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Abstract
Single image superresolution (SISR) has achieved substantial progress based on deep learning. Many SISR methods acquire
pairs of low-resolution (LR) images from their corresponding high-resolution (HR) counterparts. Being unsupervised, this kind
of method also demands large-scale training data. However, these paired images and a large amount of training data are difficult
to obtain. Recently, several internal, learning-based methods have been introduced to address this issue. Although requiring a
large quantity of training data pairs is solved, the ability to improve the image resolution is limited if only the information of the
LR image itself is applied. Therefore, we further expand this kind of approach by using similar HR reference images as prior
knowledge to assist the single input image. In this paper, we proposed zero-shot single image superresolution with a reference
image (Ref-ZSSR). First, we use an unconditional generative model to learn the internal distribution of the HR reference image.
Second, a dual-path architecture that contains a downsampler and an upsampler is introduced to learn the mapping between
the input image and its downscaled image. Finally, we combine the reference image learning module and dual-path architecture
module to train a new generative model that can generate a superresolution (SR) image with the details of the HR reference
image. Such a design encourages a simple and accurate way to transfer relevant textures from the reference high-definition
(HD) image to LR image. Compared with using only the image itself, the HD feature of the reference image improves the SR
performance. In the experiment, we show that the proposed method outperforms previous image-specific network and internal
learning-based methods.

CCS Concepts
• Computing methodologies → Reconstruction;

1. Introduction

The aim of SISR [BWKN21,CHQ∗22] recovers an HR image from
its degraded LR counterpart. Compared with previous nondeep SR
methods, deep-learning-based methods have received an immense
boost in performance [KBN∗20, PW20] in this field. Although
these methods have better visual quality and can eliminate unde-
sired artifacts, they require image pairs [LTH∗17] in supervised
learning mode or demand a large scale of training data in unsu-
pervised learning mode [LDT20, JW21]. However, a large quantity
of paired images does not always exist. In addition, these methods
are vulnerable to real images because these LR images are obtained
with an ideal downscaling kernel (usually a Gaussian kernel) from
HR images.

To address this issue, several internal learning-based methods
train an image-specific network [KJK20, BKSI19] and employ a
single input image to avoid the dilemma caused by the lack of train-
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ing data. InGAN [SBII19] trains on a single input image and learns
its internal distribution of patches. This method can remap the input
to any size or shape in a single feedforward pass while preserving
the same internal patch distribution. Consistent with this approach,
SinGAN [SDM19] captures the internal distribution of patches
within the image and can generate high-quality samples that carry
the same visual content as the input image. ZSSR [SCI18] exploits
the internal recurrence of information inside a single image and al-
lows the acquisition process to be unknown or nonideal.

For zero-shot blind SR approaches, many excellent image-
specific network architectures exist. KernelGAN [BKSI19] esti-
mates a downscaling kernel for blind SR based on internal learn-
ing with linear CNNs within a generative adversarial framework.
DBPB [KJK20] proposes that blind SR can be modeled as a two-
stage optimization problem, which conducts downscaling kernel
estimation followed by SR network training with the estimated ker-
nel. Similarly, DualSR [EPC21] proposes a dual-path architecture
that learns low-to-high mapping with a downsampler and an up-
sampler. In the DualSR architecture, the upsampler and downsam-
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pler are trained simultaneously, and they improve each other using
cycle consistency losses.

However, the final SR images in the abovementioned methods
are obtained by only using information about the images them-
selves or by estimating the downscaling kernel by downsampling
the input images, which limits the effect of image superresolution.
Reference-based image superresolution (RefSR) [SH12, TSG13]
can fully utilize the information of the HR reference image, which
transfers HR textures from a given reference HR image to produce
visually pleasing results. Nevertheless, the extraction of HD texture
details and high-level semantic features also requires large-scale
training data.

To summarize, in terms of whether to use the external dataset
and the reference image, the task of SR can be divided into four
quadrants. As shown in Fig. 1, distinguishing whether using the
reference and external datasets helps us to understand the depen-
dence of this method on a priori information. After categorizing
existing approaches into these classes, one remaining research gap
naturally reveals itself: single image with the reference image. We
argue that this direction is promising in terms of generating HD
real-world images, and we will also attempt to propose a network
architecture in this direction.

To address these problems and fill the gap in the field of image-
specific SR with reference images, we propose a novel, image-
specific network for SISR. Specifically, three network modules op-
timized for image generation tasks are proposed. First, we intro-
duce a pyramid of fully convolutional generative adversarial net-
works (GANs) to produce high-quality results that preserve the in-
ternal patch statistics of the reference image. Second, a dual-path
architecture that learns low-to-high resolution mapping of the input
image is introduced. The dual-path architecture contains a down-
sampler that learns the degradation process and an upsampler that
learns the superresolution process, which are trained simultane-
ously and improved by cycle-consistency losses. Finally, we intro-
duce another generator to obtain an HD texture similar to the refer-
ence image. We formulate this generator to have the same structure
as the reference-image generator and inherit its network parameters
after training. In addition, this generator has an attention mecha-
nism, which enables our approach to learn a more powerful feature
representation and texture extraction. Meanwhile, a discriminator
is also employed to fit the distribution of HD texture details of the
reference image.

The main contributions of our work are as follows:

• To the best of our knowledge, we are one of the first researchers
to introduce RefSR into an image-specific network.
• We design a three-stage learning pipeline, including Ref-

learning, Self-learning and Alliance-learning. Such a design en-
ables our approach to achieve a better visual result with only
one input image and one reference image in the training process,
which improves the current SR method based on internal learn-
ing.
• We introduce a texture transmission mode with a balanced atten-

tion mechanism, which encourages a simple and accurate way
to transfer relevant textures from the reference image to the LR
image.

SRCNN [DCL14]

EDSR [LSK∗17] RSAN [YFL21]

ESRT [ZLZ21] DRL-DASR [LW21]

LFA [WLHD17]

CrossNet [ZJW∗18]

SRNTT [ZWLQ19]

TTSR [YYF∗20]

DIP [UVL20] GDP [PZD∗21]

ZSSR [SCI18] KernelGAN [BKSI19]

DBPB [KJK20] DualSR [EPC21]

Figure 1: The taxonomy of RefSR and the corresponding represen-
tative methods. This taxonomy distinguishes the methods of refer-
ence images and data used for solving SR models.

It should be noted that almost all individual components of our
framework have appeared in previous work, although the specific
instantiations may be different. However, the superiority of our
framework relative to previous work is not explained by any sin-
gle design choice but by their composition. Additionally, such a
design fills the gap in Fig.1.

2. Related Work

We review previous works of SISR and image-specific networks
for superresolution that are the most relevant to our work.

Single Image Superresolution. Due to the powerful model-
fitting capabilities of convolutional neural networks, the visual ef-
fect of SISR [HSU20, XSGW21, WLL∗21, LKLE21] has made
extraordinary progress compared to traditional methods. SRCNN
[DCL14] proposes a three-layer convolutional network to learn
the nonlinear mapping from LR images to HR images. EDSR
[LSK∗17] proposes a very deep and wide network in which batch
normalization layers are removed and a residual scaling technique
is utilized. Meta-SR [HMZ19] applies meta-learning to predict the
weights of filters for different scale factors; however, it does not ex-
ploit scale information during feature learning. To solve this prob-
lem, the RSAN [YFL21] introduces a residual scale attention net-
work that is employed as prior knowledge to learn discriminative
features.

Recently, because a transformer can capture long-term informa-
tion among sequence elements, it has been successfully applied in
vision tasks [CHT20,WLX∗21]. ViT [AD20] is the first work to use
a transformer in image tasks. ViT flattens the 2D image patches in
a vector and feeds them into the transformer. DETR [CMS∗20] fur-
ther discards certain complex, handcrafted operations and models
the prediction of a set of objects. ESRT [ZLZ21] proposes a hybrid
transformer, where a CNN-based SR network is designed in the
front to extract deep features. The network uses a lightweight CNN
backbone to extract deep SR features at low computational cost and
employs an efficient transformer with novel, efficient multihead at-
tention. This module has a low computational cost and achieves
competitive results.

To fill the gap of the degradation process from an HR image
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Figure 2: Network architecture of the proposed Ref-ZSSR. Stage 1(Ref-learning): The HD reference image is first fed into G1 to capture the
internal statistics. Stage 2(Self-learning): The upscaling network Gu and the downscaling network Gd construct the dual back-projection
architecture. The "Down-up" procedure is used to train Gu, which refers to how the input image passes through Gd to generate the downscaled
image and then passes through Gu to reconstruct the input image. The "Up-down" procedure is an opposite mapping process to train Gd .
Stage 3(Alliance-learning): G2 inherits the network parameters of G1 and combines the discriminator D to generate the final SR image. The
SR results generated by G1 guides the distribution and the upscaling network Gu restricts the reconstruction.

to an LR image, blind SR [LLG∗21] has been proposed to pro-
cess the unknown degradations. DRL-DASR [LW21] estimates the
degradation information with a trainable encoder in the latent fea-
ture space, and the degradation encoder is trained with contrastive
learning. Such a framework can achieve satisfactory SR results with
a single forward pass. AMNet-RL [HLWG21] incorporates kernel
estimation into the SR network and optimizes the blind SR model
with undifferentiable perceptual metrics under the reinforcement
learning framework. KOALAnet [KSK20] employs a dynamic ker-
nel strategy that adapts the SR network to a specific degradation
and extends the noniterative framework to spatially variant degra-
dation for local kernel estimation.

Superresolution with Reference Images or Image-Specific
Networks. Since the reference image can provide similar HD tex-
tures, reference image-based SR can harvest more accurate details
from the reference image. Wang et al. [WLHD17] proposes the re-
current application of nonuniform warping before feature synthe-
sis to the reference image. CrossNet [ZJW∗18] adopts optical flow
to align the LR and the reference images at different scales and
concatenates them into the corresponding layers of the decoder.
SRNTT [ZWLQ19] applies patch matching to search for proper
reference information between the input image and the reference
image; however, this method ignores the relevance between orig-
inal features and swapped features. To solve this problem, TTSR
[YYF∗20] proposes a texture transformer network in which the LR
and the reference images are formulated as queries and keys in a
transformer. The network includes a learnable texture extractor, rel-
evance embedding module, hard-attention module for texture trans-
fer, and soft-attention module for texture synthesis. Such a design
achieves significant improvements over state-of-the-art approaches
on both quantitative and qualitative evaluations.

Although existing SISR and RefSR networks have achieved
promising results, they are trained for SR with a large scale of
training data. To overcome this limitation, an image-specific net-
work is proposed for SR using only the input image itself. DIP
[UVL20] assumes that the generator network is sufficient to cap-
ture many low-level image statistical priors. This work replaces the
regularization term with an implicit prior captured by the convolu-
tional network. Hence, such a design is effective for various image-
restoration tasks, including reconstructing the SR image. Inspired
by this finding, GDP [PZD∗21] provides an effective way to ex-
ploit the image prior captured by a generative adversarial network
and allows the generator to be fine-tuned on the fly in a progressive
manner.

ZSSR [SCI18] and KernelGAN [BKSI19] attempt to train
image-specific CNNs for superresolving each input LR without any
pretraining step. The CNNs trained with the image pairs themselves
will be capable of inferring specific relationships across different
scales. The idea of self-supervision with internal statistics requires
no effort to gather a large external training dataset. Nevertheless, it
is difficult to exploit recurring information across scales to robustly
perform SR with this kind of input image. Hence, these approaches
can only produce favorable SR outputs for a very limited set of
images with frequently recurring content across scales.

Therefore, to address these problems, we combine the reference
image learning module and the image-specific network architec-
ture to train a GAN. Such a design can generate the SR image with
the details of the HR reference image and only the input image
itself. Moreover, the performance of our approach can be further
improved by adjusting the appropriate network structure and em-
bedding the transformer into the architecture.
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Figure 3: Network architecture of the reference image internal
learning in the first stage. Re f ↓ represents the downsampled ver-
sion of the reference image. Re fk−1 ↑ represents the upsampled
version of the reference image at scale k− 1. At scale k, G1 is fed
the noise Zk and Re fk−1 ↑ to learn the internal statistics by recon-
structing the reference image.

3. Approach

In this section, we introduce the proposed Ref-ZSSR. We integrate
the RefSR architecture into the image-specific network to enhance
the performance of SR by transferring relevant texture informa-
tion from the reference image. We provide an overall description
of the proposed Ref-ZSSR accompanied by an optimization target
and further analyze its modules in detail.

3.1. Overall network framework

As shown in Fig. 2, the proposed Ref-ZSSR pipeline consists of
three stages: the reference image internal learning (Ref-learning)
stage, the input-image-itself internal learning (Self-learning) stage,
and the alliance-learning stage (ALS).

In the first stage, we use G1 to capture the internal statistics of
the reference image. G1 is a pyramid of fully convolutional GANs;
each GAN is responsible for learning the patch distribution at a
different scale. Once trained, G1 stores the parameters that can
construct HD texture details and complex structures. In the second
stage, we employ two networks to minimize a dual back-projection
loss. The upscaling Gu network is trained to reconstruct a given
input image from the LR image generated by the downscaling Gd
network, and Gd is trained to downscale the HR image generated
by the Gu to be as similar as possible to the given input image. In
the last stage, we combine Ref-learning and Self-learning into new
GANs, where the initialization of parameters in G2 directly inher-
ited from G1. In addition, the SR image provided by Gu is used to
reconstruct the output of G2. The reference image and final SR im-
age are fed to the discriminator, which is responsible for fitting the
distribution of the SR and reference images.

3.2. Ref-learning

In the stage of reference image internal learning, we aim to store
relevant network parameters that can relate to the HD texture of the

reference image. We utilize the pyramid network architecture to
learn the image’s patch statistics across multiple scales. Similar to
SinGAN [SDM19], the network architecture is deployed as a GAN.
Given the reference image, it is downsampled to different scales to
form an image pyramid. Formally, we have

Re f ↓= downsampling(Re f ), (1)

where downsampling denotes the downsampling operation and
Re f represents the reference image. Thus, Re f ↓ and Re f constitute
LR←→ HR in the form of supervision.

As shown in Fig. 3, the model consists of the pyramid of gen-
erator G1 and the corresponding discriminator D. At each scale k
of the image pyramid, adversarial training is employed through G1,
which learns to fool the associated discriminator D that attempts to
distinguish whether an image is original or generated by the gener-
ator.

To ensure that the generator has not only the function of recon-
structing the original image but also the ability of SR, at every scale,
Gaussian noise and the downsampled image are concurrently sent
to the generator. Thus, noise has the role of injecting HD texture de-
tails into the image through internal learning. The process of gener-
ation starts at the coarsest scale and sequentially passes to the scale
of the original image size, where the generators and discriminators
have the same receptive field.

Hence, at scale k, the generator G1 adds details by accepting an
upsampled image and Gaussian noise Zk with the same size. This
process can be expressed as:

Re fk = G1k (Zk,(Re fk−1) ↑)+(Re fk−1) ↑, (2)

where ↑ denotes the upsampling and Re fk−1 ↑ represents the up-
sampled version of the reference image at scale k−1. The training
loss at the k scale is an adversarial term and a reconstruction term:

min
G1k

max
Dk

Ladv(G1k ,Dk)+λ ‖ Re fk−Re fk−1 ↑‖2, (3)

where the adversarial loss Ladv is

min
G1k

max
Dk

Ladv(G1k ,Dk) =E[logDk(Re frealk )+

E[log(1−Dk(Re fk))]. (4)

Here, Re frealk is the real reference image with the size of scale k,
and Re fk is generated by Eqn.2 with G1k . Ladv penalizes the distri-
bution of patches in Re fk and generated samples. The reconstruc-
tion term measuring the error from the upsampled version ensures
that the final generated image is closer to the original image rather
than the reference image.

The generator is a fully convolutional network with 5 conv-
blocks of the form Conv(3 × 3)-BatchNorm-LeakyReLU [IS15]
with 32 kernels per block at each scale. The fully convolutional net-
work contributes to generating reference images of arbitrary size by
adjusting the dimensions of the noise maps. Thus, G1 stores the pa-
rameters that can construct the HD texture details of the reference
image.
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Figure 4: Network architecture of the input image internal learn-
ing in the second stage. I ↑ and I ↓ represent the upsampled and
downsampled versions of the input image, respectively.

3.3. Self-learning

In this stage, the input image internal learning jointly comprises
two image-specific networks. The first network involves recon-
structing the input image from the LR image generated by the
downscaling network, and the second network reconstructs the in-
put image from the HR image generated by the upscaling network.

Similar to DBPB [KJK20] and DualSR [EPC21], we introduce
dual back-projection loss into the opposite-direction training, from
the superresolved image to the input image and from the down-
scaled image to the input image. As shown in stage 2 in Fig. 2, dur-
ing the process of downup, the input image is downscaled with the
downscaling network Gd , and then the upscaling network Gu up-
scales the downscaled image, generating the downup image. Hence,
the difference between the input image and the downup image is
applied to train the upscaling network Gu.

In parallel, in the process of updown, the input image is superre-
solved by the upscaling network Gu, and the downscaling network
Gd downscales the superresolved image to generate an updown im-
age. For almost the same reason, the downscaling network Gd is
trained to minimize the difference between the input image and the
updown image.

The network architectures of Gu and Gd are shown in Fig. 4 in
detail. As shown, Gd consists of one strided convolution layer and
five convolution layers without nonlinear activation. As conducted
in DBPB [KJK20], this process imitates a convolution with a large
kernel followed by subsampling. The upscaling network Gu in-
cludes eight convolution layers, and ReLU activation is performed
for them all, except for the last layer. The network is equivalent to
the network employed in KernelGAN [BKSI19].

Specifically, the upscaling network Gu is trained to project the
downscaled image onto the input image, and the downscaling net-
work Gd is trained to reconstruct the input image from the superre-

Figure 5: Network architecture of alliance learning in the third
stage. The BAM does not change the size of the feature map and
can adapt to any position between the ConvBlocks. In this article,
we insert this structure in front of the last ConvBlock of G1 to form
G2.

solved image. This process can be derived as

Lcycle =
1
i2
|Gu(Gd(I))− I|1 +

1
i2
|Gd(Gu(I))− I|1, (5)

where I is a given i× i image patch. Gd and Gu are the downscaling
network and upscaling network, respectively.

By minimizing the loss, the upscaling and downscaling networks
are trained to revert LR and HR images generated by each other
to the input image. This finding indicates that the downscaling
network and upscaling network are inverse functions. In addition,
complementary training can improve downscaling kernel estima-
tion, and the upscaled image generated by the upscaling network
Gu can be fed to the next stage to improve the SR performance.

3.4. Alliance learning

As the reference network G1 and the upscaling network Gu have
been trained, we use these two trained networks to assist a GAN
network to obtain an HD texture similar to that of the reference im-
age. More specifically, we formulate the generator G2 in the GAN
to have the same structure as G1. In addition, the parameter of G2
inherits the network parameters of G1, which has less time con-
sumption. We introduce a discriminator that attempts to distinguish
texture in the generated samples from that in the reference image.
As shown in stage 3 in Fig. 2, such a design encourages a simple
and accurate way to transfer relevant textures from the Ref image
to the LR image.

The specific details are shown in Fig. 5, where G2 loads the pa-
rameters of G1, which has the potential to reconstruct HR images
to some extent. By reconstructing the generated image by Gu and
fine-tuning the G2 network parameters, G2 can generate HD tex-
tures similar to those of the reference image while maintaining the
essential characteristics of the input image.
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As shown in Fig. 5, before the input image is fed to G2, it is
first enlarged to the desired resolution with the resize operation.
In addition, we introduce a lightweight and efficient balanced at-
tention mechanism (BAM) [WHS21], which does not change the
size of the feature map and can adapt to any position between the
ConvBlocks. We plug this structure in front of the last ConvBlock of
G1 to form G2. Such a design can avoid error accumulation and en-
hance the feature extraction ability. The BAM consists of a channel
attention module and a spatial attention module. The channel atten-
tion information is extracted by Avgpool, refined by a multilayer
perceptron with the bottleneck architecture, and then activated by
the Sigmoid function. The spatial attention information is extracted
by Maxpool, refined by a convolutional layer and then activated
by the Sigmoid function. The BAM module is equivalent to that
in [WHS21]. With BAM, G2 has a better ability to capture image
details and ultimately improves superresolution performance.

In addition, D tries to distinguish real reference patches from
those generated by G2(fake). G2 learns to generate the SR image
while fooling D and maintains the same distribution as the refer-
ence image. D trains to output a heatmap, which is referred to as
the D-map. The adversarial loss is the pixelwise MSE difference
between the output D-map and the label map. The labels for train-
ing D entail a map of all those for crops extracted from the ref-
erence image and a map of all zeros for crops extracted from the
generated image by G2. Combined with the reconstruction loss, the
process can be expressed as:

min
G2

max
D

Ladv(G2,D)+λ ‖ G2(I ↑)−Gu(I) ‖2, (6)

where the adversarial loss Ladv is similar to Eqn.4 and penalizes
the distribution of patches in the reference image and the samples
generated by G2. ↑ represents the upsampling operation, and the
reconstruction loss ensures that the generator G2 can be consistent
with the generated image of Gu.

D is a fully convolutional patch discriminator, as introduced in
[BKSI19], with no pooling or strides and a 7× 7 convolution fil-
ter followed by six 1×1 convolutions, including Spectral normal-
ization, Batch normalization, ReLU , and Sigmoid activation. Each
pixel in the D-map indicates how likely its surrounding patch is to
be drawn from the learned patch distribution.

4. Experiments and results

4.1. Implementation details

For a fair comparison and to verify the effectiveness of the pro-
posed framework, in the Ref-learning and Self-learning stages, the
learning parameters are equivalent to those in SinGAN [SDM19]
and DBPB [KJK20]. In the last Alliance-learning stage, the GAN
was trained with the Adam optimizer for approximately 2000 iter-
ations. The initial learning rate for the networks was set to 10−4.
For the scale factor of 4 or higher, we repeated ×2 SR for better
performance instead of directly superresolving the input image. In
addition, during the experiment, we found that the second stage
and the third stage can be simultaneously trained. By adjusting the
appropriate hyperparameters, this method can also achieve a satis-
factory SR effect. Because the network structures are oriented to

image specificity, hyperparameters should be adjusted according to
different images.

4.2. Dataset and evaluation method

The reference image and input image are selected from the public
RefSR dataset CUFED5 [ZWLQ19]. There are 126 testing images
in this testing set, and each testing image is accompanied by 4 refer-
ence images with different similarity levels. In addition, we test the
network framework on Set14 [ZEP10] and BSD100 [MFTM01].

To evaluate the effectiveness of the proposed method, we com-
pare our model with other state-of-the-art SISRs based on im-
age specificity, which include DIP [UVL20], SinGAN [SDM19],
ZSSR [SCI18], KernelGAN [BKSI19] and DBPB [KJK20]. These
methods have made remarkable achievements in the field of SISR
by using the input image for training. The quantitative comparison
uses the peak signal-to-noise ratio (PSNR) and structural similar-
ity index (SSIM). In all of the experiments, bicubic interpolation is
utilized as the upsampling method.

4.3. Qualitative evaluation

For a fair comparison, the parameters applied in the experiment
are the values recommended in the related corresponding paper. In
addition, we optimized to ensure the highest quality of the final
generated image. The final results are shown in Fig. 6. Our model
achieved the best performance compared with other excellent SISR
methods based on image-specific visual quality.

DIP [UVL20] explores the prior information of the CNN net-
work through reconstruction and fine-tunes the hyperparameters to
obtain HR images. Although this method is simple and effective,
fine-tuning the parameters of the network is a laborious task. In
addition, it is not enough to capture the internal statistical features
of the input image only by the reconstructing process. Hence, the
effect of this method in superresolution is not desirable.

KernelGAN [BKSI19] estimates the SR kernel that preserves the
distribution of patches in the LR image. Its generator is trained to
produce a downscaled version of the LR test image, while its dis-
criminator cannot distinguish between the downscaled image and
the original LR image. In essence, this method is mainly used to
estimate the blur kernel and uses ZSSR [SCI18] to generate the
SR results. Thus, except for some small local diversity, there is no
obvious difference in visual effect between KernelGAN and ZSSR.

DBPB [KJK20] further assumes that the SR network not only de-
pends on the estimated kernel but can also improves downscaling
kernel estimation. Hence, DBPB jointly trains two image-specific
networks, resulting in better SR performance. However, DBPB
does not use a discriminator to learn the distribution between the
real patches and the fake patches generated by the generator. In
terms of visual effect, the performance of DBPB is slightly supe-
rior to that of KernelGAN.

As mentioned above, ZSSR [SCI18] trains a model to infer com-
plex image-specific HR-LR relations and then applies ZSSR to
these learned relations on the LR input image to produce the HR
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Reference Input DIP Kernel DBPB ZSSR SinGAN Ref-ZSSR

GAN (ours)

Figure 6: Visual comparison among different SISRs based on image-specific methods.

output. Although ZSSR exploits the internal recurrence of informa-
tion within a single image and trains a small image-specific CNN
at test time, its texture details are not very clear.

Unlike ZSSR, SinGAN [SDM19] employs a pyramid network
structure when facing cross scales. This structure captures more
internal statistics of the training samples at different scales. The vi-
sual quality of SinGAN exceeds that of the other comparison meth-
ods. Nevertheless, the HD texture details generated by SinGAN are
directly learned from Gaussian noise without a reconstruction pro-
cess to control the generation of SR images, which produces many
artifacts in the final image.

Compared with other methods, Ref-ZSSR not only uses the dis-
criminator to fit the distribution of HD images in the internal statis-
tical training process but also improves downscaling kernel estima-
tion. In addition, with the help of the texture characteristics of the
HD reference image, the proposed method can transfer more ac-
curate HR textures from the reference image to generate favorable
results, ensuring that the final SR image is more reasonable.

4.4. Quantitative evaluation

We selected 100 images in database CUFED5, 50 images in
database BSD100, and all images in data SET14 for the quantitative
test. Our model achieves the best performance with the quantitative
evaluation results. As shown in Tab. 1, Ref-ZSSR significantly out-
performs the other methods on all testing datasets in terms of PSNR
and SSIM.

PSNR: PSNR measures the quality of the SR results with the real
HD images. The higher the PNSR is, the better the image quality.
Although the visual effect of SinGAN is relatively good, the gen-
erated images have great randomness due to the lack of mapping
from the generated image to the original image. The data in the ta-
ble show that when the SR experiment is executed at×2, the PSNR
value is relatively satisfactory. When the value increases to 4 times,
it decreases significantly.

This happens simply because SinGAN lacks the mapping from
the generated SR result to the original input image. It can be proven
that the PSNR data are not severely changed in KernelGAN and
DBPB, no matter which dataset is used. Similarly, although ZSSR
has a higher PSNR than DIP, its performance is inferior to DIP
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in large-scale resolution reconstruction, especially in the BSD100
dataset. Thus, the reconstruction operation ensures that the super-
resolution process is more stable and reliable. With the cycle loss,
the results of Ref-ZSSR are superior to other methods and achieve
better PSNR.

SSIM: SSIM is a well-known metric for measuring the struc-
tural similarity between the SR results and the real HD images. As
the experimental data in Tab.1 prove, reconstruction can ensure that
the image generation process is more stable. However, if only re-
construction is employed, such as DIP, which obtains the results
by adjusting the network parameters, the quality of the SR result is
not satisfactory. The SSIM test value in the CUFED5 and SET 14
datasets describes this situation. KernelGAN estimates the SR ker-
nel based on the LR image with an internal GAN, which learns the
internal distribution of the input image patches with the discrimi-
nator. Thus, the SSIM test results are better than DIP, especially in
the BSD100 dataset, which increased by nearly 5 percentage points
whether ×2 or ×4 SR reconstruction.

DBPB and ZSSR have similar principles. ZSSR trains an SR net-
work with an input image and a downscaling kernel. First, the input
image is downscaled with the downscaling kernel, and the SR net-
work is trained to reconstruct the input image from the downscaled
image. Second, the input image is fed to the SR network to generate
an HR image. In this way, ZSSR can also achieve relatively good
results, but the ability to improve the clarity of images is limited
due to the lack of a discriminator to fit the distribution of real HD
images. In most experimental results, its SSIM index is weaker than
that of DBPB, since DBPB simultaneously conducts downscaling
kernel estimation and SR network training, taking advantage of the
joint training framework and the dual back-projection loss. This
model uses the advantages of their respective network architec-
ture to improve the quantitative evaluation value of SR. Hence, the
SSIM values are relatively high.

Table 1: Comparison of SR results for benchmark datasets in terms
of quantitative evaluation.

Methods Scale
PSNR / SSIM (%)

CUFED5 SET14 BSD100

DIP
×2 28.28 / 74.15 30.52 / 77.69 29.32 / 75.07
×4 27.55 / 70.65 29.29 / 76.04 28.02 / 76.78

KernelGAN
×2 30.36 / 82.65 31.78 / 83.45 31.22 / 80.07
×4 29.01 / 76.45 30.22 / 79.92 29.72 / 79.38

DBPB
×2 30.77 / 81.95 31.55 / 83.25 31.72 / 81.98
×4 28.91 / 75.30 31.02 / 80.53 30.08 / 80.40

ZSSR
×2 30.05 / 80.37 33.00 / 91.08 31.65 / 89.20
×4 29.97 / 76.28 28.01 / 76.51 27.12 / 72.11

SinGAN
×2 29.35 / 76.04 30.01 / 76.52 29.03 / 75.29
×4 28.07 / 70.55 27.92 / 72.11 26.28 / 71.45

Ref-ZSSR
×2 30.98 / 82.04 31.88 / 92.95 32.01 / 89.29
×4 30.17 / 81.62 30.38 / 85.43 30.55 / 82.95

Ref-ZSSR combines the advantages of all the abovementioned
methods. Ref-ZSSR uses not only the discriminator to fit the distri-
bution of HD image patches but also reconstruction loss and cycle
loss to ensure the accuracy of the image. In addition, the genera-
tor inherits the generation parameters of the HD reference image

Without Without Ref-ZSSR

Discriminator+BAM BAM Final

(28.52, 75.20, 30.12) (28.67, 78.77, 31.77) (30.12, 80.45, 31.98)

(26.12, 72.15, 27.15) (26.44, 73.45, 28.19) (27.45, 78.12, 28.66)

Figure 7: 4x SR results between different variations of Ref-
ZSSR with/without the discriminator or BAM. (PSNR, SSIM[%],
NMI[%])

and has the potential to generate HD textures. The BAM attention
mechanism is introduced to further improve the performance of
the network. Such a design enables the proposed method to trans-
fer relevant textures from Ref images to LR images and is supe-
rior to other image-specific networks. Tab.1 shows that the highest
SSIM value gained by Ref-ZSSR proves that this architecture effec-
tively protects the texture details during SR reconstruction on three
databases, further indicating that the SR results are the closest to
the real HD image.

Table 2: Average PSNR, SSIM and NMI results with and without
the discriminator or BAM by factor of ×4.

PSNR, SSIM (%), NMI (%)
Methods CUFED5 SET14 BSD100

− ( D+BAM ) 29.02, 76.60, 27.28 28.02, 80.32, 29.44 27.87, 76.51, 28.45
− BAM 30.05, 80.77, 30.75 30.32, 84.95, 31.22 29.16, 81.78, 29.15

Ref-ZSSR 30.17, 81.62, 31.25 30.38, 85.43, 32.60 30.55, 82.95, 31.98

− ( D+BAM ) represents the model without the BAM module and
the discriminator. − BAM indicates the lack of BAM module.

4.5. Ablation Study

To study the contribution of each block in the Alliance-learning
stage for the Ref-ZSSR network architecture, we compare Ref-
ZSSR with ablations of the full version. In addition, we add an-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

318



Xianjun Han and Xue Wang et al / Ref-ZSSR: Zero-Shot Single Image Superresolution with Reference Image

Reference Input DIP Kernel DBPB ZSSR SinGAN Ref-ZSSR

GAN (ours)

Figure 8: Visual comparison among different methods on the image under a nonideal environment.

other indicator to test the proposed model in addition to PSNR and
SSIM. Normalized mutual information (NMI) is an excellent mea-
surement index with which to measure the similarity of the gener-
ated images and corresponding ground truths. The higher NMI is,
the better the SR result quality.

We first evaluate our method in the absence of the discrimina-
tor and BAM. As shown in Tab. 2, without the BAM module and
the discriminator, the PSNR, SSIM and NMI are at their lowest.
In the Alliance-learning stage, the discriminator tries to distinguish
real reference patches from those generated by the generator. The
adversarial loss penalizes the distribution of patches in the refer-
ence image and the generated SR samples. By fitting the distribu-
tion of HD reference images, the generated image has better texture
features. Therefore, this module contributes to the improvement of
relevant indicators.

In addition, when lacking the BAM module, the PSNR, SSIM
and NMI are still inferior to Ref-ZSSR. This module can avoid er-
ror accumulation and enhance the feature-extraction ability. Hence,
it captures more image details, improves SR performance and fi-
nally enhances the relevant image-quality evaluation indicators.

Fig. 7 further illustrates the visual comparison of different struc-
tures. If the model lacks the discriminator and BAM, the SR result
has the lowest image quality compared to the other two methods.
Next, we remove the BAM and test the visual effect. This model
suffers from artifacts in the output image. In both cases, the re-
sults are not as sharp as the proposed full Ref-ZSSR output. Hav-
ing the adversarial loss and plugging the BAM module makes the
Ref-ZSSR network capable of generating realistic natural images
without unwanted artifacts.

4.6. The SR results of the image under a nonideal
environment and the image itself as the reference image

To further verify the performance of the proposed SR model, a non-
ideal case, that is, poor-quality LR images with unknown degrada-
tion, is conducted. The purpose of this experiment is to test more
realistic blur kernels. We randomly selected 20 LR images from the
test database and downscaled these images by using random Gaus-
sian kernels. In addition, due to the different results in searching for
different reference images toward these poor-quality images, in this
experiment, we use the image itself (LR) as the reference image.

Table 3: The SR comparision results under non-ideal environment
by factor of ×2.

Methods
Quantity DIP KernelGAN DBPB ZSSR SinGAN Ref-ZSSR

PSNR 21.02 23.23 24.03 23.76 22.02 24.56
SSIM 61.24 65.75 64.70 61.24 60.46 65.98
NMI 22.45 24.96 25.75 22.23 21.72 26.01

Tab.3 shows the results comparison between Ref-ZSSR and 5
peer methods in terms of 3 metrics, namely, PSNR, SSIM and
NMI. Although the specific degraded kernels are unknown, Ref-
ZSSR has the best metrics. As seen from the table, compared to
other methods, SinGAN and ZSSR do not reconstruct the original
image and yield inferior metrics, which proves that the reconstruc-
tion contributes to enhancing the SR performance, especially for
low-quality images.

Without the guidance of the HD reference image, the results of
Ref-ZSSR are still superior to DIP, KernelGAN and DBPB. This
is because Ref-ZSSR has a self-learning process, which learns the
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ESRGAN ESRGAN+ Ref-ZSSR

Figure 9: The effectiveness verification of Ref-ZSSR in terms
of visual effects. The SR images generated by ESRGAN are used
as reference images. We employ the self-learning and alliance-
learning of Ref-ZSSR to improve the visual performance.

image’s patch statistics and makes reasonable inferences in the sub-
sequent process SR. This experiment also demonstrated the appli-
cability of the proposed model even without the HD reference im-
age.

The visualization results of some samples are presented in Fig.
8. As shown, under a nonideal environment, Ref-ZSSR has satis-
factory visual effects using only the image information. Regardless
of the characters in the image or the textures of the house, even fa-
cial wrinkles, the SR results of the proposed model can be clearly
displayed. Compared with other methods, three-stage learning en-
ables the network to better capture the internal statistical features
of the input image, indicating that Ref-ZSSR has a better capacity
to upsample poor-quality images.

4.7. The effectiveness verification of the proposed architecture

To confirm the effectiveness of the proposed framework, we use
some excellent SR networks as the prior information provider. This
means that the SR image generated by these networks is used
as the reference image. Hence, the outstanding method ESRGAN
[WXW19] is selected as G1 in Ref-ZSSR, and its advanced edition
ESRGAN+ [RR20] is selected for comparison.

We randomly select some images from the database for testing.
After feeding into the two excellent frames, the generated SR im-
ages achieve very high values. As shown in Tab. 4, ESRGAN intro-
duces the residual-in-residual dense block and allows the discrimi-
nator to predict relative realness instead of the absolute value. Thus,
these values in ESRGAN are higher than those methods in Tab. 1.
ESRGAN+ is extended to further improve the perceptual quality
of the images. Hence, the image quality generated with ESRGAN+
achieves better performance. Additionally, we use ESRGAN as G1

to generate the reference image and then perform the self-learning
and alliance-learning of Ref-ZSSR. It can be seen that the proposed
method is on par with the advanced version in terms of these indi-
cators. Even on the SET14 database, the SR results of Ref-ZSSR
completely surpass those of ESRGAN+. This implies the effective-
ness of our framework and has the potential to further improve the
performance of existing SR models.

Table 4: The effectiveness verification of Ref-ZSSR in terms of
PSNR, SSIM and NMI by factor of ×2.

PSNR, SSIM (%), NMI (%)
Methods CUFED5 SET14 BSD100

ESRGAN 31.32, 77.80, 32.55 29.01, 81.14, 30.05 28.01, 77.45, 29.88
ESRGAN+ 31.77, 81.77, 32.99 30.22, 84.99, 31.40 30.32, 82.07, 31.61
Ref-ZSSR 31.72, 82.06, 33.87 30.87, 85.60, 32.44 30.06, 81.21, 30.20

Fig.9 displays the visual comparison results. As shown, the vi-
sual effects of ESRGAN+ are superior to those of ESRGAN. Since
it designs a novel block to replace the one used by the original ES-
RGAN and introduces noise inputs to the generator network to ex-
ploit stochastic variation, the resulting images present more realis-
tic textures. Meanwhile, we also find that, compared to ESRGAN,
more detailed textures are displayed in Ref-ZSSR. The proposed
method takes advantage of self-learning to learn more input im-
age internal statistical characteristics. In addition, alliance-learning
further improves the visual performance by fine-tuning the network
parameters of ESRGAN. These operations make the final generated
SR image have a visual perception similar to ESRGAN+.

Table 5: The influence of the similarity between the reference image
and the input image on the SR result.

SSIM (%)
PSNR ≤ 20 20 ∼ 40 40 ∼ 60 ≥ 60

increment ≤ 0.85 0.85 ∼ 1.2 1.2 ∼ 1.5 ≥ 1.5

4.8. The SR results with different reference images

We also explored the influence of the reference images on the fi-
nal SR results. If the reference image is utterly distant from the
input image, these extracted features in the Ref-learning stage are
difficult to guide the G2 to generate HR textures in the Alliance
learning stage, which leads to the SR results being similar to Ker-
nelGAN [BKSI19].

According to TTSR [YYF∗20], the recommended approach is to
select an image from different perspectives of the same scene as
the reference image. As shown in Fig.10, Re f2 is of this type and is
superior to Re f1 with similar content in terms of visual effect and
numerical indices. Re f3 has a closer perspective to the input image,
which brings the SR result the best performance. This is because
the closer view angle provides more surrounding pixel information.
As a powerful prior, these statistics assist the final image to be well
filled.

In addition, we randomly selected several images to quantita-
tively analyze the influence of the similarity between the reference
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Input Re f1 Re f2 Re f3

(22.52, 65.20) (24.12, 72.07) (24.97, 74.15)

(23.66, 67.33) (25.02, 69.51) (25.45, 71.09)

(21.50, 62.68) (22.33, 67.01) (22.95, 69.21)

Figure 10: Visual comparison among different reference images.
Re f1, Re f2 and Re f3 represent different reference images, respec-
tively. These numbers represent PSNR and SSIM[%].

image and the original image on the SR results. As shown in Tab.5,
we used SSIM to measure similarity. When the value is lower than
20%, the improvement of PSNR is quite limited. With the growing
similarity, the PSNR continues to increase accordingly. If the sim-
ilarity exceeds 60%, more similar areas have an obvious effect on
improving PSNR.

5. Conclusion

We proposed Ref-ZSSR, an image-specific SISR network architec-
ture, which performs SR by referring to the texture of a single HD
image. Ref-ZSSR consists of the Ref-learning stage, Self-learning
stage, and Alliance-learning stage. First, we use a pyramid of fully
convolutional GANs to produce the HD texture of the reference
in the Ref-learning stage. Second, a dual-path architecture that in-
cludes a downsampler and an upsampler is introduced to learn the
degradation process and superresolved process, which are trained
simultaneously and improved using cycle-consistency losses. Fi-
nally, we combine the reference-image learning module and dual-

path architecture module to train a new GAN model with a BAM to
generate an SR image with the details of the HR reference image.
Such a design encourages a simple and accurate way to transfer rel-
evant textures from Ref images to LR images. The SR results out-
perform previous image-specific SISR methods. Our future work
will aim to extend the architecture of Ref-ZSSR by designing a
more effective network structure.
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