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Figure 1: Ground-truth shading signals can be linearly reconstructed by shading values on the vertices of subdivision surfaces (left). The
piecewise interpolation errors are analytically estimated to decide the optimal subdivision given an error threshold. We propose a multirate
shading algorithm leveraging sparse piecewise reconstruction (right). High-frequency shading signals require dense sampling while low-
frequency signals can be efficiently approximated by sparse sample points. Different shading rates (i.e., granularities of subdivision) are
computed at runtime using our derived estimator.

Abstract
Evaluating shading functions on geometry surfaces dominates the rendering computation. A high-quality but time-consuming
estimate is usually achieved with a dense sampling rate for pixels or sub-pixels. In this paper, we leverage sparsely sampled
points on vertices of dynamically-generated subdivision surfaces to approximate the ground-truth shading signal by piecewise
linear reconstruction. To control the introduced interpolation error at runtime, we analytically derive an L∞ error bound and
compute the optimal subdivision surfaces based on a user-specified error threshold. We apply our analysis on multiple shading
functions including Lambertian, Blinn-Phong, Microfacet BRDF and also extend it to handle textures, yielding easy-to-compute
formulas. To validate our derivation, we design a forward multirate shading algorithm powered by hardware tessellator that
moves shading computation at pixels to the vertices of subdivision triangles on the fly. We show our approach significantly
reduces the sampling rates on various test cases, reaching a speedup ratio of 134% ∼ 283% compared to dense per-pixel
shading in current graphics hardware.

CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

High-quality image synthesis requires shading signals to be recon-
structed using densely sampled points (pixels) on geometry sur-
faces. However, when resolution increases, the shading computa-
tion time can surge along with the number of sampled pixels. In
the real-time domain, the need to reduce the cost of shading be-
comes critical, motivating the Variable Rate Shading (VRS) fea-
ture in the current hardware pipeline. VRS is adopted by recent

work [YZK∗19, CKY∗22] to improve real-time performance. In
our paper, we propose a novel view of multirate shading focusing
on the approximation of surface shading signals using sparse recon-
struction. We observe that shading signals can be efficiently recon-
structed by shading values computed on the vertices of subdivided
surfaces as shown in Fig. 1. A higher-frequency shading signal re-
quires more subdivisions, i.e., more vertices, as sample points to
ensure a high-quality reconstruction, while a low-frequency shad-
ing signal can be quickly approximated using very sparse samples.
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Specifically, we apply linear interpolation as a reconstruction oper-
ator because it is one of the most efficient arithmetic operations in
current hardware.

Sparse reconstruction by piecewise linear interpolation is bound
to introduce errors. A proper subdivision is of necessity to control
the error on different geometry surfaces. We analytically derive an
L∞ interpolation error bound which is in turn used to compute the
required subdivision given a user-specified threshold. Performing
subdivision based on analyzed error requires additional computa-
tion. To alleviate the extra burden, we derive a practical way to
compute a simplified error estimator for runtime evaluation. We
apply our derivation on multiple shading functions including Lam-
bertian, Blinn-Phong and Microfacet BRDF. We also extend our as-
sumption of continuous functions to handle discrete variables e.g.,
textures and provide a conservative error estimate. To the best of
our knowledge, this is the first work to analytically build linear in-
terpolation error bounds for various BRDFs.

To validate our derivations, we design a multirate shading al-
gorithm leveraging the hardware tessellator. Specifically, we rely
on tessellation shaders in the rendering pipeline, moving per-pixel
shading to per-vertex shading on subdivision surfaces. Potential
shading errors on a triangle are dynamically estimated and shading
functions are piecewise linearly approximated from shading values
computed on the vertices of subdivided triangles generated by tes-
sellator. Shading values for pixels not directly sampled are recon-
structed by linear interpolation during rasterization. Intuitively, our
multirate method is a trade-off between the legacy Gourand shad-
ing [Gou71] and the current de-facto standard—per-pixel shading
but with quality-guaranteed error control. Although dynamic error
analysis and the subdivision process introduce overhead, the overall
rendering cost is effectively reduced due to sparse sampling.

Compared to densely-evaluated per-pixel shading, our multirate
method performs only 11% ∼ 23% the number of shading function
evaluations, achieving a speedup ratio of 134% ∼ 283% on current
graphics hardware. Our contributions are summarized as:

• We introduce an approximation of shading signals by sparse lin-
ear reconstruction on subdivided geometry surfaces, deriving an-
alytical L∞ error bounds for suitable subdivision and applying it
on various BRDFs and textures.

• We design a multirate shading algorithm that adaptively approx-
imates shading signals with dynamic subdivision supported by
the hardware tessellator.

2. Related Works

2.1. Multirate Shading

Multirate shading is a long-standing rendering technique in com-
puter graphics. Many multirate approaches share the observation
that low frequency shading can be executed at a low rate with-
out compromising considerable loss in quality. Mixed-resolution
shading [YSL08] renders shading components at different resolu-
tions and then reconstructs using bilinear upsampling. Decoupled
shading [RKLC∗11,CTM13,LD12,CMFL15] separates pixel shad-
ing from geometry or visibility calculations by lazy evaluation and
reuse of samples when possible. Similar ideas are extended to shad-
ing signals on geometry surfaces [BFM10, CTH∗14].

Variable Rate Shading (VRS) supported by current graphics
hardware runs shaders at different screen-space resolutions. VRS is
utilized by many recent approaches to control the real-time shading
rate [YZK∗19, CKY∗22]. Coarse pixel shading [HGF14, VST∗14,
XLV18, YWB18] is implemented as a set of extensions of graph-
ics hardware that can execute the low frequency part of the shader
at lower resolutions. Different from these approaches, we propose
multirate shading based on sparse linear reconstruction on subdivi-
sion surfaces with controllable analytical errors.

Note that this idea is similar to the classic Reyes Rendering
Architecture [CCC87], which achieves high-quality interpolated
shading by per-vertex shading on vertices of subdivided trian-
gles. However, Reyes continues subdivision until sub-triangles are
at sub-pixel level which ensures quality but sacrifices efficiency.
Reyes generates dense sample points as opposed to the variable
densities in a multirate method.

2.2. Shading Signal Processing

Processing shading signals on geometry surfaces appears in many
areas of computer graphics. An important approach studied in the
literature is the meshing process [Hop96]. For shading signals,
early work dates back to radiosity [Nak84, GTGB84] which repre-
sents shading using polygon-wise colors. Since then, more sophis-
ticated and accurate solutions have been proposed to better capture
the frequency of shading signals [HSA91, Zat93].

Precomputed Radiance Transfer (PRT) [SKS02] stores spheri-
cal harmonics coefficients on vertices and interpolates to pixels for
real-time rendering. Vertex baking [KBS11] treats ambient occlu-
sion or ambient obscurance [STCK13] as low-frequency signals
and stores them as vertex attributes to be interpolated at runtime.
High-order basis functions e.g., Bezier basis [WYY∗14], are also
proposed to approximate shading signals on triangles. However, all
these methods control errors by precomputation under pre-defined,
fixed environments and can only process low-frequency signals. By
contrast, our approach estimates interpolatory shading errors and
decides sample rates at runtime with an analytical error analysis.

Subdivision or tessellation is a common approach to capture
high-frequency signals on geometry surfaces that either can refine
highlight shading [CNW96] or enhance geometry details [BA08,
YWH∗16]. Our method benefits from subdivision as a convenient
way to generate sparse samples and perform theoretical analysis.

2.3. Error Analysis on Linear Interpolation

Discussions on error bound analysis for linear interpolation can be
found in the field of Finite Elements Methods (FEM). Guessab and
Schmeisser [GS05] suggest a sharp error bound for linear interpo-
lation on convex polytopes. More specifically, Subbotin [Sub89]
derives an L∞ error bound of linear interpolation on triangular do-
main, which is sharp if and only if the triangle is equilateral. Wal-
dron [Wal98] proposes an improved error estimation in multivariate
quasi-interpolation on vertices of a simplex and derives a sharp L∞
inequality when the center of its circumcircle is inside the triangle.
However, these derivations pay attention to theoretical analysis. We
leverage these conclusions and derive practical solutions to evalu-
ate interpolation errors for shading functions at runtime.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

256



Y. Hu, Y. Yuan, R. Wang, Z. Yang & H. Bao / Multirate Shading with Piecewise Interpolatory Approximation

3. Theoretical Analysis

Our key idea is to approximate shading signals with sparsely sam-
pled shading points. Although various patterns exist for point sam-
pling, we apply an efficient way to generate sample points using the
vertices of subdivision surfaces. The shading functions are then re-
constructed by piecewise linear interpolation using shading values
computed on the vertices on subdivided surfaces.

Formally, let P ∈R2 be a convex polygon with vertices v1, v2, ...,
vm. Suppose we have a subdivision operator T that uniformly sub-
divides P into a set of N convex sub-polygons P = {Pi}N

i=1, each
of convex sub-polygons in P are composed by m vertices noted as
Θi = {vik}

m
k=1, where vik is one vertex in the set of all M vertices

V = {vk}M
k=1 of subdivision surface.

Given these subdivided convex sub-polygons, a continuous func-
tion f ∈C(P) : R2 →R defined on convex polygon P can be piece-
wise linearly approximated by a set of values computed at the ver-
tices of subdivided polygons, F = { f (vk)}M

k=1. Specifically, for one
point v(x,y) ∈ P, the function f (x,y) can be interpolated as:

f (x,y)≈
N

∑
i

µi(x,y)LΘi f (x,y) =
N

∑
i

µi(x,y)
m

∑
k=1

f (vik )λik (x,y) (1)

where µi(x,y) is a discriminant function for Pi where (x,y) ∈ Pi,
µi(x,y) = 1, otherwise µi(x,y) = 0. Meanwhile LΘi is a linear in-
terpolation operator that interpolates the values sampled from f at
the vertex set Θi = {vik}

m
k=1 of the convex sub-polygon Pi, and

λik (x,y) is the linear interpolation coefficient on the convex sub-
polygon Pi (e.g., barycentric coordinate) which satisfies the La-
grange condition ∑

m
k=1 λik (x,y) = 1 and linear precision v(x,y) =

∑
m
k=1 λik (x,y)vik .

In the following sub-sections, we first introduce the piecewise
linear interpolation error of a general function defined on arbitrary
convex polygonal domain in Sec. 3.1. We also derive a specific er-
ror estimation for vector normalization as a widely used operator in
shading computation. We then apply these conclusions to analyze
interpolation errors on multiple shading functions including Lam-
bertian, Blinn-Phong and Microfacet BRDF (Sec. 3.2∼3.4). Last,
we extend our derivation to process discrete variables e.g., textures
(Sec. 3.5). In the next section (Sec. 4), we will present a multirate
shading algorithm using hardware tessellation, showing the appli-
cation of the theoretical analysis.

3.1. Interpolation Error

Approximating a non-linear function f (x,y) by piecewise linear in-
terpolation will introduce error. The error can be reduced by a finer
subdivision with denser sampling points. To precisely measure the
difference, we define the L∞ norm of interpolation error e( f ) on
the convex polygon P as follows:

∥e( f )∥∞,P = sup
Pi∈P

∥e( f )∥∞,Pi = sup
Pi∈P

∥ f −LΘ f∥∞,Pi (2)

Given that the L∞ error on the convex polygon P is the maximum
L∞ error among all convex sub-polygons Pi, this error can be re-
garded as an error function depending on the subdivision operator
T (n) where n is a parameter controlling the granularity of the subdi-
vision. To control the error within a threshold ε, we find an optimal

Ref., 0.250ms Ours, 0.134ms n=1, 0.098ms n=2, 0.135ms n=4, 0.189ms

Figure 2: We show a bunny rendered by per-pixel dense sampling,
our multirate sparse sampling, and single-rate sampling (top row).
Corresponding error images (30x scaled) are shown below (sec-
ond row). Single-rate subdivision (n=1, 2 and 4) can reduce over-
all interpolation error. However, a uniform subdivision on all of
the triangles struggles to effectively eliminate errors for triangles
with high-frequency shading signals. Interpolation errors (see the
shape of highlight) are salient in the specular highlight regions
when n = 2 and still noticeable even when n = 4. Instead, our adap-
tive method only performs dense subdivision on these regions and
shades the smooth bunny’s body without subdivision.

granularity of subdivision T (n):

argmin
n

e( f (x,y),T (n)) ∀(x,y) ∈ P

s.t. ∥e( f )∥∞,P ≤ ε

(3)

The optimal n varies with different f (x,y). As Fig. 2 shows, a fixed
subdivision parameter fails to reduce interpolation errors on trian-
gles with shading signals of different frequencies. However, an an-
alytical solution for Eq. (3) is intractable, therefore we compute an
appropriate parameter n based on the interpolation error bound.

3.1.1. A General Estimation on T (n) and Error Bound

For an arbitrary convex polygon P with m vertices, the L∞ error
bound of linear interpolation has been proven to be: [GS05]

∥e( f )∥∞,P = ∥ f −LΘi f∥∞,P ≤ (rsc)2

2
| f |2,∞,P,∀ f ∈C2(P) (4)

where rsc and vsc specify the smallest circle Psc which contains P:

Psc =: {v ∈ R2 : ∥v− vsc∥ ≤ rsc} ∀v ∈ P (5)

and | f |2,∞,P is the second order L∞ semi-norm that is defined as
follows:

| f |2,∞,P = ∥ |D2 f | ∥∞,P (6)

and

|D2 f |(x,y) = sup
ξ∈R2,∥ξ∥2=1

|D2
ξ f (x,y)| (7)

by which |D2 f |(x,y) is defined as the supremum of the second
derivative of f in the arbitrary direction ξ = [ξx,ξy]

T for all (x,y)∈
P.

We now define t = T (n) as a uniform subdivision process that
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lets rsb
i , the radius of circumcircle of subdivided convex polygon Pi

(defined as Eq. (5) likewise) be rsb
i ≤ rsb

n for all i = 1...N. The L∞
piecewise interpolation error bound on the subdivided domain can
be bounded by:

∥e( f , t)∥∞,P = sup
Pi∈P

∥e( f )∥∞,Pi

≤ sup
Pi∈P

( (rab
i )

2

2
| f |2,∞,Pi

)
≤ (rab)

2

2n2 | f |2,∞,P

(8)

This inequality provides a conservative solution of Eq. (3), that is

n ≥ rab
√

1
2ε

| f |2,∞,P. (9)

Specifically, in the context of computer graphics, we have geome-
tries represented by triangle meshes. The linear interpolation er-
ror bound on triangular domain T is studied for a sharper bound
[Sub89,Wal98]. Similarly, we define a subdivision process t = T (n)
that evenly reduces the diameter h (the length of the longest edge)
of the triangle. We can derive

∥e( f , t)∥∞,T ≤ 1
6

h2

n2 | f |2,∞,T ∀ f ∈C2(T ) (10)

when the diameters of sub-triangles are all less than h
n . Likewise,

we conservatively estimate the parameter n under an error threshold
ε as

n ≥ h

√
1
6ε

| f |2,∞,T . (11)

3.1.2. A Specific Estimation on T (n) and Error Bound

Vector normalization is a fundamental, widely-used operator in
shading computations. Normalization is simple but highly nonlin-
ear. Performing interpolation to approximate vector normalization
may produce considerable error. On the other hand, due to the com-
plexity of evaluating the second order semi-norms in Eq. (4), direct
error analysis using Eq. (10) on vector normalization is impractical
at runtime.

To simplify computation, we derive a specific error estimation
in vector space. First, without loss of generality, we consider vec-
tor normalization on a triangle T . A vector w is interpolated by
three normalized vectors w0,w1 and w2 at three vertices of T as
w = ∑

3
k=1 wkλk(x,y). Its normalized vector is computed as w

∥w∥2
.

Hence, the L∞ error of the length between the linear interpolated
vector w and its normalized vector can be computed as follows:∥∥ ∥ w

∥w∥2
−w∥2

∥∥
∞ ≤ max

T
{1−∥w∥2}. (12)

It can be further proved that

max
T

{1−∥w∥2} ≤ 1−

√
1− h∗2

3
, (13)

where h∗ = max{∥w0 − w1∥2,∥w0 − w2∥2,∥w1 − w2∥2}. When
we subdivide a triangle, h∗ on each sub-triangle, noted as h∗i will
subsequently decrease. Under a uniform subdivision, h∗i varies with
n as

h∗i = 2sin
(

arctan(
h∗

2n
√

1−R2
)
)
, (14)

(a) (b)

Figure 3: (a) A triangle in its own local coordinate system whose
shape is defined by a, b, c. Shading attributes such as n and l
are defined on each of its vertices. (b) normalized n (blue) and
normalized l (yellow) are distributed on a sphere, and form two
cones. The cosine of θmin is a conservative estimation of possible
max{cos⟨n, l⟩}.

where R is the radius of circumcircle that includes all three unit
vectors, w0, w1 and w2. Given an error threshold ε, we can compute
parameter n conservatively as follows:

n ≥
√

1+3(1− ε)2h∗

2
√

3−3(1− ε)2
√

1−R2
. (15)

Please refer to our supplemental document for a detailed derivation
of Eqs. (12 ∼ 15). In the following section, we will describe how to
apply the introduced general and specific error estimates for differ-
ent shading functions. We primarily focus on triangular-domain
error analysis as defined in Fig. 3a. However, we can extend our
derivation to other domains without loss of generality.

3.2. Example: Lambertian Model

The Lambertian model is one of the simplest shading functions that
requires normals and light directions as attributes to be interpolated
from m vertices of a polygon P to other coordinates. As mentioned
before, we consider triangle primitives with m = 3. We use n and
l to denote the linearly interpolated normals and light directions,
which are computed as n=∑

m
k=1 nkλk(x,y) and l=∑

m
k=1 lkλk(x,y),

where nk and lk denote the normals and light directions at each ver-
tex. The interpolated n and l are unnormalized. The entire shading
function of the Lambertian model is computed as

f (x,y) = f̂ (n, l) = Kd ·
n

∥n∥2
· l
∥l∥2

, (16)

where Kd is the diffuse coefficient, while n
∥n∥2

and l
∥l∥2

are the
normalized normal and lighting direction at the shading point re-
spectively.

Directly computing the semi-norm | f |2,∞,P of the Lambertian
model is overly complicated due to vector normalization terms,
making it impossible to evaluate at runtime. However, we can split
the interpolation error of f into two simpler terms, and compute
each error bound separately. Theoretically, after subdivision, the
error bound on a convex sub-polygon Pi can be computed as fol-
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lowing:

∥ f −LΘi f∥∞,Pi = ∥ f̂ (n, l)−LΘi f̂ (n, l)∥∞,Pi

≤∥ n
∥n∥2

· l
∥l∥2

−n · l∥∞,Pi +∥n · l−LΘi(n · l)∥∞,Pi .
(17)

3.2.1. Estimation on ∥ n
∥n∥2

· l
∥l∥2

−n · l∥∞,Pi

The first term of the error can be expanded using Eq. (12):

∥ n
∥n∥2

· l
∥l∥2

−n · l∥∞,Pi

≤
(∥∥ ∥ n

∥n∥2
−n∥2

∥∥
∞,Pi

+
∥∥ ∥ l

∥l∥2
− l∥2

∥∥
∞,Pi

)
·max{cos⟨n, l⟩}

(18)

≤
(

max{1−∥n∥2,Pi}+max{1−∥l∥2,Pi}
)
·max{cos⟨n, l⟩} (19)

where
∥∥ ∥ n

∥n∥2
− n∥2

∥∥
∞,Pi

and
∥∥ ∥ l

∥l∥2
− l∥2

∥∥
∞,Pi

are the er-
rors from vector normalization, and max{cos⟨n, l⟩} is the potential
maximum shading value on the sub-triangle.

We compute max{cos⟨n, l⟩} by finding the minimum possible
angle between n and l. For instance, when the convex polygon is
a triangle, as shown in Fig. 3b, all n and l form two spherical tri-
angles in the hemisphere vector space. For simplicity, we construct
two circumcircles to include n and l respectively, and denote the
angle between these circumcircles as θ0, and the interior angles of
each circumcircle as θ1 and θ2. In this way, max{cos⟨n, l⟩} can be
estimated as

max{cos⟨n, l⟩}= cos(max{0,θ0 −θ1 −θ2}). (20)

Providing an error threshold ε, by letting ε
′ = ε

max{cos⟨n,l⟩} , we can
use Eq. (15) to calculate appropriate subdivision parameters nn and
nl for n and l respectively. For example, nn can be computed as

nn ≥
√

1+3(1− ε′)2h∗n
2
√

3−3(1− ε′)2
√

1−R2
n
, (21)

where h∗n = max{∥n0 − n1∥2,∥n0 − n2∥2,∥n1 − n2∥2} and Rn
is the radius of the circumcircle of n0, n1 and n2.

3.2.2. Estimation on ∥n · l−LΘi(n · l)∥∞,Pi

Given ε, the parameter nn·l for the second term in Eq. (17) can be
computed by the general error estimation formula i.e., Eq. (11). The
interpolated function is solely an inner product without normaliza-
tion and its second order derivative |D2 f | is a constant:

nn·l ≥ h

√
1
6ε

u, (22)

u = |CT
1 C2 +DT

1 D2|+
√

(CT
1 C2 −DT

1 D2)2 +(CT
1 D2 +CT

2 D1)2

where C1 =− n0
a + n1

a , D1 = b−a
ac n0 − b

ac n1 +
n2
c and C2 =− l0

a +
l1
a , D2 = b−a

ac l0 − b
ac l1 + l2

c , which are constants computed from
attributes of the triangle (see Fig. 3a). The derivation details are
provided in the supplemental document.

3.2.3. Final Subdivision

We now have three subdivision parameters that are derived from
the Lambertian model, namely, nn, nl and nn·l. Once given an er-
ror threshold ε

∗, we evenly divide it into three bounds, ε = ε
∗

3 , and
individually estimate the corresponding subdivision parameters us-
ing Eq. (21) and Eq. (22). We select the maximum value as our final
subdivision parameter:

n = max{nn,nl,nn·l}. (23)

3.3. Example: Blinn-Phong Model

While similar to the Lambertian model, the Blinn-Phong model re-
quires normals and half-vectors (instead of light directions) as at-
tributes and has an additional power operation. We denote the nor-
mal and as n and the half-vector as h. The entire shading function
using Blinn-Phong model is computed as

f (x,y) = f̂ (n,h) = Ks · (
n

∥n∥2
· h
∥h∥2

)α, (24)

where Ks is the specular coefficient and α is the shininess coeffi-
cient. To simplify the derivation, we introduce a new variable t as

t =
n

∥n∥2
· h
∥h∥2

(25)

By plugging Eq. (25) into Eq. (24), f is simplified as

f (x,y) = f̂ (t) = Ks · tα (26)

Note that t is not linearly distributed on the surface. However,
we can assume that there exists a linear interpolation of t, LΘi t =
∑

m
k=1 tik λik (x), where tik denotes the values computed at vertices of

the convex sub-polygon Pi. We leverage the linear interpolation of
t to estimate the error of Blinn-Phong model as

∥ f (x,y)−LΘi f (x,y)∥∞,Pi = ∥ f̂ (t)−LΘi f̂ (t)∥∞,Pi

≤∥ f̂ (t)− f̂ (LΘi t)∥∞,Pi +∥ f̂ (LΘi t)−LΘi f̂ (t)∥∞,Pi

(27)

The first term of the inequality is the error introduced by the
assumed linear interpolation of t, while the second term is the error
caused by the interpolation of the new function f̂ (t) on the convex
sub-polygon Pi.

3.3.1. Estimation on ∥ f̂ (LΘi t)−LΘi f̂ (t)∥∞,Pi

The second term in Eq. (27) is easy to compute. Note that LΘi f̂ (t)=
LΘi f̂ (LΘi t), which suggests that this error is caused by the interpo-
lation of the power function in Blinn-Phong model. Using the new
variable t, we can directly apply the error formula Eq. (10) to derive
a close-form solution:

∥ f̂ (LΘi t)−LΘi f̂ (t)∥∞,Pi = ∥ f̂ (LΘi t)−LΘi f̂ (LΘi t)∥∞,Pi

≤ 1
6

Ksα(α−1)(C2
t +D2

t )h
2

n2 (LΘt)α−2
max (28)

where Ct = − t0
a + t1

a , Dt =
b−a
ac t0 − b

ac t1 +
t2
c and (LΘt)max =

max{t0, t1, t2}. t0, t1, t2 are the values of t calculated on each vertex
of Pi.
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3.3.2. Estimation on ∥ f̂ (t)− f̂ (LΘi t)∥∞,Pi

We can further simplify and expand the first term in Eq. (27) by the
Mean Value Theorem:

∥ f̂ (t)− f̂ (LΘi t)∥∞,Pi

=∥ f̂ ′t (ν)(t −LΘi t)∥∞,Pi where LΘi t ≤ ν ≤ t

≤| f̂ ′t (tmax)| · ∥t −LΘi t∥∞,Pi (29)

The above inequality is always satisfied because the first deriva-
tive of Eq. (26) is a monotonically increasing function, and tmax,
which denotes the maximum value of t on the convex sub-polygon
Pi, can be calculated by finding the minimum possible angle be-
tween n and h similar to Eq. (20).

By replacing l with h, ∥t − LΘi t∥∞,Pi takes a form identical to
Lambertian model in Eq. (17). We can apply the same derivation to
evaluate this error term.

3.3.3. Final Subdivision

Given an error threshold ε, we apply the same strategy used for the
Lambertian model to combine different terms. We evenly divide ε

into smaller thresholds. Let each term in Eq. (27) satisfy the split
error threshold and take the maximum parameters as the conserva-
tive final estimation.

3.4. Example: Microfacet Model

Now we deal with a more sophisticated BRDF model, the Micro-
facet model, which is widely-used in current graphics applications.
We denote normal, light direction, half-vector and view direction
as n, l,h, and v respectively. The Microfacet model is computed as

f (x,y) = f̂ (n, l,h,v) = D(n,h)F(v,h)V (l,v)
4

, (30)

where D(n,h) is a GGX (originated by Trowbridge and Reitz) nor-
mal distribution function [WMLT07, TR75], F(v,h) is the Fresnel
term using the Schlick approximation [Sch94], and V (l,v) is the
Smith geometry term [Smi67]. Note that for convenience, the co-
sine terms in the denominator of the standard microfacet model are
included in the term V (l,v).

For such a complex shading function with high-dimension and
non-linear properties, we introduce the error propagation formula:

∆ f = | ∂ f
∂x0

|∆x0 + | ∂ f
∂x1

|∆x1 + · · ·+ | ∂ f
∂xn

|∆xn, f = f (x0, · · · ,xn)

(31)
On the convex sub-polygon Pi, by letting ∥ f −LΘi f∥∞,Pi = ∥ f̂ −
LΘi f̂∥∞,Pi = ∥∆ f̂∥∞,Pi , and applying Eq. (31) to the interpolation
error of f̂ , we obtain:

∥∆ f̂∥∞,Pi =∥ | ∂ f̂
∂D

|∆D+ | ∂ f̂
∂F

|∆F + | ∂ f̂
∂V

|∆V∥∞,Pi

=∥ f̂
D
(D−LΘi D)+

f̂
F
(F −LΘi F)+

f̂
V
(V −LΘiV )∥∞,Pi

≤ ∑
I∈D,L,V

∥ f̂
I
∥∞,Pi · ∥I −LΘi I∥∞,Pi . (32)

which shows the total interpolation error of f̂ propagates from

the interpolation error from three components D(n,h), F(v,h) and
V (l,v). Each term is a function of the dot product of normalized
vectors, therefore we can extend Eq. (27) to compute interpolation
errors for ∥I −LΘi I∥∞,Pi , I ∈ D,L,V .

Besides, we can conservatively compute ∥ f̂
I ∥∞,Pi , I ∈ D,L,V .

For instance, we have

∥ f̂
D
∥∞,Pi = ∥F(v,h)V (l,v)

4
∥∞,Pi

= ∥ F0 +(1−F0)(1−v ·h)5

4((n · l)(1− k)+ k)((n ·v)(1− k)+ k)
∥∞,Pi

≤ ∥ F0 +(1−F0)(1−min{v ·h)5}
4(min{n · l}(1− k)+ k)(min{n ·v}(1− k)+ k)

∥∞,Pi (33)

Given the monotonicity of the Fresnel and Geometry terms, the
above inequality is always satisfied. The minimum values of v ·h,
n · l and n ·v can be efficiently computed in the vector space similar
to Eq. (20).

The subdivision parameters are determined in the same way that
we evenly divide the error threshold and assign to different terms
in Eq. (32) to compute n separately. The final subdivision is the
maximum value among them.

3.5. Discrete Variables: Textures

We extend our derivation to discrete variables which are often en-
coded as texture in computer graphics. Textures represent spatially-
varying coefficients in shading functions e.g., diffuse or specular
albedo, shininess, or roughness values. Formally, the linear inter-
polation error of shading function f on a convex sub-polygon Pi is:

∥ f (x,y)−LΘ f (x,y)∥∞,Pi

=∥ f̂ (A(x,y),α(x,y))−LΘ f (A(x,y),α(x,y))∥∞,Pi

(34)

where A is a set of attributes defined on the shading function, and
α is a sampled value from a texture. We consider one texture for
simplicity but the following derivation can be applied to multiple
textures.

Since texture stores discrete values, we cannot directly obtain
an analytical form for α(x,y). However, we observe that most
of the shading functions and their second derivatives are usually
monotonic functions w.r.t. their coefficients. When evaluating shad-
ing functions by sampled α, the maximum interpolation error of
f̂ (A,α) for all α

∗ ∈ (αmin,αmax) is at α
∗ = αmin or α

∗ = αmax.
We split Eq. (34) into two terms:

∥ f̂ (A,α)−LΘi f̂ (A,α)∥∞,Pi

≤ sup
α∗∈(αmin,αmax)

∥ f̂ (A,α∗)−LΘi f̂ (A,α∗)∥∞,Pi

+ sup
α∗∈(αmin,αmax)

∥LΘi f̂ (A,α∗)−LΘi f̂ (A,α)∥∞,Pi

(35)

where the first term is the linear interpolation error of f̂ (A,α∗)
while the second term is the error introduced by replacing α with
the fixed value α

∗.
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Figure 4: Overview of our multirate shading algorithm. In the Vertex Shader (VS), we transform vertex coordinates and attributes (e.g.,
normals) from local space to object space. In the Tessellation Control Shader (TCS), we analyze the interpolation error for each triangle
and compute a tessellation level n using a user-specified error threshold ε. If n is greater than the maximum-allowed tessellation level nmax,
we revert to conventional dense per-pixel shading (PS: Shading on Pixels). Otherwise, the triangle will be subdivided into sub-triangles by
hardware tessellation, and the shading function is only evaluated on subdivided vertices in the Tessellation Evaluation Shader (TES). These
shadings values are automatically interpolated to pixels not being sampled. In the Pixel Shader (PS), we perform the rest of the pixel-related
operations (Shading on Pixels*). We show our rendering and its tessellation levels at the far right.

Note that interpolation error of f̂ (A,α∗) reaches its maximum at
α
∗ = αmin or α

∗ = αmax. The first term can be computed by:

sup
α∗∈(αmin,αmax)

∥ f̂ (A,α∗)−LΘ f̂ (A,α∗)∥∞,Pi

= max
α∗=αmin, α∗=αmax

{∥ f̂ (A,α∗)−LΘ f̂ (A,α∗)∥∞,Pi}
(36)

For the second term, the supremum of ∥LΘ f̂ (A,α∗) −
LΘ f̂ (A,α)∥∞,Pi can be constrained as

sup
α∗∈(αmin,αmax)

∥LΘi f̂ (A,α∗)−LΘi f̂ (A,α)∥∞,Pi

≤ | f̂ (A,αmax)− f̂ (A,αmin)|
(37)

In our error estimation, αmin and αmax are the values on the con-
vex sub-polygon Pi. However, we cannot obtain the precise range of
αmin and αmax on an individual Pi before subdivision. For conser-
vative estimation, we take αmin and αmax on the original polygonal
domain P to obtain ε

′′ = | f̂ (A,αmax)− f̂ (A,αmin)|. Given an error
threshold ε, we compute ε

′ = ε− ε
′′ and limit the first error term

within ε
′:

max
α∗=αmin, α∗=αmax

{∥ f̂ (A,α∗)−LΘ f̂ (A,α∗)∥∞,Pi} ≤ ε
′ (38)

With a constant α
∗, we estimate its subdivision parameter n using

previous derivations.

4. Multirate Shading Algorithm

The goal of our analysis of interpolation error for shading func-
tions is to replace the time-consuming dense sampling process by a
dynamic sparse sampling and linear reconstruction with error con-
trol. During rendering we first analyze potential interpolation er-
ror, determine a proper subdivision, and then compute shading on
sparse vertices. To verify such a workflow, we specialize this gen-
eral sparse sampling idea to a multirate shading algorithm benefit-
ing from hardware automatic subdivision.

4.1. General Framework

We design our multirate shading algorithm in a current forward
real-time rendering pipeline, leveraging a hardware tessellator that
efficiently subdivides triangles. We show our algorithm in Fig. 4.
In a real rendering pipeline, the subdivision parameter n is imple-
mented as the tessellation level. In common cases, during forward
rendering, shading computations are densely evaluated at pixels in
the pixel shaders. We take advantage of tessellation shaders to ana-
lyze interpolation errors, subdivide triangles, and perform sparse
shading evaluation. In particular, the algorithm accepts a user-
specified parameter ε as the L∞ error threshold. We estimate inter-
polation error for each triangle in the Tessellation Control Shader
(TCS), and determine a tessellation level n based on ε. Given n
as input, the hardware tessellator will automatically subdivide the
triangle primitive and generate sub-triangles. The subdivided tri-
angles are processed by the Tessellation Evaluation Shader (TES)
where we perform a sparse evaluation of shading functions only on
the vertices of these triangles. During the rasterization stage, the
shading values are automatically interpolated to pixels.

For performance considerations in practice, subdividing numer-
ous sub-triangles at runtime may impose a considerable overload to
the rendering pipeline, offsetting all the performance gained from
our sparse sampling. To avoid this situation, we introduce another
user-specified parameter nmax, the maximum-allowed tessellation
level, to prevent over-subdivision on triangles. We cancel the subdi-
vision step and revert to conventional per-pixel shading if the com-
puted tessellation level is greater than nmax.

4.2. Implementation Details

In our theoretical analysis (Sec. 3), we require the shading func-
tion f to be C2 continuous. However, even the Lambertian model
is not always continuous in practice. For example, the Lambertian
BRDF is implemented as max(0,n · l) on the triangle since light can
hit its back surface. To address this problem, we propose two solu-
tions. (1) A conservative solution: we revert to per-pixel shading if
a discontinuity is detected. (2) A relaxed solution: we approximate
the original function with another C2 continuous function. For in-
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Demo Teapot Bunny Monster Sofa Sibenik Room
Tri 15704 13996 19824 6690 107332 130038

nmax 8 5 5 5 5 8
ε(L∞) 0.075 0.075 0.090 0.090 0.090 0.090

Nvidia RTX 1060 3GB
tper-pixel 1.19ms 0.79ms 1.89ms 2.39ms 5.80ms 8.23ms

tour 0.50ms 0.35ms 1.01ms 1.15ms 3.24ms 2.90ms
Speedup 233% 227% 188% 207% 177% 283%

Nvidia RTX 2070 Super
tper-pixel 0.36ms 0.24ms 0.54ms 0.74ms 1.86ms 2.79ms

tour 0.21ms 0.13ms 0.36ms 0.45ms 1.30ms 1.15ms
Speedup 177% 174% 149% 163% 143% 243%

Nvidia RTX 3090
tper-pixel 0.14ms 0.09ms 0.21ms 0.29ms 0.72ms 1.05ms

tour 0.08ms 0.06ms 0.13ms 0.17ms 0.54ms 0.41ms
Speedup 163% 161% 165% 170% 134% 258%

Error Control
L∞ error 0.013 0.073 0.074 0.046 0.068 0.054

Average L2 <0.001 <0.001 <0.001 <0.001 0.002 <0.001

Table 1: Result Summary. We list hyparameters including the num-
ber of triangles, the maximum-allowed tessellation levels nmax and
L∞ threshold for different test cases. We show rendering time of
dense per-pixel shading, our multirate method as well as speedup
ratio, measured at 4K resolution (3840x2160). We report L∞ and
L2 errors to examine error control quantitatively.

stance, for max(0,n · l), we simply ignore the clamping function.
We show an example of applying different solutions in Fig. 13.
The first strategy will always preserve the shading quality which
is suggested when the error threshold is low. By contrast, if a high
error threshold is given, applying the second strategy can provide
improved performance.

Hardware tessellation is achieved by predefined equal-space par-
titions parameterized by integers i.e. inner/outer tessellation levels
†. Sample points are generated either on the edges (outer) or the
interior of the primitive (inner) by the tessellator. We set both in-
ner/outer tessellation levels the same. To support textures as input,
we need to compute minimum and maximum values of texels on a
triangle (Sec. 3.5). We leverage normalized power-weighted filter-
ing [Vli04] to efficiently compute max-min values over an arbitrary
region on a texture via Summed Area Tables (SATs).

A uniform error threshold partition (Sec. 3) is improved by a
heuristic allocation method. For example, given M error terms, we
obtain a set of roughly estimated errors on the triangle as e1, e2,
..., eM using Eq. (10) or Eq. (12). With an error threshold ε, we
proportionally assign a sub-error threshold for each term as ε j =

e j

∑
M
j e j

ε.

5. Experimental Results

We implement our multirate shading algorithm based on OpenGL
4.5. As we notice the rendering performance is related to specific
hardware, we validate its performance on different graphics cards
including Nvidia GTX 1060 3GB, Nvidia RTX 2070 Super, RTX
3090. All images are rendered at 4K resolution (3840x2160). We

† www.khronos.org/opengl/wiki/Tessellation

apply our algorithm on several 3D mesh objects and scenes and
compare our method with conventional dense per-pixel shading
routines. Multiple light sources are used and their errors are ad-
ditive. We measure the performance improvement by a speedup
ratio comparing the time for our method versus dense per-pixel
shading with the term tper-pixel

tours
×100%. All results and user-specified

parameters are summarized in Table 1. We report L∞ errors and av-
erage L2 errors for reference showing our algorithm achieves high-
quality reconstruction. Results show our method achieves substan-
tial (134% ∼ 283%) performance improvement while maintaining
precise error control. We demonstrate the temporal consistency and
robustness of our multirate method in our supplemental video.

For visual results, we show different test cases ranging from
mesh objects to large-scale scenes with complex geometries. The
models are rendered by either the Microfacet BRDF or Blinn-
Phong reflection model with a diffuse component using the Lam-
bertian model. In the following sub-sections, all error images
shown are 30x scaled, and all the rendering times reported are mea-
sured using Nvidia RTX 2070 Super. We visualize the subdivision
parameters (i.e., tessellation levels) by heat maps.

5.1. Mesh Objects

In Fig. 2, we show a bunny rendered with the Blinn-Phong model.
We compare our method to a fixed-rate subdivision strategy by
which we uniformly subdivide all triangles to reduce shading er-
rors. However, a pre-defined subdivision parameter cannot effec-
tively decrease shading errors on triangles with high-frequency sig-
nals and leads to over-subdivision on triangles with low-frequency
shading signals. We show more comparisons with manually-tuned
fixed subdivision rates in Fig. 9. Our method outperforms this naive
approach in both error control and time cost.

In Fig. 7, we show a classical Utah teapot rendered with the Mi-
crofacet BRDF model. Dense subdivision and sampling are per-
formed on triangles with high specularity such as those on the lid
of teapot, while the body of the teapot is mostly shaded by the low-
est sampling rate and the BRDF is reconstructed by simple inter-
polation. Our multirate method determines sample rates adaptive to
input material parameters – e.g., roughness value α in this example.
The overall errors are controlled by our algorithm. Also note that
the shading rate is not only related to specular reflections. It de-
pends on the complex, arbitrary light/view/normal configurations.
For example, the thin edge of the teapot lid is shaded with a higher
shading rate because of its normal variations.

We show texture mapping is supported in Fig. 8. The sofa model
is rendered with a Microfacet BRDF model with a roughness value
represented by a texture. The monster model is shaded by a Blinn-
Phong model with a spatially varying shininess texture. Different
from diffuse albedo or specular albedo, the roughness and shininess
values are hard to decouple from the full shading function, there-
fore the interpolation error must be considered. Naive Gouraud-
shading (per-vertex) causes significant errors when the texture en-
codes non-continuous variables. Our algorithm, on the other hand,
properly increases the sample rate to reduce interpolation errors and
achieves considerable speedup ratio (up to 163%).
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Per-pixel shading Per-vertex shading Ours Tessellation levels Rendering costs

Figure 5: Rendering results for the Dragon and Room scenes (one frame). We compare dense sampling (Per-pixel), naive interpolation (Per-
vertex), and our multirate sparse sampling method (Ours). We show error images (insets), tessellation levels, and time-varying rendering
costs. See supplemental video for the full animation.

Figure 6: Our multirate shading method significantly reduces the
sample rate for shading functions, only performing 11% ∼ 23%
shading function evaluations compared to full-rate per-pixel sam-
pling. The X axis shows the times of shading function evaluation
(unit: million)

5.2. Demo Scenes

In Fig. 5, we validate our algorithm on large-scale scenes with com-
plex geometries. The Dragon scene is a dragon model within the
Sibenik model, each of which has very distinct characteristics. The
dragon model has bumpy surfaces, while the Sibenik model has
smooth surfaces. The Room scene is a living room with several fur-
niture and tens of small items such as books, bottles, plants, statues,
etc. We demonstrate our multirate method can be incorporated with
other rendering techniques. We implement screen-space multirate
shadow mapping [HGF14] using shadow boundaries and multiple
post-process effects [Unr22] (e.g., blooming, SSAO, eye adapta-
tion and tone mapping) in this living room demo. All post-process
effects are performed in a color framebuffer containing direct illu-
mination generated by our method.

For these two demos, our algorithm produces a 134% ∼ 283%
performance improvement on different graphics hardware. Addi-
tionally, we create animation sequences for these two scenes. In the
last column of Fig. 5, we plot the rendering time (ms) per frame,
showing our method achieves a consistent performance improve-
ment over dense per-pixel shading.

α = 0.1 α = 0.3 α = 0.5
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Figure 7: A Utah teapot rendered by Microfacet BRDF with differ-
ent roughness values. Our multirate method achieves 177%, 154%
and 157% speedup ratios at different roughness values i.e., α=0.1,
0.3 and 0.5 respectively.

6. Discussion

Our algorithm leverages sparsely-sampled shading points to recon-
struct the original shading functions. To examine the sparsity of
sample points generated by our multirate method, we count the
shading function evaluation times for each of our scenes when ren-
dered at 4K resolution. In Fig. 6, we show our sparse sampling
only performs around 11% ∼ 23% the number of shading function
evaluations compared to standard full-rate sampling. We analyze
the impact of screen resolution and primitive size on our method,
demonstrating concrete performance improvement.
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Figure 8: We dynamically evaluate interpolation error of shad-
ing functions with discrete variables as textures. Our multirate ap-
proach gains performance improvement up to 163% over per-pixel
dense sampling and controls the reconstruction errors caused by
spatial varying texture inputs. Error images and subdivision levels
are shown as insets.

n=4 (0.24ms) Ours(0.21ms) Per-pixel(0.36ms)

n=6 (1.23ms) Ours(1.19ms) Per-pixel(3.40ms)

Figure 9: We show our multirate method outperforms fixed-
rate subdivision strategy using uniform tessellation levels n. Our
method efficiently suppresses high-frequency shading error and
still shows better performance. The Room scene is rendered with di-
rect illumination only to better illustrate the difference. Error maps
are scaled by 10. Images are 4K. Please zoom-in to see errors on
the high-frequency regions.

6.1. Independence on Resolutions

Since most of shading computations are executed on the vertices of
subdivision surfaces, our method is almost independent of sample
resolution, while the time complexity of the reference algorithm
— conventional per-pixel shading — scales with the screen res-
olution. Fig. 10 shows computation cycles occurred in different
shader stages collected by the Nvidia Nsight Profiler [Nsi22]. The
computation cycles in the vertex shader and tessellation shader at
different resolutions are nearly the same in our algorithm because
they depend only on geometry complexity. The cycles of TCS are
additional cost by error analysis. Since triangles whose subdivi-
sion parameter is greater than nmax are reverted to pixel shading,
the computation cycles in pixel shader merely increases along with
the resolution. Compared to full-rate per-pixel shading, our sparse,

Figure 10: Breakdown of each shader stage at different resolu-
tions (from left to right, resolutions are 1920*1080, 2560*1440 and
3840*2160 respectively) when shading the bunny model.

Reference Performance vs. n

100x100 30x30 10x10
Speedup 172% Speedup 191% Speedup 144%

Figure 11: Performance analysis with different number of trian-
gles. We show performance improvement by our method against
the number/size of triangles. The 2D plane is uniformly partitioned
into n×n grids. Each grid is composed by two triangles.

multirate shading can produce even better improvement when ren-
dering high-resolution images.

6.2. Performance with Primitive Size

Our algorithm introduces an additional process to compute subdi-
vision parameters for each visible primitive. Small primitives (e.g.,
triangles) may require unnecessary error analysis as direct per-pixel
shading would be fast enough. On the other hand, large primi-
tives with high-frequency shading signals may require a very fine-
grained subdivision to ensure quality.

We conduct an experiment to analyze the influence of primitive
size on our algorithm. In Fig. 11, a planar surface is lit by three
sharp light sources with different colors. We uniformly partition
the 2D plane into triangles with various sizes (i.e., with different
numbers of triangles). Additional regions require subdivision to re-
duce interpolation error when the size of triangle increases (from
left to right, bottom row of Fig. 11). On the other hand, the com-
putation cost for error analysis will increase when the number of
triangles increases. We plot the speedup ratios against the number
of triangles. In this example, our algorithm achieves the maximum
speedup ratio at approximately 1800 triangles, and improves the
rendering performance for a wide range of numbers of triangles
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Ground-truth Our estimation Ground-truth Our estimation

Figure 12: Our method estimates interpolation errors conserva-
tively and analytically. We show our predicted errors of a Blinn-
Phong model on the bunny example and a Microfacet BRDF on the
Utah teapot example.

Reference Solution 1 Solution 2

Figure 13: We propose two solutions to address discontinuities
such as in max(0,n · l). With the first solution, more triangles (see
the long arc region on the body of the teapot) are reverted to per-
pixel shading. On the other hand, the second solution ignores the
discontinuity. Though it is non-conservative, interpolation errors
are barely noticeable.

even with overhead. The performance slows down when triangles
are either too large or too numerous.

6.3. Accuracy of Error Estimation

Our approach predicts interpolation error and computes subdivi-
sion parameter n according to a L∞ threshold. The accuracy of
error estimation is crucial for the performance. In Fig. 12, we show
a comparison between the ground-truth and our estimated interpo-
lation errors. Our method conservatively evaluates the interpolation
error and therefore can effectively reduce the possible reconstruc-
tion error by subdivision.

7. Limitations and Future Work

We analyze interpolation errors on multiple shading functions and
verify our multirate shading approach is capable of reducing com-
putation costs on a variety of scenarios. However, our approach still
relies on certain preliminary assumptions and have limitations.

First, the C2 continuity of shading functions is not always sat-
isfied, though we practically can address the discontinuity points
by approximation or conservative shading (Fig. 13). Since our an-
alytical derivations introduce multiple inequalities to constrain the
interpolation error and enable fast evaluation, interpolation errors
on a few low-frequency triangles could still be over-estimated such
as in Fig. 12. Besides, we derive the error formula by an L∞ metric
because it is invariant to projections or transformations. However,

an L∞ metric could be overly strict, leading to unnecessary subdi-
vision. For instance, as reported in Table 1, the average L2 is almost
zero on the whole image for many cases. Moreover, we leverage a
heuristic model to assign the error threshold to different terms (Sec.
4.2), but this may not result in optimal separation. Hence, a relaxed
but still quality-guaranteed sparse sampling and error analysis re-
mains an open problem.

Second, though we show our derivation is extended to dis-
crete variables encoded as textures, the current theoretical anal-
ysis is hard to extend to non-continuous vector attributes requir-
ing normalization such as normals. Practically, normal mapping is
a commonly-used technique to simulate high-frequency geometry
details. As we aim at a fully analytical derivation, we estimate er-
rors from vector normalization using our special derived formula
(Sec. 3.1.2). Deriving an analytical relationship between the sub-
division parameter n and the interpolation error of discrete normal
directions is non-trivial. But since the normal map is bound to spe-
cific geometry, in practice, the problem could be solved by precom-
puting such a relation on each triangle: enumerate possible subdi-
visions, numerically compute the interpolation error, and store the
precomputed subdivision parameters for reuse at runtime.

Last, our multirate shading algorithm is built upon a forward ren-
dering framework. We take advantage of hardware tessellation and
rasterization as a fast and efficient implementation for sparse sam-
pling and linear reconstruction. As a recent addition to rendering
pipelines, mesh shading supports programmable geometry process-
ing which could provide a finer control of the shading rates. We also
show the extensibility of our method that can be combined with
other rendering techniques such as screen-space post-processing
effects. However, the core idea of reconstruction by sparse sam-
pling is universal. Extending our method as a VRS technique that
generates samples in screen space is interesting, and how to apply
the error analysis on different frameworks such as deferred shad-
ing in real-time rendering or ray tracing in off-line rendering is a
potential research direction.

8. Conclusion

We propose a novel multirate rendering approach that leverages
piecewise linear reconstruction with sparse shading on the vertices
of subdivision surfaces. We present an analytical error estimation
framework to evaluate interpolation errors and provide an efficient
way to compute the granularity of subdivision for various shading
functions. We design a multirate shading algorithm based on real-
time error analysis and subdivided per-vertex shading, demonstrat-
ing that our method achieves considerable performance improve-
ment on a variety of scenes. We hope our work introduces new in-
sights in multirate shading and will inspire more ideas on rendering
optimization.
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