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Abstract

Joint pose estimation of human hands and objects from a single RGB image is an important topic for AR/VR, robot manipulation,
etc. It is common practice to determine both poses directly from the image; some recent methods attempt to improve the initial
poses using a variety of contact-based approaches. However, few methods take the real physical constraints conveyed by the
image into consideration, leading to less realistic results than the initial estimates. To overcome this problem, we make use
of a set of high-level 2D features which can be directly extracted from the image in a new pipeline which combines contact
approaches and these constraints during optimization. Our pipeline achieves better results than direct regression or contact-
based optimization: they are closer to the ground truth and provide high quality contact.

CCS Concepts
• Computing methodologies → Reconstruction;

1. Introduction

Modeling and reconstructing the interactions between hands and
objects, together with the localization and mapping technol-
ogy [BK20, DHM∗22, WJW∗20, HYZ∗21, HYMH20, XRW21] for
the visual sensors, has inspired a wide range of applications
in VR/AR [WLLZ20], robotic grasping, human-robot interac-
tion, etc. Traditional methods such as [HVT∗19, TBP19, KKB19,
DNMC20, HTB∗20] directly predict poses and states of objects
and a parametric hand model from a single monocular image,
using a unified neural network. Although such an approach can
certainly ensure overall robustness, it is hard to recover a nat-
ural grasp, i.e. one in which there is appropriate contact be-
tween the hand and object, without intersections, yet with very
little gap between their meshes, in the contact region. There-
fore, many approaches have been applied to obtain a credible re-
sult, including distance-based attraction and repulsion [HVT∗19,
KYZ∗20], learned contact regions [BHHF19, JLWW21, GTT∗21],
physical simulation [KKB19, KKB20, GHJK20]. Several recent
works [GTT∗21, YZL∗21, CRKM21, ZZXW22] model the contact
either by predicting contact [GTT∗21, YZL∗21, CRKM21] or ana-
lyzing physical forces [ZZXW22], and then apply optimization to
refine an initial pose estimated by a traditional method.

However, existing methods usually separate optimization of
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initial poses from the high-level constraints conveyed by the
input image, causing the final poses to deviate from realism.
RHO [CRKM21] adds constraints provided by object masks and
a depth map when estimating the poses, but fails to consider
the hand during final refinement using a contact based approach.
CPF [YZL∗21] tackles the problem to a certain extent by directly
relating image features to the object to predict a contact potential
field. However, when the initial poses of hand and object disagree,
a dilemma is faced: should we update the pose of the object or the
pose of the hand? Without guidance from the original input image,
if contact is the only criterion used in final optimization, errors in
initial pose may be made worse, if the object or hand with more ac-
curate pose is adjusted to bring it into better contact with the other.

To address the above challenges, in this paper, we propose a
new optimization framework to estimate the hand-object (HO) pose
from a single RGB image of hand and object interaction, by impos-
ing useful constraints on the high-level features directly extracted
from the input image. Together with the contact cues, our frame-
work is capable of recovering a faithful hand-object pose in terms
of model accuracy and contact quality. Specifically, to refine the
initial hand-object pose to be close to the one implied in the input
image, we first include the semantic segmentation masks of hand
and object as a high-level 2D constraint. However, the semantic
mask alone can only constrain the model with low degree of free-
dom, for the model with high degree of freedom and non-rigid mo-
tion like hands, more elaborate correspondences are required. We
therefore introduce dense mapping features [WSH∗19,LAZ∗22] to
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help to constrain the pose and shape. To further handle the depth
ambiguities and occlusion inherent in a single view image, we also
resort to the depth map. All these high-level features are directly
extracted from the input image with a deep neural network.

Finally, these features are incorporated into the optimization
framework with loss terms designed aware of the occlusion and
error of the initial pose to constrain the optimized pose to lie close
to the truth. On the other hand, we also apply contact terms in the
optimization, ensuring the results both have high quality of contact,
and are in agreement with the input image.

To evaluate our approach, we report reconstruction and physi-
cal quality on FHB [BTT∗20a] and HO3D [HORL19, HROL20]
datasets; our method achieves better results than the state-of-the-art
methods for both direct regression and contact-based optimization:
they are closer to the ground truth and provide high quality contact.
We also provide an ablation study to show the effectiveness of each
feature, and how it contributes to resolving depth ambiguities and
occlusion, as well improving prediction errors.

In summary, the contributions of this paper are as follows.

• We are first to include dense image features for both hand and ob-
ject when optimizing estimates of hand-object contact, ensuring
adherence to the input image in addition to high quality contact.

• We provide a neural network to extract a set of high-level 2D
features directly from the original image; they suffice to over-
come inherent depth ambiguities and strong occlusion, allowing
determination of accurate 3D information.

• We augment the optimization process with a set of terms based
on the high-level 2D features, allowing it to better reduce errors
in the initial pose estimates and contact prediction.

2. Related Work

2.1. Hand-Object Pose Estimation

There has been great progress in reconstructing or estimating the
pose of a single hand [KS12,GRL∗19,IMB∗18,CCY∗21,ZLM∗19]
or objects [HHFS19, KMT∗17, PLH∗19, ZSI19, LF20, ZHMW22,
LZXQ21, YJLF22, CG22, ZBB21, SHCM21] alone over recent
decades. Lacking good datasets labeling hands and objects to-
gether, early work on hand-object interaction focused on recov-
ering either the hand [RKK09, RKI∗14] or object [TG15] pose
in a interaction. The emergence of large datasets of hand-object
interactions [BTT∗20a, CYX∗21, HORL19, HROL20, BTT∗20b,
BHKH19, ZYSK21, TGBT20], allowed methods that simultane-
ously estimate both hand and object pose [HVT∗19, HTB∗20,
TBP19,KKB19,DNMC20,KYZ∗20,HVSL21,ZYSK21,HPSK21].
[HVT∗19] gives a pioneering algorithm to reconstruct shapes and
poses of both hand and object together by using additional syn-
thetic data and contact terms, while [KYZ∗20] recovers models
using the signed distance function [PFS∗19]. [ZYSK21] proposes
an novel spatial representation to reconstruct manipulation motions
of the fingers for a wide range of general object shapes. Other
work [TBP19, KKB19, DNMC20, HTB∗20, HVSL21] focuses on
using known models for the hand state and object pose. We use one
such representative work [HTB∗20] to obtain an initial pose for the
hand and object, which we then refine.

MeshRegNet CPFinput

Figure 1: Contact-based methods such as CPF [YZL∗21] use an
optimization step to overcome intersections and poor contact re-
sulting from direct regression methods like MeshRegNet [HTB∗20],
but may not improve poor initial pose (below) or even worsen it
while improving contact especially when the contact prediction is
not so accurate (above).

2.2. Contact-Based Methods

Contact heuristics can greatly improve the modeling of hand-
object interaction. Physical simulation of contact in hand manip-
ulations [YL12,KP06] can help avoid poses with intersecting mod-
els: [HOAL18, KP15] use the idea of contact points in the physical
simulator to solve the penetration problem, while [CKA∗22] uses
contact terms to keep the grasping pose stable while generating
hand motions to move an object. Many recent methods estimate the
hand-object(HO) pose using some pre-defined contact terms. Some
use a single term of attraction and repulsion between hand and
object models [HVT∗19, AGHK18, TBS∗16, BHHF19, KYZ∗20],
while others use a predefined pattern [RIR15], but neither refer
back to the original image. [NNN20]and [SGSF20] model 2D con-
tact for the hand directly from the RGB image, while [GTT∗21]
and [CRKM21] learn 3D hand-object contact priors from well-
labeled datasets [BTT∗20b, TGBT20] using only 3D meshes as
inputs. CPF [YZL∗21] considers both 2D and 3D information. It
uses a backbone to extract 2D latent features and projects them to
the object’s vertices in the directly regressed pose, then predicts the
contact region on object vertices. It provides state-of-the-art results,
but still is unable to improve initial pose estimates, and may even
worsen them during optimization. This is the problem we address.

2.3. Semantic Features in Pose Estimation

Semantic features in images have long been used for estimating
poses of objects and hands. Such features are usually used as in-
termediate clues in pose estimation. [BKK19] estimates hand pose
from the 2D pose using extracted 2D features such as the of the
hand mask and its 2D skeleton. [LAZ∗22] adopts various dense
features to supervise alignment of the hand mesh to the image.
[ZZXW22] and [DNMC20] use 2D features to guide regression of
final poses of both the hand and the object. While using 2D fea-
tures, such papers just use them as clues during regression, instead
of treating them as hard constraints during final optimization. As
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Figure 2: Pipeline. Given a single RGB image as input, an initial pose is estimated by the HO Pose Estimation module using [HTB∗20].
The meshes of hand and object, together with the RGB image, are used by the Contact Prediction module to obtain semantic contact
information [YZL∗21]. A Feature Extractor provides 2D features including semantic segmentation, dense mapping and relative depth maps
directly from the original image. The HO Optimizer uses both 2D feature constraints and contact constraints to refine the hand-object pose.
The dotted lines and CPF optimizer shows the pipeline of the baseline CPF [YZL∗21], without consideration of the original 2D features.

a result, these constraints are unlikely to be satisfied in the final
result.

However, semantic features are used as constraints during the
optimization phase in tracking and pose recovery. [WSH∗19] es-
timates the poses of certain objects via predicting and fitting the
coordinates of each pixel in normalized object coordinate space,
while [HHFS19] estimates 6D object pose using a segmentation-
driven method. [CLM∗21] recovers the root position of the hand us-
ing adaptive 2D-1D registration of hand joints and the silhouette of
the hand. [OKA12] recovers parameters of a hand model using skin
color detection in RGB data together with a depth map. [MDB∗19]
reconstructs the poses and shapes of two interacting hands from
a single depth image with the help of a semantic segmentation
and a vertex-to-pixel map using the predicted dense correspon-
dence. [WMB∗20] tracks two hands without depth information by
estimating and fitting the intra-hand and inter-hand depths of each
pixel from the RGB image. Such research on either hands or ob-
jects inspires us to adopt dense semantic features as constraints in
HO pose estimation. However, the strong occlusion and more com-
plicated situations in HO interaction mean there is still much left to
do.

3. Background

Our method is built upon CPF [YZL∗21], which when refining the
initial poses of hand and object considers only contact. To make
our paper self-contained, we first briefly describe CPF.

In CPF, the hand is represented by A-MANO [YZL∗21],
a modified parametric skinning hand model derived from
MANO [RTB17], which imposes restrictions on the joints’ rota-
tion axes and angles to avoid abnormal hand poses from arising
during optimization. Specifically, a hand pose is described by an
angle parameter θ= {R1, · · · ,R15} containing the 15 joint rotations
{R j ∈ SO(3)|1 ≤ j ≤ 15} in the hand kinematic tree, and a shape
parameter β ∈ R10 which represents principal component analysis
(PCA) components of the hand shape. In addition, a 6D pose pa-
rameter Pw ∈ SE(3) controls the pose of the root joint of the hand.
The object, whose geometry is considered to be fixed and known,
is simply described by a 6D pose Po ∈ SO(3).

As a typical contact-based optimization method, there are three
parts to CPF [YZL∗21] as shown in Figure 2, i.e., the HO Pose
Estimation module, the Contact Prediction module and the CPF
Optimizer. Firstly, a hand-object (HO) pose estimation network,
MeshRegNet [HTB∗20], is used to regress initial coarse poses of
the hand and the object directly from the image. Then a contact
prediction module determines contact between the hand and the
object by projecting image features onto the vertices of the model
using the initial poses. The contact information is of two kinds: the
subregion of the hand each object vertex is likely to contact, and a
parameter katr indicating the degree of attraction between the hand
and the object, i.e., the closer the hand and object is, the larger katr

is. Finally, a grasping optimizer (CPF Optimizer) is used to refine
the initial HO pose taking into account the contact information and
the hand’s anatomical constraints. It does so by minimizing an ob-
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jective function:

Lopt = Eelast +Lanat +Loffset. (1)

Eelast combines Eatr which encourages closeness of object vertices
to various predicted subregions of the hand according to katr, and
Erpl which provides repulsive separation along the surface normal
of hand and object vertices to prevent intersection. Lanat is used
to avoid abnormal hand postures by constraining rotations of hand
joints, and Loffset is a regularization term which penalizes change
between the refined meshes and the initially predicted ones.

Although CPF [YZL∗21] already takes the original image into
consideration, it is still unable to guarantee consistency between the
result and that image. Lacking direct constraints from the original
image, two problems may arise. Firstly, optimization results will be
close to the initial poses because of Loffset, so if the initial poses are
too far out, the optimised result will still not agree with the image
(see Figure 1(below)). Secondly, even if good initial poses are pro-
vided, a new problem will appear when ensuring contact: should
we update the pose of the object or the hand? A wrong decision
will lead to worse final poses (see Figure 1(above)). Additionally,
the estimated contact information is imperfect. Without direct su-
pervisory information from the image, there will be many solutions
satisfying the region-based contact constraints, permitting further
deviations from the true poses. To overcome these issues, we di-
rectly incorporate high-level features extracted from the input im-
age into the contact-based optimizer to ensure HO poses having
both good contact, and good agreement with the initial image.

4. Hand-Object Pose Estimation with 2D Constraints

4.1. Overview

To ensure that the predicted hand-object(HO) pose is in good agree-
ment with the original input image, our new contact-based opti-
mizer directly incorporates more information from the input im-
age, in the form of a set of novel constraints. The full pipeline is
illustrated in Figure 2.

Following CPF [YZL∗21], given a single RGB image, we first
use MeshRegNet [HTB∗20] to directly regress the initial poses of
the hand and the object, along with their contact positions. Mean-
while, a set of high-level 2D features of the image are also obtained
by a feature extractor (see Sec. 4.3). These, together with the con-
tact information, are input to our optimizer (see Sec. 4.2) as con-
straints to refine the initial HO pose.

4.2. HO Optimizer

4.2.1. Loss

Our optimizer iteratively refines the pose and shape of the hand and
object pose jointly by adjusting the parameters of the models: Po,
Pw, R jand β. The optimization process aims to minimize the loss
function:

Lopt = Lcontact +L2D +Loffset, (2)

where Lcontact comes from the baseline method, CPF [YZL∗21],
and is given by Lcontact = Eelast + Lanat. Loffset also comes from
CPF. In addition, we add a new loss L2D which constrains the poses

to agree with the high-level semantic features from the original im-
age. We use three high-level features: semantic segmentation, dense
mapping and relative depth, which are now described in detail.

4.2.2. Semantic Segmentation Term

A visible feature of the input image is the semantic segmentation of
the hand and object, allocating each pixel to one or the other (or nei-
ther). The projected silhouettes of the posed hand and object should
agree with boundaries in the semantic segmentation. This feature is
defined using two class probability maps Sh,So ∈ [0,1]h×w×1 for
hand and object respectively; w and h are the width and height of
the image.

To disambiguate possible overlaps between the hand and object
masks, we introduce an occlusion-awareness term when using of
the feature. Inspired by neural rendering, we use N3MR [KUH18]
which renders 3D models into an image, and shows how an ap-
proximate gradient for rasterization can allow rendering to be used
in a gradient-based optimization framework. Because of the strong
occlusion between hand and object, however, we cannot directly
adopt the original silhouette term in [KUH18]. Firstly, since the
neural renderer mostly affects those points with smallest depth, we
should render the mask of object and hand separately to avoid van-
ishing gradients for those occluded parts which are thought to be
visible because of incorrect initial pose. However, rendering them
separately leads to a new problem. The neural renderer renders
the mask for the whole model while the segmentation mask pre-
dicted from the original image only represents the visible part of
the model. This will draw vertices of the model to the occlusion
boundary and shrink the hand or push the object far away. Setting
both predicted and rendered masks to zero and using their mean in-
tersection over union (mIoU) as loss is also unworkable, since the
gradients of visible pixels correspond to pixels of the occluded part,
again keeping the model away from the occluded part. Thus, we
adopt mean square error (MSE) between pixels from the predicted
masks and rendered ones, while setting the distance of pixels be-
longing to the other mask to zero. Formally, this loss function can
be expressed as:

Lseg = ∥(1−Sh)(ΠS(Vo,Fo)−So)∥2+

∥(1−So)(ΠS(Vh,Fh)−Sh)∥2
(3)

where ΠS(·) denotes neural rendering of the segmentation mask,
and V and F represent the vertices and faces of the models.

4.2.3. Dense Mapping Term

Although the semantic segmentation term can help to restrict so-
lutions for the hand and object, there are still many possible lo-
cal solutions for the HO pose, especially for the hand which has
many degrees of freedom. Therefore, it is important to obtain a de-
tailed vertex-level semantic feature as a dense mapping to further
restrict the solution. To establish a dense semantic connection from
the image to the model, we embed the models vertices V (Vo for
the object and Vh for the hand) into a k-dimensional continuous
space as ϕ : V → Rk and define the dense mapping feature as a
2D map with k channels, where the value is determined by the ϕ

value of the point projected to it. To embed different objects into
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Figure 3: Dense mapping of an object (left) and a hand (right).
Each vertex v ∈ Vo(Vh) of the object (hand) is mapped to a unique
3d feature, such that a dense correspondence φ

M from the 3D ver-
tex v to 2D pixel can be established by finding the nearest neigh-
bour of the vertex NM(v) in the predicted dense mapping fea-
ture M∈ {Mo,Mh}. For the vertices which can not find a close
enough corresponding pixel, we map them to (-1,-1) and discard
them in the final refinement.

the same coordinate space, we use the idea of normalized coordi-
nate space [WSH∗19]: we resize the object to fit into a unit cube,
and use the coordinates x,y,z ∈ [0,1] as the features of the vertices.
For the hand, with more degrees of freedom, normalized coordi-
nates are not enough. To distinguish different parts of the MANO
model, we follow [LAZ∗22] to get a positional embedding for each
vertex. The projection assigns different colors for different vertices,
especially in the regions of fingers, the most sensitive part when fit-
ting the hand model. A visualization of the two embedding methods
for the object and hand is shown in Figure 3. Since both the normal-
ized coordinate space and the positional embedding of the hand are
three-dimensional, we finally define the feature as a pair of three-
dimensional maps Mh,Mo ∈ [0,1]h×w×3 for the object and hand
respectively.

To make use of the dense mapping feature M∈{Mo,Mh}, we
first establish a direct correspondence from model vertices ( V =Vo
for Mo, V = Vh for Mh) to the RGB image by searching for the
nearest pixel to each vertex in the feature space ϕ according to M:

NM(v) = argmin
i∈I

∥M(i)−ϕ(v)∥2 (4)

Then we define φ
M : V → I, which represents the corresponding

pixel i ∈ I in the input image for each vertex v obtained by the
certain dense mapping feature. For the vertices which can not find
a close enough corresponding pixel, we map them to (−1,−1) as
outliers.

φ
M(v) =

{
NM(v), if ∥M(NM(v))−ϕ(v)∥2 < threshold,

(−1,−1), otherwise
(5)

After finding the correspondences, for each available pair, we

similar features different states

Figure 4: Ambiguities. Alternative states can have similar segmen-
tation maps and dense mapping in a certain point of view. Blue
and green boxes point out the visible differences in the states of
hand figures, while the red boxes point out the only big difference
in poses of an object, but if occluded, this is hard to recognize.

penalize the distance between the corresponding pixel and the po-
sition of the vertex projected by the camera. The loss function is:

LM,V
dense = ∑

v∈V&φM(v)̸=(−1,−1)
∥π(v)−φ

M(v)∥
2
, (6)

where π(·) refers to the perspective camera projection from the
camera space to the 2D plane of the image. Finally, the total dense
mapping loss function for both the object and hand is:

Ldense = LMo,Vo
dense +LMh,Vh

dense . (7)

Although 2D joints of the hand could provide an alternative
semi-dense feature to constrain hand pose, we choose not to adopt
them in our optimizer. On one hand, the visible parts of joints are
already embedded in the dense mapping. On the other hand, al-
though many existing works predict the joints well for the hands,
it is still an ill-posed problem to directly predict the invisible parts,
especially when the hand is strongly occluded, in hand-object inter-
action. This can be seen from the failure in the 2nd row of Figure 6.
We believe that semantics-based contact can give better constraints
on the invisible part of the hand.

4.2.4. Relative Depth Term

2D images lack depth information, and it is important to eliminate
the resulting ambiguity: see Figure 4. For the hand, there exist many
reasonable states (pose and shape) corresponding to views of sim-
ilar semantic segmentation and dense mapping features, because
of the large number of degrees of freedom. For objects, although
only rigid transformations can be applied, if the most discrimina-
tive part is occluded, it is still difficult to recognize the poses with
only similar visible features. On the other hand, the depth map of
object and hand can vary a lot in such situations, making it possible
to constrain the pose refinement.

However, it is difficult to predict absolute depths relative to the
camera accurately because of the bas-relief ambiguity [BKY97] as
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well as the large variation of depth among different scenes. Instead,
we make use of relative depth, which is the distance of the model to
its root point along the camera direction. For an object, we consider
the centre of its bounding box as its root point. For the hand, instead
of estimating the depths of the pixels to the root joint of the hand
as in [WMB∗20], we still compute the distance to the object center
as the relative depth of the hand, because the large occlusion of the
hand would make it difficult to determine the position of the hand
root from the image, while the shape of the object is already known
in the setting of the task.Therefore, we define the relative depth of
the object and hand as a single map D ∈ [−1,1]h×w×1.

Similar to the semantic segmentation term, a neural renderer is
also used to render the depth. Although the relative depths of the
hand and the object have the same root, we should render their
depth separately. This is because, with a bad initial pose estimate,
a pixel supposed to be visible as part of the hand may be belong
to the object or vice versa, resulting in incorrect conclusions when
raycasting. In addition, some parts of the mesh would be projected
to the pixel where supposed to be the background, which will also
relate the parts to the wrong depth, so we only consider pixels be-
longing to each corresponding segmentation. The loss function can
be expressed as:

Ldep = ∥So(ΠD(Vo,Fo)− zroot −D)∥2+

∥Sh(ΠD(Vh,Fh)− zroot −D)∥2,
(8)

where ΠD(·) means the process of neural rendering of the depth.
zroot means the z-coord of the root point of the object.

However, the gradient of the Ldep cannot be transferred to the
correct corresponding vertex because of the self-occlusion caused
by the wrong initial pose. To deal with the situation, we also com-
bine the knowledge of relative depth with dense mapping to define
a new depth loss Ldep2. For each vertex that has a correspondence
in the image, its depth should be also close to the predicted depth
of the pixel. Therefore, we can define the term as:

LM,V
dep2 = ∑

v∈V&φM(v)̸=(−1,−1)
∥zv − (D(φM(v))− zroot)∥

2
, (9)

Ldep2 = LMo,Vo
dep2 +LMh,Vh

dep2 . (10)

where zv means the z-coord of the vertices of the models.

By making a direct correspondence between depth and the ver-
tex, it is more direct to adopt the constraints of the relative depth
free from incorrect mapping caused by the wrong initial pose. How-
ever, considering that Ldep2 relies on two features which are pre-
dicted, there may be a notable deviation to the ground truth, so we
still keep the previous term Ldep.

Therefore, the final 2D constraint loss is computed as follows:

L2D = λsegLseg +λdenseLdense +λdepLdep +λdep2Ldep2. (11)

where λseg, λdense, λdep, and λdep2 are weights balancing the im-
portant of each term.

The whole optimization can be expressed as:

P∗
o ,P

∗
w ,β

∗,R∗
j = argmin

Po,Pw,β,R j

Lcontact +L2D +Loffset. (12)

guiding 
features

ResNet18

segmentation

relative depth

2D joints

hand dense mapping

object dense mapping

input

Figure 5: Network architecture of the feature extractor. For each
feature, we use ResNet18 to encode the input image, whose feature
is decoded together with the guiding features to obtain the final
feature map.

Although the same loss terms of 2D feature above could be used
to train the initial pose estimator as well, We decide to adopt them
in the optimization step. Firstly, the above optimization can directly
optimizes the pose parameters of hand and object to match the input
given only a single image, while using them as training loss terms
would try to optimize the parameters of the neural network to fit
the whole dataset to keep the constraints satisfied, which is much
harder to be accurate. Furthermore, it is known that the contact term
performs better with an optimization step [YZL∗21]. To make full
use of the contact prior, we resort to the optimization above, and the
2D features are required as global constraints in the optimization
step to draw the pose close to the input image. Therefore, we adopt
the terms in HO Optimizer instead of initial pose estimator.

4.3. Feature Extractor

4.3.1. Training Data Generation

To train the feature extractor, we generate ground truth feature
maps from ground truth hand and object information. Given pa-
rameters and meshes of the hand and object, we project the mesh to
generate segmentation feature maps and dense mapping using the
known camera parameters. While the datasets we use for training
and evaluation have ground truth depth collected by sensors, it is
noisy and contains holes. Furthermore, although the supplied poses
may not be accurate, we cannot avoid using them to compute the
depth of the root point. Therefore, we also use depths generated
from the poses.

Also, although we do not use hand joints as a feature, they
are still useful to guide generation of dense mapping of the hand.
Therefore, we also predict a 21 channel heatmap for the 21 joints of
the hand. Each channels is a Gaussian distribution centered at the
2D keypoint position with a radius of 3 pixels, and unit amplitude.

4.3.2. Network Architecture

In practical, for an acceleration of the optimization step, we ex-
tract and adopt the feature maps of width and height 1/4 of the
original high-resolution image. We use ResNet [HZRS16]-based
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input segmentation

2D joints hand dense mapping

relative depth

object dense mapping

Figure 6: An example of 2D features extracted by our feature extractor. The predicted joints of the little finger (purple ones) in the 2nd row
are somewhat incorrect because of occlusion, while the part is not embedded by the dense mapping; this justifies our decision not to use 2D
joints as a feature.

hierarchical network to extract the features as shown in Figure 5.
Specially, we use ResNet18 as an encoder to obtain the image
feature. In each decoder, the feature encoded by ResNet with the
size of h/32×w/32×512 first goes through a convolutional layer
reducing feature dimensions from 512 to 256, then 3 layers of
upsampling with convolution to obtain a feature map of size of
h/4×w/4×256. Finally, the feature map is concatenated with the
guiding features and passed through two convolutional layers to get
the final feature map of width and height 1/4 of the original image.
Additionally, the segmentation, joint heatmap and dense mapping
feature pass through a sigmoid layer to limit values to (0, 1), while
the relative depth map goes through a tanh layer to limit values to
(-1, 1).

5. Experiments

5.1. Datasets

We evaluated our method on the real-world datasets
FHB [BTT∗20a] and HO3D [HORL19, HROL20] using the
same settings as for the baseline method CPF [YZL∗21].

FHB is a first-person RGBD video dataset of a hand manipu-
lating objects. Following [YZL∗21], we adopted a subset of FHB
containing sequences of 4 objects, and the action split defined
by [HTB∗20]. We filtered the datasets to keep cases whose Eu-
clidean distance between the hand and object is less than 5 mm,
to ensure there is interaction between hand and object, resulting in
7223 samples for training and 7373 samples for testing. Note that
the ground truth hand-object pose of FHB dataset is poor with many
interpenetration due to the error of multi-view pose estimation.

HO3D is a hand-object interaction dataset with precise pose
labeling. Two versions of HO3D are used in CPF, v1 and v2.

Table 1: The weighting parameters of the loss terms for different
datasets.

Dataset λseg λdense λdep λdep2

FHB 1×10−2 1×10−3 1×10−2 5×10−4

HO3Dv1 5×10−2 5×10−2 5×10−1 1×10−3

HO3Dv2− 5×10−3 1×10−3 5×10−3 5×10−4

Again following [YZL∗21], we removed samples over a 5 mm dis-
tance threshold. For HO3Dv1, since the augmented data described
in [YZL∗21] is not provided, we just compare our methods with
baselines on real data. For HO3Dv2, we select the same samples as
test set HO3Dv2− in [YZL∗21].

5.2. Implement Details

Training of the Feature Extractor. To ensure the network can
learn the right information from the guiding feature, we first train
the segmentation sub-network to convergence, then we fix its
parameters and train the relative depth and joint heatmap sub-
networks to convergence, next, we fix their parameters and train
the two dense mapping sub-networks, and finally, we train all pa-
rameters for another 20 epochs. We use cross-entropy loss for pre-
diction of semantic segmentation and L1 loss for all other features.
We employ an SGD optimizer with a weight decay of 1× 10−4.
The learning rate is set to be varying linearly between 1× 10−2

and 1× 10−4 with a cycle of 150 steps. In addition, we perform
data augmentation including rotation and Gaussian blurring of in-
put images to increase the diversity of the training data. We imple-
ment our network with a highly efficient deep learning framework,
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Table 2: Quantitative results and detailed comparisons with previous methods for both direct pose regression and contact-based optimization
on FHB and HO3D datasets. "gt." denotes the ground truth.(* Our SD values do not match those in the original paper [YZL∗21], which we
believe is due to differences in simulation settings.)

Dataset FHB HO3Dv1 HO3Dv2−

Method Ours gt. CPF MeshRegNet Ours gt. CPF MeshRegNet Ours CPF MeshRegNet
HE (mm)↓ 18.08 0 19.54 17.51 24.15 0 27.20 26.85 35.08 35.69 37.28
OE (mm)↓ 20.12 0 21.57 21.06 19.26 0 28.39 26.44 65.40 69.03 69.24
PD (mm)↓ 18.19 19.55 16.92 20.63 12.43 7.55 9.61 19.91 15.73 16.47 20.02
SIV (cm3)↓ 14.45 20.41 11.76 21.10 3.49 3.57 3.05 10.71 6.28 7.44 9.25
SD∗ (mm)↓ 67.42 67.76 66.23 68.70 32.13 18.46 53.48 33.25 47.65 50.92 52.69

Jittor [HLY∗20], Figure 6 shows 2D features extracted from RGB
images.

Optimization. For each sample, we optimize the HO pose by min-
imizing the loss function in 300 iterations, with an initial learn-
ing rate of 1× 10−2, reduced on plateau that the loss function has
stopped decaying in 20 consecutive iterations. We employ a regular
Adam solver when updating the arguments. The specific weights of
terms in L2d for different datasets are shown in Table 1. In addition,
the threshold for filtering the invalid dense mapping pairs in Equ. 5
is set to be 0.05 for FHB and HO3Dv1, and 0.1 for HO3Dv2−.
These hyper-parameters are empirically set, mainly according to
the baseline [YZL∗21] (the contact term weight is larger for FHB,
so is ours). For high quality datasets such as HO3D, the feature ex-
tractor can learn better features, so we increase the weights of the
depth and dense mapping terms. If the initial pose is poor (e.g. as
in HO3Dv2-), our terms will be much larger, so we decrease the
weights of our terms to balance the contact term.

5.3. Metrics

To evaluate correspondence of results to the ground truth, we com-
pute the mean per vertex position error (MPVPE) between the pre-
dicted mesh and the ground truth for both the hand (HE) and object
(OE). We refer to this as state error.

We also evaluate the quality of contact using three metrics. The
maximum penetration depth (PD) and the solid intersection vol-
ume (SIV) [HVT∗19] are used to evaluate how deep the hand is
penetrating the object’s surface. In addition, simulation displace-
ment (SD) is used to evaluate the contact stability. Our simulation
is performed following [HVT∗19] and its settings, in a modern
physical simulator†. We do not adopt the disjointedness distance
used in [YZL∗21], because it is not always true that all five fin-
gers should be close to the object surface (see the last example in
Figure 8). For all the metrics, the smaller is better.

5.4. Comparison to Baselines

We compared our method with two state-of-the-art methods:
MeshRegNet [HTB∗20] as a baseline for directly regressing hand-
object pose, and CPF [YZL∗21] as a baseline for refining hand-
object pose using contact-based optimization. A quantitative com-

† https://pybullet.org

ground truth CPF ours

MeshRegNet CPF ours

input

Figure 7: Qualitative comparison with ground-truth and other
methods on FHB (top) and HO3D (bottom) datasets. Our method
provides an HO pose closer to the correct result, as verified by the
mask projected onto the original image. Our results also provide
good contact quality. In addition, we can see the ground truth of
FHB is not so correct, which is one of the reason we don’t get much
improvement in the contact quality at the same time.

parison on FHB, HO3Dv1 and HO3Dv2− datasets is shown in Ta-
ble 2. For FHB [BTT∗20a], we obtain the smallest Object MPVPE
and have a Hand MPVPE just 0.57 mm larger than MeshRegNet;
the latter provides much worse contact quality. Following the dis-
cussion in [BTT∗20b], the ground truth hand-object pose in FHB
is poor with many interpenetration due to the error of multi-view
pose estimation, so it is hard to keep all the metrics low. Since we
get a smaller sum of MPVPE and much better contact quality than
MeshRegNet, and get 3 mm smaller MPVPE than CPF while only
getting 1.3 mm larger in maximum penetration, we can say that our
method is comparable to these state of the art methods.

For Ho3dv1, since we do not have access to the augmented data
described in [YZL∗21], we just compare our methods with the
baselines on the real data. We get much better results in both the
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input

FHB

HO3D

CPF

ours

input

CPF

ours

Figure 8: Further results on FHB and HO3D datasets. The reconstructed hand and object are shown in the same view of the original image.

Hand MPVPE and Object MPVPE, although we get about 2.8 mm
larger in the max penetration, the displacement is much smaller, as
Figure 1(top) shows, we argue that the CPF [YZL∗21] may have
a little excessive pursuit of the repulsive effect between the hand
and object which separates them too much and results in a low in-
tersection. In addition, since the ground truth has the smallest dis-

placement and penetration depth, we can say the ground truth has a
good contact, and a lower Hand MPVPE and Object MPVPE may
indicate a better contact quality.

For Ho3dv2−, unlike previous experiments, we try to keep the
object in the real place as in the input image, so we should judge the
quality of reconstruction by global position. Since there is no public
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Table 3: Results for different feature settings on the HO3Dv1
dataset. S: segmentation, M: dense mapping, D: relative depth.

Settings HE↓ OE↓ PD↓ SIV↓ SD↓
S M D (mm) (mm) (mm) (cm3) (mm)
✓ 25.58 23.42 10.28 2.75 47.82

✓ 25.42 34.97 8.56 1.01 51.56
✓ 26.80 33.21 11.29 2.61 37.27

✓ ✓ 25.41 22.34 9.59 2.38 45.01
✓ ✓ 25.24 31.50 13.59 4.55 34.11

✓ ✓ 25.18 33.71 11.43 3.06 39.47
✓ ✓ ✓ 24.15 19.26 12.43 3.49 32.13

ground truth of the hand except the position of the root joint, we just
define the Hand MPVPE as the distance between the root joint of
the predicted hand and the ground truth. Our method outperforms
other methods in terms of all the metrics. One reason for the better
results than on the other two datasets is the test set of Ho3dv2−

contains more difficult examples. Therefore, the predicted initial
poses are much worse (see the HE and OE metrics in Table 2) and
our method is more capable of drawing initial poses to the right
ones with the help of 2D feature constraints.

Figure 7 shows qualitative results of our methods compared to
baselines and the ground truth.

Our results are closer to the input image as well as providing
good contact. It can also be seen that the ground truth of the FHB
dataset indeed suffers from severe interpenetration, and the pose
is sometimes rather incorrect, confirming our explanation above.
More qualitative results can be seen in Figure 8.

While there is a physical-based approach, SCR [ZZXW22],
which uses quite a different optimization process to our method.
However, since its improved results are partly due to the design of
its initial pose regression network, which lacks a detailed descrip-
tion. Differences in definition of the hand in the optimization step
further make comparisons with this method difficult. We believe
that, if adapted to the initial pose regression network and physics-
based constraints of SCR [ZZXW22], our method would achieve
better results.

5.5. Ablation Study

In this experiment, we evaluated our algorithm using different com-
binations of features on the HO3Dv1 dataset to demonstrate the
efficacy of each feature. As Table 3 shows, each feature makes a
contribution to pose constraints. Although the trend of the terms of
contact quality are not so convincing, lower PD and SIV values do
not always imply better and more correct results; instead, they only
measure the intersection of hand and object. In most settings of the
ablated experiments, the object is further from the correct position
(see the OE values, indicating the distance between the ground truth
and the predicted mesh) and the hand and object are far from each
other. In these cases, the values of PD and SIV are 0, but the re-
sults are incorrect. Since the ground truth for HO3Dv1 is accurate,
a smaller HE, OE and SD is more convincing, the value of SD will
be much larger if the hand is not in contact with the object as shown
in the final columns of Table 3.

segmentation

dense mapping

relative depth

w/o feature w/ feature

Figure 9: Improvements provided by the three new features.

In addition, we show several examples with and without the con-
straints of certain feature in Figure 9 to illustrate the efficacy of
each feature. As we can see in the first row, there is an obvious
improvement in the pose of the object when using the semantic
segmentation constraint, which helps to adjust the object to the po-
sition indicated in the image with an accurate constraint to the sil-
houette of the object.

For the dense mapping, we can see two improvements in the ex-
ample: First, the middle three fingers get closer to each other as in
the input image with the dense mapping feature, which is because
the mask and depth can only provide a general scope of the whole
hand while the dense mapping feature provides more detailed cor-
respondences to help to find more correct pose and shape for the
hand. Second, the pose of the box is also improved (see the bottom
of the box marked with blue lines). As we discussed in Sec. 4.2,
with a bad initial pose (as the result w/o feature shows), the bot-
tom of the box will be self-occluded by the object and cannot be
corrected by the neural renderer, while the dense mapping can still
establish a direct correspondence and pull the box to the right pose.

For the relative depth, we can see obvious improvements in both
the pose of the hand and the object. In this case, the constraint of the
relative depth map is necessary since the segmentation and dense
mapping features are very similar in the given point of view, mak-
ing it impossible to overcome the depth ambiguities only with these
two terms.

6. Conclusion

This paper proposes a new, contact-based, simultaneous hand and
object pose optimization method which directly incorporates high-
level 2D features extracted from a single RGB image. Both quan-
titative and qualitative evaluations show that our method can re-
cover more realistic hand-object pose while ensuring good contact
quality. We hope that our work can provide new considerations
in simultaneous hand-object reconstruction and inspire work that
considers both agreement with the input image, and physical con-
straints. In the future, we plan to combine our method with other
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contact information such as physical forces [ZZXW22], and ex-
tend the constraints to an object-agnostic version for more general
situations [HVT∗19]. In addition, incorporating the proposed 2D
constraints into the training of the regression of hand and object
pose to enable a more effective method for end-to-end hand-object
pose estimation is also a valuable direction. We would also like to
consider better metrics to take both the quality of model geometry
and the interpenetration between the hand and object into account.
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