
ally be very small, so the results of approximate blending and soft
blending will be similar, and the implicit conditions ∑

N
t=1 αt ≤ 1

will be fulfilled in most cases.

3.2. Stroke Initialize

In our method, we utilized a paint agent from [HHZ19] to get a
better initialization of the strokes quickly. Many previous methods
have based their optimized process on randomly initialized strokes.
Since the objective function in our method is highly non-convex,
the convergence results are susceptible to the initialization, espe-
cially when the number of strokes is small. A saliency-guided ini-
tialization strategy is applied in CLIPasso to tackle this problem,
which places the initial strokes based on the salient regions of the
target image. Our strokes are different from the simple line used in
CLIPasso, so the same strategy may not be suitable. In this paper,
we consider using excessive strokes as the initial, then remove the
strokes gradually to get abstract paintings. A straightforward solu-
tion is to initialize the stroke randomly and then utilize our decre-
mental optimization strategy. However, this requires additional op-
timization steps, which are time-consuming, and there is no guar-
antee of getting the desired results. So we consider other methods
to get the initial strokes.

The results of feed-forward [LLH∗21, HHZ19] methods usu-
ally lack artistic abstraction when the number of strokes is large
or may fail to convey critical information when the number of
strokes is limited. However, their inference time is fast. To this
end, we consider using a feed-forward method to get excessive
strokes as the initialization. There are certain drawbacks associ-
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ated with [LLH∗21]: the stroke loss is only available for special-
ized oil paint brush strokes. Considering the strokes generalization,
we adopt [HHZ19] to get the initial strokes.

We utilized our stroke renderer in the framework of [HHZ19] to
train the paint agent. According to [HHZ19], given a target image I,
the agent aims to find a stroke sequence ARL = {ai}N

i=1, that after
rendering these stokes via soft blending on empty canvas C0, we
can get the final canvas CN which is similar to I visually. Since the
stroke number N is large enough, the ℓ2 distance between the final
canvas CN and I will be very close, so the visual information on I
will be preserved almost intact. We keep ARL as the initial strokes.

3.3. CLIP-based Loss

As we discussed before, pixel-wise metrics are not sufficient to
measure the similarity between abstract paint and realistic photos
because the same information expressed in the two domains may
be very different at the pixel level. Compared to pixel-wise metrics,
the perceptual losses such as LPIPS [ZIE∗18] based on pre-trained
deep neural networks are proved to be close to human perceptual
similarity judgments. Nevertheless, it fails to encode the abstract
paint to the same semantic embedding as the photo at such a high-
level abstraction. The CLIP model maps the image and text to a
shared encoding space of a vector, and the cosine distance will be
close if two inputs have similar semantical information. The model
is trained with enormous image data, including various domains, to
robustly measure the cross-domain semantic similarity. To this end,
we use the visual branch of a pre-trained CLIP model to build our
metric.

We first define the high-level semantic loss based on the original
CLIP vector embedding:

Lsemantic = dist(CLIP(I),CLIP(C)), (7)

where CLIP(I) and CLIP(C) is the CLIP embedding of the target
image I and the rendered canvas C, dist(x,y) = 1− x·y

∥x∥·∥y∥ is the
cosine distance. The augmentation scheme used in CLIPasso is not
adopted to save computational resources, and it has been proven
that the augmentation does not significantly impact our approach.
Next, as a complementary to the semantic loss, we define the ge-
ometric loss based on the intermediate level activation of CLIP to
measure the similarity of the color, texture, and spatial features:

Lgeometric = ∑
l
∥CLIPl(I)−CLIPl(C)∥2

2, (8)

where CLIPl is the CLIP encoder activation at layer l. From above,
the objective of the optimization is defined as:

LCLIP = Lgeometric +w ·Lsemantic, (9)

where w is the weight of the semantic loss.

3.4. Decremental Optimization

Since we have the initial strokes ARL, we use the metric described
above to evaluate every single stroke and remove insignificant
strokes gradually to get a different level of abstract paint, referred to
as the decremental optimization strategy. The details of the strategy
are specified next.

Stroke evaluation To start, the fundamental of our strategy is
the evaluation of the single stroke. For each stroke, we use the
loss value after removing the stroke minus the loss value before
removing the stroke as the score of this stroke. Suppose we have
N strokes {at}N

t=1, the corresponding canvas is CN = B({at}N
t=1),

if we remove a single stroke ai, the corresponding canvas is Ci
N =

B({at}N(t ̸=i)
t=1 ). Then, the score of stroke ai is defined as:

si ≜ S(i,{ai}N
i=1, I) = LCLIP(I,C

i
N)−LCLIP(I,CN), (10)

Refer to Figure 5, a higher score means the more important the
stroke is. When the score is zero, it means that this stroke does not
contribute any, and when the score is negative, it means that the
loss may be reduced by removing the stroke.

Target Image Before removing
 a stroke

After removing
a stroke

(negative-scored) 

After removing
a stroke

(positive-scored) 

Figure 5: Example of the stroke evaluation. Removing the stroke on
the rear wheel will make the canvas far from the target image, so it
has a positive score; removing the red stroke will make the canvas
close to the target image, so it has a negative score.

Initial adaption Next, we fine-tune the initial parameters to
adapt approximate blending. We use soft blending in the case of
an agent that generates initialized strokes and approximate blend-
ing in the optimization process. The same stroke control parameters
may produce different results in the two blending methods, so we
fine-tune the parameters to adapt the approximate blending. Given
the initial strokes ARL, we optimize the objective function below to
fine-tune the parameters:

min
ARL
LCLIP(I,B(ARL)), (11)

In practice, we use the Adam [KB14] optimizer with a few steps T
to get the approximate solution of this objective, denote as

Adam(min
At
LCLIP(I,B(At)),T ). (12)

Algorithm 1 Regular step of decremental optimization
Input: A target image I; strokes generate in last step At−1.
Output: Strokes of the current step At .
Default: Constant k; Fine-tune steps T .

1: function REGULARSTEP(At−1, I)
2: St = {si|si = S(i,{ai}N

i=1, I)}
N
i=1;

3: Asort
t−1 = Sort(At ;St);

4: At = {ai|ai ∈ Asort
t−1}

N−k
i=1 ;

5: At ← Adam(minAt LCLIP(I,B(At)),T );
6: return At .
7: end function

Optimization process For simplicity, we use the number of
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strokes to define the abstraction level. The optimization process is
divided into several regular steps associated with a different number
of strokes: if we have N input strokes in the first step, the number of
the input strokes in step t is N−k(t−1), where k is a constant, and
here we set k = 10. At each regular step of the optimization pro-
cess, we start by taking the strokes determined in the last step, then
scoring each stroke using the evaluation method described above
and ranking it by the score. Next, we remove the last strokes, re-
ducing the number of strokes to a higher abstraction level. Finally,
the canvas may be distorted after removing the strokes crudely, so
we use the same operation in the initial adaption to fine-tune the
remaining strokes. Specifically, at step t, if the N strokes are gener-
ated in the last step t−1 is At−1 = {ai}N

i=1, we first evaluate every
stroke to get their scores:

St = {si|si = S(i,{ai}N
i=1, I)}

N
i=1. (13)

Then, we sort the strokes by their corresponding scores:

Asort
t−1 = Sort(At ;St). (14)

After eliminating the last strokes ranked in, the remaining strokes
at step t is:

At = {ai|ai ∈ Asort
t−1}

N−k
i=1 , (15)

and the final output stroke is fine-tuned by optimizing the objective
function:

min
At
LCLIP(I,B(At)). (16)

In practice, supposing we have the strokes Aada = {ai}N
i=1 after

initial adaption and the sorted strokes are Asort
ada , we will remove the

strokes whose scores are not positive. If the number of the removed
strokes is r, for simplicity, we will remove n more strokes ranked in
the last, where n < k and N− r−n = ⌊N− r⌋k (which means (N−
r−n)Modk = 0). So the stroke number at step t = 1 is N′ =N−r−
n. The regular steps are summarized in the form of pseudo-code in
Algorithm 1, and the overall pipeline of decremental optimization
is summarized in Algorithm 2.

Algorithm 2 Decremental optimization
Input: A target image I; Initial strokes ARL.

Output: Paintings in different abstraction levels {B(At)}N′/k
t=1 .

Default: Constant k; Fine-tune steps T ; t = 0.
1: Aada = Adam(minARL LCLIP(I,B(ARL)),T );
2: N = n(ARL);
3: Sada = {si|si = S(i,Aada, I)}N

i=1;
4: Asort

ada = Sort(Aada;Sada);
5: r = n({si|si ≤ 0,si ∈ Sada});
6: N′ = ⌊N− r⌋k;
7: A0 = {ai|ai ∈ Asort

ada}
N′

i=1;
8: for t < N′/k do
9: t← t +1;

10: At = REGULARSTEP(At−1, I);
11: end for
12: return {B(At)}N′/k

t=1 .

4. Experimental Analysis

4.1. Experiment Environment and Settings

Enviroment The stroke engine used in our work is libmypaint
1.6.1. The neural renderer and the optimization method are coded
with PyTorch 1.9, running on an NVIDIA GTX Titan X GPU.

Settings of neural renderer For the neural renderer, we use the
same architecture as [ZSQ∗21], set the rendering output size to
128×128. In training, we use the Adam optimizer with the learning
rate of 2e−4, and the betas of (0.9,0.999). We reduce the learning
rate by 1/10 in every 100 epochs and stop training after 200 epochs
since the model is converged. There are 50000 randomly generated
ground truth strokes in each epoch, and the batch size we use is 64.

Settings of paint agent For the paint agent, we use the same
training framework as [HHZ19] and replace the original renderer
with ours. The agent is trained with 2× 105 mini-batch with the
CelebA [LLWT15] datasets, the action bundle size is five, and the
number of strokes is 200.

Settings of CLIP-based loss We use the official published
ResNet101 model to build our CLIP-based loss and select Layers
3 and 4 of the model to calculate the geometric loss. We set the
weight of semantic loss w to 0.1.

Settings of decremental optimization The target image we
used to test our method is from various datasets, including
CelebA [LLWT15], CUB_Bird [WBW∗11], AFHQ [CUYH20],
Object_Sketch [GLX∗20], VGG_Flowers [NZ08] and ImageNet
[DDS∗09]. We set k = 10 and T = 100. The parameters of Adam
optimizer is that learningrate=0.01 and betas=(0.9,0.999).

4.2. Abstract Painting Synthesis

Figure 10 show the paintings generated by our method. We can see
no significant difference between the results of more than 40 brush
strokes. That is because high-frequency information is difficult to
represent through watercolor brush strokes. After depicting the key
low-frequency features through a small number of strokes, addi-
tional strokes usually do not continue to refine the details of the
painting, so there are a large number of redundant strokes. Our ap-
proach exhibits powerful abstraction capabilities between 40 to 10
strokes. Every stroke is elaborate, and it conveys rich information.
Especially in the case of 10 strokes, our method uses a limited num-
ber of strokes to depict the dominant features of the object, which is
very similar to human painting and demonstrates distinctive effects.

4.3. Comparison with other methods

4.3.1. Qualitative comparison

In Figure 11. we compare the painting results generated by different
methods. Paint-Transformer [LLH∗21] and Huang et al [HHZ19]
predict the strokes in a feed-forward manner, Zou et al [ZSQ∗21],
CLIPasso [VPB∗22] and our method is based on optimization. The
figure shows that our method outperforms other methods with a
limited number of strokes. In the case of a small number of strokes,
most results of the comparison methods are blurred and lose crucial
information. CLIPasso can depict the semantic features of objects,
but only in line sketches.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

424



M. Yan et al. / Abstract Painting Synthesis via Decremental optimization

Ta
rg

et
 I

m
ag

e
S

in
gh

 e
t a

l
H

ua
ng

 e
t a

l
O

ur
s

Figure 6: Compare with Singh et al (20 strokes). From top to bot-
tom: target image, Huang et al [HHZ19], Singh et al [SZ21], our
method.

We also compare our method with [SZ21], which is developed
on [HHZ19] and guides the paint agent based on semantic segmen-
tation techniques. Since the official implementation of [SZ21] is
only available on the CUB_bird dataset, we select some samples
from the CUB_bird dataset for comparison in Figure 6. We can see
that although [SZ21] spends more strokes on the foreground ob-
jects compare to [HHZ19], the painting results are still inferior to
our method with a limited number of strokes.

4.3.2. Quantitative comparison

User study To our best knowledge, there is no objective quantita-
tive criterion for abstract painting synthesis tasks in the literature.
To provide a statistical evaluation of the performance of the meth-
ods, we conduct a user study with 103 participants to judge the
clarity of the synthesized results. We randomly selected 50 images
from each dataset to construct a small test set. Each participant was
presented with 50 target images from the test set, and each target
image was attached with five abstract paintings synthesized by dif-
ferent methods. Participants were asked to choose the most clarity
painting for each target image. Table 1 shows the selected rates
of different methods on different datasets. The results demonstrate
that our method significantly outperforms other approaches.

Computational time Table 2 compares the computational time
of the different methods. Our method does not have an advantage
over the feed-forward methods [LLH∗21,HHZ19] but is still better
than CLIPasso [VPB∗22] as a baseline.

4.4. Ablation Studies

We study how the components affect the performance of our meth-
ods in this section.

Method A B C D E

CelebA 0.12% 0.25% 0.37% 14.75% 84.5%
CUB_Bird 0% 1.44% 0.11% 17.55% 80.88%

AFHQ 0.17% 4.08% 1.82% 13.04% 80.86%
Object_Sketch 0.13% 3.73% 0.4% 13.86% 81.86%
VGG_Flowers 0% 8.85% 0.28% 0% 90.85%

ImageNet 0.11% 6.82% 1.88% 9.88% 81.29%
Average 0.08% 4.19% 0.81% 11.51% 83.37%

Table 1: Selected rates of different methods (A: [LLH∗21], B:
[ZSQ∗21], C: [HHZ19], D: [VPB∗22], E:Ours).

Method A B C D E

Computational time(s) 1 14 1 294 174

Table 2: Computational time of different methods (A: [LLH∗21],
B: [ZSQ∗21], C: [HHZ19], D: [VPB∗22], E:Ours).

4.4.1. Objective Function

To explore the impacts of the objective function, we visually com-
pare the abstract paintings generated by our method with the pixel-
wise ℓ1 loss, the transportation loss, the LPIPS [ZIE∗18] loss,
and the semantically-aware CLIP-based loss. Figure 12 shows the
comparison result on several target images from different datasets.
We can see that the painting generated with the pixel-wise loss is
blurred, and the objects may not even be recognized for some tar-
get images. The transportation loss complements pixel-wise loss,
which helps to solve the zero gradient problem and is proved ef-
fective in [ZSQ∗21]. However, there is no significant improvement
in our setting. The LPIPS loss helps to recover more details but
still loses some crucial information in portraits. The results of the
CLIP-based loss are most recognizable, and we can see more se-
mantic information and "abstraction". Particularly, the portrait of
the puppy dog generated by LPIPS is closer to the target image, but
it conveys "cute-looking" information in the case of the CLIP-based
loss. Moreover, the background flower is removed automatically in
the paint of the sunflower.

4.4.2. Stroke Initialization and Optimization

In this experiment, we fix the objective function to the CLIP-based
loss and investigate the impact of different initialization and opti-
mization methods under the following conditions:

1. Random initialize 20 strokes and optimize with regular Adam
for 1000 iteration steps;

2. Direct predict 20 strokes using paint agent and optimize with
regular Adam for 1000 iteration steps;

3. Random initialize 200 strokes and optimize with decremental
strategy;

4. Predict 200 strokes using paint agent and optimize with decre-
mental strategy.

We provide a visual comparison between different conditions in
Figure 13. Random initialization without the decremental optimize
strategy produces the worst results, where most of the objects are
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Figure 7: Convergence comparison with different initialization and
optimization strategy (The joker in Figure 13, last 1000 iteration
steps of the Adam optimizer).

unrecognizable. Direct predicting 20 strokes is slightly improved
compared with Random initialization, but most of the paintings are
still collapsed. The results of the Decremental optimize strategy
with random initialization and agent prediction is very close, and
far better than the first two conditions. But it must be stated that the
number of iterations in initial adaption is set to 500 in the case of
random initialization, which is time consuming compared to pre-
dicting the stroke by the paint agent directly. Besides, we take the
joker in Figure 13 as an example and compare the convergence in
Figure 7. (Note that since the number of strokes is decreasing, the
loss curve of the decremental optimize strategy is ascending.)

4.4.3. Alternative Stroke Representations

Besides the watercolor, our method can also generalize to alterna-
tive strokes. Here we train our neural renderer to imitate the strokes
defined in [ZSQ∗21] and [HHZ19] rendered by their custom ren-
derer. Similar to our stroke, these strokes are discrete, and the con-
trol parameter of a single stroke consists of several real numbers, so
we only need to make minor changes to the input layer of our neural
renderer. Then, we train the paint agent and utilize the decremental
strategy to synthesize abstract paintings. The results are shown in
Figure 8. We can see that our method produces abstract paintings
robustness with different strokes. Furthermore, the high-resolution
result can be produced with the stroke has vectorized characteris-
tics as shown in Figure 9. We first use the decremental strategy
with the neural renderer to find the stroke parameter in low resolu-
tion (128×128), then feed these parameters to the custom renderer
provided by [HHZ19] and set the output of the renderer to a high
resolution (512×512) to get the final result.

5. Limitations

Although our method can obtain good results under restricted con-
ditions, the work in this paper still has some limitations. The first
limitation of our approach is that the resolution of the synthesized
painting is currently too low, which can be addressed using a practi-
cal stroke rendering pipeline. The second limitation of our method

Target Image OilPaint rect OilPaint curve Watercolor

Figure 8: Abstract paintings using different stroke types. From left
to right: target image, rectangle oil paint stroke from [ZSQ∗21],
curve oil paint stroke from [HHZ19], watercolor.

Figure 9: High-resolution result with the stroke from [HHZ19].

is that we use fixed stroke numbers to define abstract levels. How-
ever, the same abstract level may need a different number of strokes
for different content. This correlation can be studied in future work.
Finally, we use the clarity of the synthesized result as the criterion
to evaluate the methods’ performance, which is insufficient. An im-
proved criterion can be further explored for the abstract painting
synthesis.

6. Conclusions

This paper presents a new method for stroke-based abstract paint-
ing synthesis. The method can generate the corresponding paintings
of the given target image in different levels of abstraction. In our
method, we use the number of strokes to define the abstract level.
The synthesis process started with an excessive number of strokes
which gradually reduced them to obtain a higher and higher level of
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Target Image 10 strokes20 strokes30 strokes40 strokes50 strokes60 strokes70 strokes

Figure 10: The paintings in different levels of abstraction created by our method.

abstraction. Our approach consists of four parts. First, a neural ren-
derer is utilized to make the rendering process differentiable. Sec-
ond, a reinforcement learning paint agent is used to generate the
initialized strokes efficiently. Third, we use a loss function based
on the CLIP model to measure the similarity between the target
image and the rendered canvas. Fourth, a decremental optimization
strategy that gradually reduces the number of strokes is adopted
to generate painting in different levels of abstraction. Experimen-
tal results demonstrate that our method can be adapted to various
target images and get better abstract paintings with limited strokes
compared to other methods. Ablation studies confirm the validity
of our design.
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Figure 13: Compare with different initialization and optimization strategy (20 strokes with CLIP-based loss). From top to bottom: target
image, random initialize 20 strokes and optimize with regular Adam, direct predict 20 strokes and and optimize with regular Adam, random
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agery. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (2021), pp. 2085–2094. 3

[RKH∗21] RADFORD A., KIM J. W., HALLACY C., RAMESH A., GOH
G., AGARWAL S., SASTRY G., ASKELL A., MISHKIN P., CLARK J.,
ET AL.: Learning transferable visual models from natural language su-
pervision. In International Conference on Machine Learning (2021),
PMLR, pp. 8748–8763. 2

[SLO21] SCHALDENBRAND P., LIU Z., OH J.: Styleclipdraw: Cou-
pling content and style in text-to-drawing synthesis. arXiv preprint
arXiv:2111.03133 (2021). 3

[SZ21] SINGH J., ZHENG L.: Combining semantic guidance and deep
reinforcement learning for generating human level paintings. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2021), pp. 16387–16396. 7

[TH21] TIAN Y., HA D.: Modern evolution strategies for creativ-
ity: Fitting concrete images and abstract concepts. arXiv preprint
arXiv:2109.08857 (2021). 3

[VPB∗22] VINKER Y., PAJOUHESHGAR E., BO J. Y., BACHMANN
R. C., HAIM BERMANO A., COHEN-OR D., ZAMIR A., SHAMIR A.:
Clipasso: Semantically-aware object sketching. arXiv e-prints (2022),
arXiv–2202. 2, 6, 7, 10

[WBW∗11] WAH C., BRANSON S., WELINDER P., PERONA P., BE-
LONGIE S.: The Caltech-UCSD Birds-200-2011 Dataset. Tech. Rep.
CNS-TR-2011-001, California Institute of Technology, 2011. 6

[YO12] YARLAGADDA P., OMMER B.: From meaningful contours to
discriminative object shape. In European Conference on Computer Vi-
sion (2012), Springer, pp. 766–779. 2

[ZAFW21] ZHU P., ABDAL R., FEMIANI J., WONKA P.: Mind the gap:
Domain gap control for single shot domain adaptation for generative ad-
versarial networks. arXiv preprint arXiv:2110.08398 (2021). 3

[ZFW∗18] ZHOU T., FANG C., WANG Z., YANG J., KIM B., CHEN Z.,
BRANDT J., TERZOPOULOS D.: Learning to doodle with deep q net-
works and demonstrated strokes. In British Machine Vision Conference
(2018), vol. 1, p. 4. 2

[ZIE∗18] ZHANG R., ISOLA P., EFROS A. A., SHECHTMAN E., WANG
O.: The unreasonable effectiveness of deep features as a perceptual met-
ric. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition (2018), pp. 586–595. 5, 7, 11

[ZJH18] ZHENG N., JIANG Y., HUANG D.: Strokenet: A neural painting
environment. In International Conference on Learning Representations
(2018). 2

[ZPIE17] ZHU J.-Y., PARK T., ISOLA P., EFROS A. A.: Unpaired
image-to-image translation using cycle-consistent adversarial networks.
In Proceedings of the IEEE international conference on computer vision
(2017), pp. 2223–2232. 2

[ZSQ∗21] ZOU Z., SHI T., QIU S., YUAN Y., SHI Z.: Stylized neu-
ral painting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2021), pp. 15689–15698. 2, 6, 7, 8, 10

[ZZP∗17] ZHU J.-Y., ZHANG R., PATHAK D., DARRELL T., EFROS
A. A., WANG O., SHECHTMAN E.: Toward multimodal image-to-
image translation. Advances in neural information processing systems
30 (2017). 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

430


