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Figure 1: We show a gallery of high-poly meshes and their corresponding occluders generated using our method, side by side.

Abstract
Occlusion culling has become a prevalent method in modern game engines. It can significantly reduce the rendering cost by
using an approximate coarse mesh (occluder) for culling hidden objects. An ideal occluder should use as few faces as possible
to represent the high-resolution input mesh with a high culling accuracy. We address the open problem of automatic occluder
generation for 3D building models with complex topology and interior structures. Our method first generates two coarse sets
of faces via patch-based and voxel-based mesh simplification techniques. A metric-guided selection algorithm chooses the best
subset of faces to form the occluder, achieving a high occlusion rate and accuracy. Over an evaluation of 77 building models,
our method compares favorably against state-of-the-arts in terms of occlusion accuracy, occlusion rate, and face number.

CCS Concepts
• Computing methodologies → Mesh geometry models;

1. Introduction

The occlusion culling techniques have been widely used in modern
game engines, e.g., Unreal Engine [Gam21], Unity [Tec21], and
CryEngine [Cry21]. In particular, raster occlusion culling (ROC)

has been widely used in mobile games due to the limited com-
puting power. The key idea is to use an approximate coarse mesh
(occluder) rather than the fine rendering mesh (visual mesh) in a
lightweight CPU rasterization to cull hidden objects from the GPU
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(a) Ground truth (b) Silvennoinen et al. [SSLL14] (c) Simplygon (d) Ours

Figure 2: Exemplary software culling benchmark in Unreal Engine 4. Visible objects are culled by mistake (highlighted with yellow
frames) if occluders are non-conservative. (a) is the ground truth and (bcd) are culling results using occluders generated from Silvennoinen
et al. [SSLL14], Simplygon [Mic21], and our method, respectively.

(a) Input (b) Isosurface (c) [SSLL14] (d) Simplygon (e) Ours

Figure 3: Example of occluders generated using different methods: (a) the input mesh with 7888 faces, 521 components, 562 boundary
loops, and 9034 intersected triangle pairs; (b) the isosurface corresponding to a winding number of 0.5; (c) the result from Silvennoinen et
al. [SSLL14] using the isosurface (b), (d) the occluder generated by Simplygon [Mic21], and (e) the occluder generated by our method. Face
numbers for (c), (d), and (e) are 150, 231, and 231, respectively.

rendering pipeline during runtime. As a result, entirely occluded
objects can be excluded from the rendering pipeline, significantly
reducing GPU bandwidth, draw calls, and extra rendering costs.

The quality of the occluder mesh is crucial to the efficacy and
accuracy of culling. On the one hand, the occluder should be a
low-poly mesh to reduce the cost of the culling test. On the other,
the occluder should be conservative, staying inside the volume of
the visual mesh. Indeed, non-conservative occluders can cull vis-
ible objects by mistake, causing severe visual artifacts, as shown
in Figure 2b-c. We propose two metrics to qualitatively measure
the accuracy of an occluder over the 3D domain: Precision, which
measures the possibility of an object blocked by the occluder being
also blocked by the original model, and Recall, which computes
the possibility of an object blocked by the original model being
also blocked by the occluder.

This paper focuses on automatically generating occluders for
building models from game assets. Game artists manually craft
building models to maximize their visual realism, which typically
contains numerous disconnected pieces, large open doors and win-
dows, and interior structures, as demonstrated in Figure 3a. As
artists only focus on the buildings’ appearance, building models are
typically non-manifold, non-watertight, and self-intersecting, ren-
dering conventional meshing processing algorithms inaccessible.
Unfortunately, neither voxelization-based method nor progressive
face removal can handle cases mentioned above. Nowadays, build-
ing occluders are still being handcrafted. An artist typically spends
hours to create one occluder for complex buildings via trial and er-
ror. Even after careful tuning, handmade occluders can still waste

faces that do not contribute to the recall or violate the conservative
constraint.

Instead of relying on one strategy and hoping that it is general
enough to handle all building models with different styles, we first
generate two coarse meshes from the input mesh using two differ-
ent methods. We combine the generated coarse meshes to populate
the candidate face set as a large solution space. Next, we introduce
formulations to evaluate the precision and recall of the occluder
with respect to the input model over the 3D evaluation domain.
We propose an algorithm based on the metrics to select the best
face set from the solution space with a high occlusion rate while
preserving the conservativity as much as possible. Furthermore,
we introduce several strategies to accelerate metric computation at
runtime. We have verified our method on 77 building models with
various styles. Overall, our method can generate occluders with a
low face count of 260 while achieving an averaged precision of
99.4% and an averaged Recall of 78.0% from all possible viewer
positions, including faraway, close-up, and walk-in views. This is
3.7% and 2.9% percent higher than occluders generated by Sim-
plygon [Mic21] in terms of precision and recall, respectively, while
using 50 fewer faces on average. The results from another state-of-
the-art [SSLL14] only have a recall of 39.7% on average.

2. Related Work

We review related techniques in occlusion culling, mesh simplifi-
cation, and occluder generation.

Occlusion Culling: For static scenes, one may pre-compute and
store a potentially visible set [ARB90] with respect to a single
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(a) Input (b) Patch-based (c) Voxelization-based (d) Patch / Voxel combined (e) Final

Figure 4: Our pipeline: (a) input model; (b) the result of patch-based simplification; (c) the result of voxelization-based simplification; (d)
the combination of patch-based and voxelization-based results; (e) the final result after the metric-guided mesh simplification, in which faces
from patch-based and voxel-based approaches are colored in red and blue, respectively.

viewpoint [COFHZ98] or a region of viewpoints [BHS98]. Regard-
ing buildings with accessible interiors, cell-and-portal [LG95] de-
composes the interior into rooms (cells) connected by doors or win-
dows (portals). However, it is expensive to pre-compute and store
the visibility data for complex scenes in large open worlds. To avoid
excessive pre-computation and storage, Koltun at el. [KCCO01]
maintain a view-dependent subset of the input mesh as virtual oc-
cluders at runtime. We refer to the surveys [COCSD03, PT02] for
more details on various occlusion culling techniques. It is impor-
tant to note that, while the proposed method focuses on the oc-
clusion performance of single occluder, several authors have pro-
posed hierarchical occlusion culling solutions for complex mod-
els [MBW08, MBJ∗15, LJSL21].

Mesh Simplification: It is prevalent to use software rasterization
for rendering the coarse mesh (occluder) into a depth buffer, which
is then used to cull hidden objects in a very early stage [Val11].
The problem of generating an approximate coarse mesh from a
fine-detailed one has been investigated for several decades. One
classical way is to keep collapsing edges satisfying certain condi-
tions or minimizing certain metrics, e.g., the Quadric Error Met-
rics (QEM) [GH97]. Various metrics have since been added to
the collapsing conditions for specific applications, e.g., Zhang and
Turk [ZT02] defined a surface visibility metric. Other works pro-
pose to satisfy hard constraints during remeshing. For example,
progressive hulls are introduced to guarantee all vertices are out-
side the input mesh [PT03, SGG∗00]. Sacht et al. [SVJ15] gener-
ated coarse meshes while maintaining strict nesting. Unfortunately,
none of these methods can work in our topologically inconsistent
cases. Recently, Gao et al. [GWP22] introduced a visual-driven
method to robustly generate low-poly meshes for building mod-
els, however, their output cannot be used as occluder since it could
violate conservative constraints.

Occluder Generation: Bergen [vdB21] recently used conserva-
tive mesh simplification to generate occluders for terrain patches
in games, assuming clean topologies. Indeed, existing mesh sim-
plification methods can be used to generate occluders if topolo-
gies can be made consistent. Only a few prior works have at-
tempted automatic occluder generation for buildings, which can
be classified into two strategies. A prominent strategy first vox-
elizes the input mesh, extract the isosurface, and then simplify
the output isosurface. Next, either axis-aligned boxes [Dar11] or
cutting planes [SSLL14] are inserted to form the occluder. How-

ever, some essential features, e.g., thin walls, cannot be captured at
an affordable resolution, as shown in Figure 3b. Moreover, nested
and open structures in building models can cause ill-defined ori-
entations, for which the isosurface cannot be extracted accurately
and correctly. An alternative strategy progressively removes faces
from the input mesh through error-guided element-removal op-
erations [vdB21, Mic21]. However, those operations, e.g., edge-
collapse, often generate results with large gaps and parts outside
the visual mesh, which violates conservativity, as illustrated in Fig-
ure 3d. Last but not least, all these methods assume buildings are
viewed faraway, and none of them respect the concave and interior
building structures. As a result, when game characters enter those
areas, these occluders would fail to provide accurate occlusion pre-
dictions. The work most close to ours is [SL17]. They greedily find
a set of planes inside the voxelized input model to form an occluder
with bounded occlusion error. However, their work relies on the
voxelized mesh as the input, which can introduce a large occlusion
error during voxelization. Also, buildings with nested structures
can be non-orientable and cannot be voxelized, while thin walls
cannot be captured at an affordable resolution. In the game indus-
try, to avoid creating buildings occluders by hand, Valient [Val11]
uses the collision mesh as starting mesh for simplification. Still,
collision meshes are typically larger than the input mesh, signifi-
cantly violating conservativity.

3. Method

An input building model is represented as triangle/polygon soups,
including hundreds of (possibly self-intersecting) disconnected
components, nested structures, and thin features. Due to the topo-
logical complexity, neither voxelization nor conventional mesh
simplification can work well by themselves. Instead, we observe
that some disconnected components contain a number of large
patches that are useful candidates to form the final occluder mesh,
while other large volumetric features can be well captured by
voxelization. Therefore, we propose to use a hybrid approach, as
demonstrated in Figure 4, combining the outputs from the two mesh
simplification strategies, patch-based simplification (Section 3.1.1)
and voxelization-based simplification (Section 3.1.2), to form a
large candidate set of faces, as the initial occluder Moccluder. Next,
we formulate the two evaluation metrics: precision P and recall R
for Moccluder (Section 3.2). Finally, we introduce a metric-guided
mesh simplification of Moccluder to extract high-quality final oc-
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cluder from the initial occluder and terminates when user-specified
quality bounds are reached (Section 3.3).

3.1. Initial Occluder Generation

In this section, we propose a two-way hybrid method to form the
initial face candidate set.

3.1.1. Patch-based Mesh Simplification

Our first approach performs each of the following steps to generate
a coarse mesh:

1. planar patches grouping: group faces into planar patches by
thresholding the dihedral angle of each interior edge (we choose
a small threshold of 1×10−3);

2. curved patches grouping: group planar patches generated from
the last step into curved patches if the dihedral angle of one
shared edge is less than the user-specified threshold εa. Note
that using planar patches leads to an occluder with a smaller
number of triangles, while using curved patches captures more
details. Combining two patch sets leads to a large candidate set,
from which our final occluder is selected. One example is shown
in Figure 5.

3. simplification: simplify each curved patch with QEM-guided
mesh simplification [GH97]; for the remaining planar patches,
simplify the boundaries of each 2D-projected patch using the
Ramer-Douglas-Peucker algorithm [Ram72] and re-triangulate
the boundary into a triangle mesh using constrained Delaunay
triangulation;

4. hole filling: fill holes that do not originally exist in MInput;
5. reduction: sort all planar and curved patches by their areas and

keep adding patches to the final mesh until the face count of
which is larger than a user-specified number NP.

Hole-filling: Hole-filling is a standard typical mesh-repairing
practice. For building models, some building decorators will lead a
hole after removing small patch, such as the example shown in Fig-
ure 6, while windows and doors must be left open for the conserva-
tivity of the occluder. Therefore, we propose a verification strategy
to check whether a hole corresponds to a decorator or not. As shown
in Figure 6, we first triangulate the hole into several faces and then

(a) Planar patches (b) Curved patches

Figure 5: Example of patch grouping: Given the input mesh
shown in Figure 4, all faces can be grouped into two sets, (a) pla-
nar patches and (b) curved patches. Note the faces belonging to the
same patch are rendered with the same color.

place a set of testing line segments with length ls uniformly sam-
pled inside each face along its normal direction. As long as there
is one segment that does not intersect with Minput, we decide that
there is a hollow structure in Minput and keep the hole open. If all
segments hit the input mesh, then no openings exist in Minput and
the hole can be filled safely. After hole-filling, we mesh-simplify
the patches to further reduce the face count.

(a) (b) (c) (d)

Figure 6: Example of hole filling: (a) the input mesh with a con-
cave “window”; (b) the planar patch with a hole extracted from the
input mesh; (c) testing line segments placed within the hole (red);
(d) the output mesh after hole filling and remeshing.

3.1.2. Voxel-based Mesh Simplification

Our second approach performs each of the following steps sequen-
tially to generate a coarse mesh:

1. voxelization: voxelize Minput with voxel size l/Nv, where Nv
is an user-defined volelization resolution parameter and l is
the diagonal length of Minput’s bounding box, compute the 3D
winding number for each voxel [JKSH13], and extract the 0.5-
isosurface using the marching cube algorithm (Figure 7b);

2. remeshing: simplify the isosurface into a coarse mesh based on
QEM [GH97] (Figure 7c);

3. conservative enforcement: project the simplified mesh back onto
the 0.5-isosurface to enforce the conservative.

(a) input (b) isosurface (c) simplified (d) final

Figure 7: Example of voxel-based mesh simplification. Note that
we get the final mesh (d) by pushing some faces (highlighted with
red frames) from the simplified mesh (c) in the final mesh to enforce
the conservative.

Conservative Enforcement (CE): QEM-based simplification is
not conservative, i.e., some resulting vertices can be outside the
input mesh, causing false negatives during occlusion culling. To
alleviate this issue, we formulate an optimization problem to push
the obtrusive parts back inside. Specifically, denoting the simplified
mesh as Mcoarse, we first compute a signed distance field φ from the
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isosurface mesh (Figure 7b) and then solve the following optimiza-
tion problem:

min
x∈R3n ∑

i
Ei(x) s.t. φ(p)≤ 0, ∀p ∈ Mcoarse, (1)

where x is a vector corresponding to the vertex positions of Mcoarse
and p can be any point on Mcoarse. Each edge in Mcoarse is defined
as a spring energy Ei =

1
2 (||p0 − p1|| − r)2, where p0 and p1 are

edge ending points and r is the edge length before performing con-
servative enforcement.

To formulate the unilateral constraints in the above optimiza-
tion problem, we detect continuous contacts between the triangle
mesh Mcoarse and the signed distance field φ using [MEM∗20].
We keep detecting continuous collisions during the optimization.
When a collision happens, the following soft penalty energy based
on signed distance field (SDF) is added to the objective function:

ESDF(p) =
{ 1

2 φ(p)2
φ(p)> 0

0 φ(p)≤ 0
, (2)

to replace the hard constraints in Equation 1. Putting things to-
gether, we reformulate the optimization into the following uncon-
strained form:

argminx∈R3n ∑
i

Ei(x)+∑
i

ESDF(pi). (3)

Note this method is essentially a penalty method for handling hard
constraints with automatic parameter tuning. Although we do not
introduce a weight for ESDF, if a same continuous collision happens
repeatedly, more ESDF terms will be added, essentially increasing
its weight. Since Mcoarse typically has less than 100 vertices, we
use Quasi-Newton method [LBK17] to solve the optimization. As
in the sharp corners highlighted in Figure 7d, our method pushes
the coarse mesh into the building to improve precision.

3.2. Occlusion Evaluation

We formulate two metrics, precision P and recall R of an occluder
Moccluder with respect to the input model Minput, to evaluate its qual-
ity and guide the follow-up mesh simplification procedure.

Originally proposed by Silvennoinen et al. [SSLL14], the no-
tions of precision and recall are not new. However, their original
definition uses a rather restrictive setting, putting both the occluder
and the building in origin and the viewer outside the building facing
the origin. As demonstrated in Figure 8, we argue that measuring
occlusion from the outside only is insufficient for many models in
video games, such as caves, tunnels, and buildings, where players
are allowed to walk through. In these latter cases, camera views
from interiors and concave areas are essential.

Following the above reasoning, we present a new way to com-
pute precision P and recall R over the 3D evaluation space. Theo-
retically, a player can omnidirectionally look into the ambient space
at any accessible location over the 3D space. To compute P and
R, we first define the evaluation domain as B′ = (1+ εpadding)B−
Minput, i.e., B′ is the enlarged volume of Minput’s bounding box by
a factor of (1+ εpadding) minus the volume of Minput. The overall
precision P and recall R are given as:

P =
1

|B′|

∫
B′

Pxdx, and R=
1

|B′|

∫
B′

Rxdx. (4)

(a) [SSLL14] (b) Ours

Figure 8: Comparison between [SSLL14]’s and ours view sam-
pling methods: (a) Silvennoinen et al. [SSLL14] sample views
around the building directed towards the origin; (b) our method
samples over the 3D space and evaluates all cameras views, in-
cluding interiors and concave areas.

To numerically approximate the intractable integrals above, we uni-
formly divide B′ into volume blocks with spacing ∆x and mark all
volume blocks outside Minput as valid. Therefore, the overall preci-
sion and recall can be computed as:

P =
1

∑∆V

N

∑Px∆V =
1
N

N

∑Px,

R=
1

∑∆V

N

∑Rx∆V =
1
N

N

∑Rx,

(5)

where N is the number of valid blocks and ∆V = ∆x3 is block vol-
ume. Px and Rx denote the precision and recall at block center x.

To compute Px and Rx at a fixed camera position x, we dis-
cretize the full view direction space into 6 view frustums along the
±X ,Y,Z axes, each having a 90◦ view angle. We then reduce the
occlusion computation in 3D to 2D screen space by comparing the
2D areas occluded by Moccluder and Minput. For each view frustum,
we approximatePx and Rx using Monte-Carlo sampling. In partic-
ular, Nquad randomly sampled, axis-aligned quads are rasterized as
occludees over the screen space. Accordingly, there are three cases:

• true positive: a quad is covered by both Moccluder and Minput. The
number of pixels in this quad is denoted as Nt ;

• false positive: a quad is entirely covered by Minput but not
Moccluder. The number of pixels in this quad is denoted as P f ;

• false negative: a quad is completely covered by Moccluder but
some pixels are not covered by Minput. The number of pixels
uncovered by Minput in this quad is denoted as N f .

Like [SSLL14], our discretized Px and Rx can be computed as
follows:

Px =
∑Nt

i

∑Nt
i +∑N f

i

, and Rx =
∑Nt

i

∑Nt
i +∑P f

i

, (6)

where the summation is over all six directions ±X ,Y,Z.
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(a) (b) (c) (d)

Figure 9: Occlusion measure acceleration: (a) We first discretize the empty space into a number of uni-size blocks; (b) We merge samples
in a similar way as an octree; (c) We mark the view directions that cannot see the building in gray; (d) If the face in red is removed, only
views in red on the positive side of the face normal need to be updated.

3.3. Metric-Guided Occluder Simplification (MGOS)

Combining the results from patch-based (Section 3.1.1) and voxel-
based (Section 3.1.2) simplification methods, a high-quality face
candidate set is generated. As our last step, we use a metric-guided
face reduction algorithm to select a face subset and form our final
occluder. A naive approach to this end is to greedily remove faces
that produce the smallest recall reduction ∆R. However, this is
too computationally expensive. Assuming that the combined mesh
Mcombined has m faces and we use n view position samples to com-
pute the recall, then we have to do 6n∏

i=m−k
i=m i visual evaluation in

order to remove k faces. Instead, our simplification algorithm per-
forms the following steps: We first check all faces, if removing face
fi would lead to a precision change P(M)−P(M − fi) > εP, we
remove fi from Mcombined. Note we don’t update P after discard-
ing fi, since removing one face from the occluder will not increase
P(M− fi). Our second step is to recheck all the remaining faces. If
removing fi would lead to ∆R < εR, we remove fi and update R.
Here we need to update R during each iteration, since removing
one face may increase other faces’ contributions to the recall.

To further accelerate the metric-guided occluder simplification,
we deploy two strategies: reducing adjacent views and skipping un-
necessary evaluations.

Sampled View Reduction: If two views are close to each other,
the difference between their occlusion results will be small. Based
on this observation, we reduce the number of view samples by
merging neighboring ones. In particular, we first uniformly divide
the domain B into N blocks as shown in Figure 9a. Next, we merge
2× 2× 2 adjacent blocks, whose centers do not collide with the
building until no merges can be performed, as shown in Figure 9b.
Accordingly, we can reformulate the Equation 5 as:

R=
1

∑∆Vi

N

∑RΩ(xi)∆Vi, (7)

where ∆Vi and xi are the ith sample’s block volume and center lo-
cation, respectively.

Sample Skipping: The building might be outside the view frus-
tum of many view locations, in which case Nt , P f , and N f will
always be zero. Therefore, before the simplification, we test and

mark all views and skip those that cannot see the building at all.
Figure 9c shows these marked views in grey. Further, when a face
is removed, it does not change the metric values measured from
views that cannot see the face. Hence, we can separate the evalu-
ation domain into two parts based on the orientation of the face.
We only update metric values for those view locations lying on the
positive side of the face, as demonstrated in Figure 9d.

4. Results

We implement our method in C++ with CGAL [FT15] and li-
bigl [JP∗18]. To evaluate occluders and compute our metrics, we
implement a fast parallel CPU software rasterization in Unreal En-
gine 4 [Gam21]. Specifically, we rasterize the input model and oc-
cluder into the depth buffer. Then, we randomly generate a number
of quads on the depth buffer and calculate the precision and recall
rates using Equation 6. To avoid too many empty pixels in the depth
buffer, we use the minimum length of the input model’s bounding
box as the εpadding. We did all experiments on a computer with an
AMD Ryzen Threadripper 3970X 32-Core Processor @3.69 GHz
and 256 GB RAM.

4.1. Ablation study

Metric Discretization Precision: We first evaluate the impact of the
number of screen quads Nquad on the precision of approximate met-
ric computation on one building model (shown in Figure 3). In
particular, we compare metrics computed using 100, 1000, 5000,
10000, 20000, 30000, and 100000 quads per view, with a resolu-
tion of 256× 256, a common size used in mobile games. For each
quad number, we compute our metrics ten times with different sets
of randomly picked quads. Figure 10a shows the standard deviation
of the ten metrics. We use 5000 quads per view throughout the rest
of the experiments to balance computational cost and accuracy.

Sampling Distance: We then test how the view sample spacing
∆x impacts the metric approximation accuracy on all 77 models.
We experiment with 8%, 4%, 2%, 1%, and 0.5% of the largest
diagonal length of Minput’ bounding boxes. Halving the sampling
distance would increase the computational cost by a factor of 8.
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(a) (b)

Figure 10: Standard deviation for the recall and precision of quad
numbers per view (a) and sampling distances (b).

Similarly, we compute metrics ten times under each sampling dis-
tance. Figure 10b shows the standard deviations for both recall and
precision. Since the standard deviation of recall at 4% and 2% are
very close, 1.9× 10−3 and 1.8× 10−3 respectively, we use 4% as
the sampling distance throughout the rest of the experiments.

Samples Reduction: We use sample reduction and sample skip-
ping to accelerate the metric computation, which in turn speeds up
metric-guided mesh simplification. After testing all 77 models, we
find that the total number of evaluation tests is reduced to 16.3%
of the number of tests without using any evaluation acceleration
techniques. The ratio is further reduced to 13.1%, then 5.9% after
skipping occluded views and removed faces, respectively. Overall,
sample reduction achieves a speed up of 5.56× with no impact to
the evaluation accuracy. Note that sample skipping does not impact
the accuracy of the evaluation results.

4.2. Experiments

Table 1: Parameters

Parameters Value
εa π / 3
Nv 64
NP 600
εP 1×10−3

εR 1×10−3

We evaluate our method using
a dataset of 77 building models
used for games, as shown in Fig-
ure 1. In practice, we expect the
number of faces to be as small
as possible. It is worth noting
that each building has hundreds
of components and thousands of
intersecting triangle pairs, which make it impossible to be pro-
cessed with conventional mesh simplification methods. To evalu-
ate our generated occluder, we rasterize 5000 randomly generated
quads on the depth buffer to collect information for computing pre-
cision and recall. We set ls = 1% of the largest diagonal length of
Minput bounding boxes. All parameters are listed in Table 1. On av-
erage, occluders generated by our method have 260 faces with a
recall of 78.0% and a precision of 99.4%, as shown in Figure 11
and Table 2. Figure 12 also shows 10 example buildings and their
corresponding occluders generated by Simplygon [SSLL14] and
our method. Visual results of all the models can be found in the
attached video.

Voxel- Patch- Patch/Voxel Metric-Guided Ours Simplygon [SSLL14]
based based Combined Simplification Final

Face # 53 500 553 - 260 300 127⋆

Time 5 s 24 s - 135 s 154 s 3 s 267 s
⋆For single-sided rendering, the number needs to be doubled.

Table 2: Average face number and computation time on the dataset
using our method, Simplygon, and planar occluder [SSLL14].

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 11: Average recall and precision of the dataset: (a) voxel-
based result without conservative enforcement (CE); (b) voxel-
based result with conservative enforcement; (c) patch-based result;
(d) combined face candidate set from voxel-based and patch-based
results; (e) patch-based result with metric-guided occluder simplifi-
cation (MGOS); (f) combined voxel-based and patch-based results
with MGOS as our final result; (g) occluder generated by Simply-
gon; and (h) planar occluder [SSLL14].

Conservative Enforcement: Figure 11 shows that our conser-
vative enforcement can improve the precision from 94.6% (Fig-
ure 11a) to 95.7% (Figure 11b). With the improved precision, how-
ever, comes a reduction in the recall, which is understandable.
When making a given coarse mesh strictly within the input mesh,
there must be some areas that the coarse mesh cannot fill. Regard-
less, in our application, we prefer higher precision even with a loss
of recall since false culling leads to severe visual artifacts. Note
that the precision of voxel-based results is lower than that of patch-
based results since our isosurface generation is dependent on cor-
rect winding numbers.

Combining Patch/Voxel-based results: In Figure 11, the occluder
has a recall of 40.5% and 78.4% and a face number of 500 and 53,
from the patch-based (Figure 11b) and voxel-based (Figure 11c)
method, respectively. The combined candidate set (Figure 11d)
leads to a significantly higher recall of 86.0% with 7.6% improve-
ment over patch-only results (Figure 11b).

Results after metric-guided simplification: As mentioned, a low
recall is preferred over a low precision in practice, since a low pre-
cision will lead to serious visual artifacts. As shown in Figure 11f,
our metric-guided occluder simplification can improve combined
voxel- and patch-based method to a 99.4% in precision at the cost
of 8.0% decrease in recall, as compared with the results without
MGOS (Figure 11d). Moreover, the combined solution (Figure 11f)
achieves a 5.3% higher recall than patch-only results (Figure 11e).
This implies the contribution of the voxel-based solution is signif-
icant. One example of combining patch-based and voxel-based re-
sults can be found in Figure 4.

Timing: Throughout the 77 testing building model, our method
takes 155 seconds on average (Table 2), of which patch-based mesh
simplification and voxel-based mesh simplification take 5 seconds
and 24 seconds, respectively. It takes 126 seconds to further reduce
the face number from 553 to 260 by metric-guided simplification.
In contrast with hours of manual tuning by artists, our method is
automatic and orders of magnitude faster.

Comparison with Simplygon [Mic21]: Simplygon is the state-
of-the-art close-sourced meshing processing tool commonly used
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Input [SSLL14] Simplygon Ours Input [SSLL14] Simplygon Ours

(4733, - , -) (75*, 0.613, 0.601) (300, 0.669, 0.903) (118, 0.805, 0.983) (30156, - , -) (150*, 0.314, 0.994) (300, 0.520, 0.986) (301, 0.888, 0.997)

(40002, - , -) (75*, 0.355, 0.971) (300, 0.785, 0.994) (233, 0.805, 0.999) (39999, - , -) (150*, 0.139, 0.933) (300, 0.728, 0.878) (271, 0.708, 0.996)

(4999, - , -) (149*, 0.386, 1.000) (300, 0.569, 0.969) (187, 0.746, 0.995) (9999, - , -) (150*, 0.081, 0.912) (300, 0.656, 0.967) (274, 0.910, 0.999)

(29960, - , -) (75*, 0.053, 0.888) (300, 0.886, 0.851) (279, 0.912, 0.989) (33498, - , -) (150*, 0.521, 0.994) (300, 0.631, 0.946) (145, 0.798, 0.994)

(3548, - , -) (78*, 0.682, 0.972) (300, 0.819, 0.960) (216, 0.837, 0.993) (6066, - , -) (150*, 0.558, 0.978) (300, 0.844, 0.963) (266, 0.890, 0.996)

Figure 12: Our method compared with Simplygon and [SSLL14]. (•,•,•) denotes (face number, recall, and precision).

in the game industry. We use the visibility-driven mesh simplifi-
cation pipeline in Simplygon with the target triangle count set as
300, which is the occluder face count we commonly use in mobile
games. The method works well in terms of preserving the silhou-
ette with a reasonably fast processing speed (3 seconds per model).
Simplygon achieves a recall of 74.3%, which is 3.7% lower than
ours. However, it fails to maintain conservativity (with a precision
of 96.2% versus our 99.4%). More importantly, the standard devia-
tion of our precision is only 0.6% while that of Simplygon is 4.3%,
showing that our method is more stable across inputs. As men-
tioned before, a lower precision is more detrimental than a lower
recall. With a low recall, the system has to render more hidden
objects, which will hinder the rendering efficacy. However, a low
precision is fatal, since an object can be wrongly culled even when
it is visible to the player, as shown in Figure 2. It is worth noting
that, for the first model in Figure 12, even if the occluder generated
by Simplygon can capture the overall input shape, its recall is only
66.9% due to the small cracks in between the disconnected walls,
which significantly weaken its occlusion power.

Comparison with Planar Occluder [SSLL14]: [SSLL14] first
voxelizes the input mesh and generates an isosurface. Since their
method assumes the building model is viewed from far away, it
only generates one plane for each view direction. After choosing
a set of planes, [SSLL14]’s method greedily removes the triangle
with the minimal area rather than minimizing the loss of recall.
Thus, we slightly improve their method by evaluating the occlu-
sion whenever a face is discarded for better accuracy. Even with
such an optimization, the output planar occluders can only achieve
an averaged recall of 39.7% and a precision of 92.3%. One rea-
son is that our testing models contain thin walls and nested struc-
tures that cannot be voxelized correctly. Thus, the output isosur-
face can only capture a small portion of the input mesh with a large
precision error, which can also be observed in our voxel-based re-
sults (only a recall of 41.2%). In terms of the computation time,
in our implementation, [SSLL14]’s method takes 267 seconds per
model, which is slower than ours, while their occlusion metric is
only half that of ours. It is also important to note that the method
in [SSLL14] assumes double-sided rendering. For the culling meth-
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ods using single-sided rendering, the face number of occluders has
to be doubled. We set their target output face count as 150 and
double the face count at runtime, since our game engine (based on
Unreal Engine 4) uses single-sided rendering.

5. Conclusion

We propose an occluder generation method that combines patch-
based and voxel-based face generation techniques. We then select
the best face subset to form an occluder based on novel evaluation
metrics. We further introduce two evaluation metrics over the 3D
domain to measure the quality of occluders and several strategies
to accelerate the procedure of evaluation. By testing our method
on 77 buildings in Unreal Engine 4, we highlight that our method
generates occluders with a higher precision and recall than several
prior works [SSLL14, Mic21].

Limitations & Future Works: Due to the reliance of state-of-
the-art mesh processing techniques on inputs being manifold and
watertight, we turn to heuristics and practical techniques which
require parameters. Furthermore, since our approach utilizes only
patch-based and voxel-based mesh simplification tools, our method
could fail in two typical cases. First, if a mesh has complex nested
structures, its orientation is ambiguous and the voxelization result
(Figure 13b) might be incorrect. Second, if a mesh has many small,
disconnected patches, our grouping algorithm might not be able to
merge them, which lead a hollow structures with a low recall, such
as Figure 13c. We speculate that fusing results from multiple differ-
ent mesh simplification techniques can improve the quality of face
candidate sets. Finally, our metric-guided occluder simplification
has only a single operation, aka. face reduction.

(a) Input (b) Voxel-based result (c) Patch-based result

Figure 13: A failure case of our method.
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Appendix: Patch-Based Simplification

We provide more details of patch-based mesh simplification.

Planar patches grouping: We employ a patch-growing algorithm
to group faces into planar patches. The algorithm begins forming a
patch with an arbitrary seed face and grows it, one face at a time.
During this process, we keep track of the boundary B of the patch
and the set of all faces belonging to the patch. Specifically, each
growing step consists of two steps, edge selection and expansion.
Edge selection randomly picks an edge e in B that neighbors a face
f not belonging to the patch. Then, if the dihedral angle between
two faces neighboring e is smaller than 1 × 10−3, f is included
in the patch and the data structures (boundary B and the set of all
faces) are updated.

Curved patches grouping: We employ a patch-growing algo-
rithm to group curved patches similar to that of planar patches. The
algorithm takes all planar patches generated from the previous step
as the input. Then, it begins forming a curved patch with an arbi-
trary seed planar patch and grows it, one planar patch at a time. We
also keep track of the boundary B of the curved patch. If the dihe-
dral angle of any e in B is smaller than εa, the expansion attaches
the patch containing e’s face into the curved patch and add all non-
shared edges to B. Note that only the planar patch that is expanded
during this process will be labeled as the curved patch.

QEM-based simplification: In addition to the conventional QEM
guided edge collapse [GH97], we add a small weight, i.e. 10−3,
for each edge to fight against the singular degenerate issue when
solving for the metric on a coplanar neighborhood of an edge. For

boundary preservation, we employ a large weight, i.e. 103, so that
those edges on the boundary are collapsed later. We also avoid edge
collapse operations, if they introduce topological changes of the
mesh, e.g. non-manifoldness and genus changes.
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