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Figure 1: Portrait videos edited by changing various attributes. Using our approach, we can edit portrait videos while preserving the
original identity of the face. An additional optimization ensures the result follows closely the original motion of the lips while preserving the
edited expression. All videos are in 4K resolution except for the video on the bottom right.

Abstract

High-quality portrait image editing has been made easier by recent advances in GANs (e.g., StyleGAN) and GAN inversion
methods that project images onto a pre-trained GAN’s latent space. However, extending the existing image editing methods, it
is hard to edit videos to produce temporally coherent and natural-looking videos. We find challenges in reproducing diverse
video frames and preserving the natural motion after editing. In this work, we propose solutions for these challenges. First,
we propose a video adaptation method that enables the generator to reconstruct the original input identity, unusual poses, and
expressions in the video. Second, we propose an expression dynamics optimization that tweaks the latent codes to maintain
the meaningful motion in the original video. Based on these methods, we build a StyleGAN-based high-quality portrait video
editing system that can edit videos in the wild in a temporally coherent way at up to 4K resolution.
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1. Introduction

Portrait video editing is a task for manipulating a person’s face at-
tribute in a video while preserving other details in a temporally co-
herent manner. In the film industry, it is often necessary to change
an actor’s facial attributes to digitally age or de-age, to add or re-
move makeup, and to exaggerate or suppress facial expressions.
However, completing such tasks in the traditional graphics pipeline
requires a lot of effort and resources, since artists have to create
a 3D model of the actor, manually edit the desired attributes, and
compose the rendering back to the original frame seamlessly.

In recent years, high-quality portrait image editing has been
made easier by advances in Generative Adversarial Networks
(GAN). Most notably StyleGAN [KLA19, KLA*20] can gener-
ate high-resolution photo-realistic images. Additionally, GAN in-
version, a technique to project images onto the latent space of a
pre-trained unconditional GAN model, has been invented making
unconditional GAN useful for image editing [AQW19, AQW20,
RAP*21, TAN*21]. After projecting the input image to the latent
space of a pre-trained StyleGAN, one can manipulate its high-level
facial attributes by navigating the StyleGAN’s latent space.

Nonetheless, it is still hard to use the current GAN inversion and
editing method to produce natural-looking edited portrait video re-
sults. Two important issues need to be addressed in high-quality
video editing: maintaining (1) temporal consistency and (2) natural
expression dynamics after editing (Fig. 2). Undoubtedly, maintain-
ing temporal consistency is one of the most important competen-
cies of video editing methods. Otherwise, various temporal arti-
facts can appear due to various factors. In portrait video editing, we
find identity and expression preservation after editing and handling
naturally-occurring motion blur in the video essential to avoid tem-
poral artifacts. StyleGAN pre-trained on images is not expressive
enough to account for every possible identity, expression and head
pose in video frames. This is because video frames are more di-
verse capturing every moment of subjects which are different from
images that are usually taken on well-posed subjects. Yet, human
eyes are sensitive to such details on faces and can easily pick up
even the slightest change in the identity and expression after the
editing. Handling motion blur in the video is another challenge.
Motion blur is caused by moving cameras and subjects, and a mod-
erate amount of motion blur is natural and makes videos realistic.
Therefore, if motion blur is not properly handled and preserved, the
output video will look unnatural.

As our first contribution, we propose a solution for the afore-
mentioned issues that can hurt temporal consistency. To bridge the
domain gap between videos and the learnt image manifold of Style-
GAN, we adapt the pre-trained StyleGAN weights to the charac-
teristics of the input target video. First, every video frame is pro-
jected onto the latent space of StyleGAN. We find processing each
frame independently using an image inversion encoder [TAN*21]
leads to a better projection of the latent space for temporal consis-
tency compare to the optimization-based method. Then, inspired by
PTI [RMBCO21], we further fine-tune the StyleGAN generator us-
ing self-supervised reconstruction losses to adapt the generator to
the input video. After this video adaptation, the generator can ren-
der temporally-coherent video and reproduce the identity, poses,
expressions, and even motion blur in the input video as shown in

Fig. 2 (b). While adapting the generator is not new, we extend the
idea to address video-specific problems and we make an important
design decision that allows the method to produce temporally con-
sistent video results.

In addition to temporally satisfying video reconstruction, ma-
nipulating facial expressions in portrait videos requires extra
care. In previous latent-based editing methods [SGTZ20, HHLP20,
YNGH21], images are usually manipulated by walking the latent
code in a certain direction. However, naively applying the same
amount of editing for every frame leads to unnatural results. The
facial expression can be unnaturally exaggerated, and it can lose
original natural dynamics. For example, the lip-sync in a talking-
head video can be sabotaged resulting in a semantic mismatch be-
tween the visual and the audio.

As our second contribution, we propose an expression dynamics
optimization method that modifies the globally manipulated latent
codes to maintain the meaningful facial motion after editing. Our
optimization is designed based on the Facial Action Coding Sys-
tem (FACS) [EF78] which correlates facial emotion with the shape
of the mouth and eyes. To be specific, we constrain the movement
of lips to follow the original video and the appearance of the eyes
to follow the initially edited video. This allows the final generated
video to reflect the desired expression while maintaining the orig-
inal expression dynamics. This optimization is crucial for editing
a talking-head video, because it can effectively reverse undesirable
changes in the facial expression (e.g. mouth wide open) as shown
in Fig. 2 (d).

With our video adaptation and expression dynamics optimiza-
tion, we develop a StyleGAN-based high-quality portrait video
editing system. Our system can edit in-the-wild portrait videos
and a diverse set of identities at up to 4K resolution as shown in
Fig. 1. We also provide extensive analysis for each system compo-
nent to validate their effectiveness. Video results can be found at
our project webpage style-portrait-video.github.io.

2. Related Work

GAN Inversion. GAN inversion methods are typically either
optimization-based [AQW19,KLA*20,AQW20,GSZ20,XDX*21]
or encoder-based [RAP*21, TAN*21, APCO21]. Optimization-
based methods can reconstruct the input image accurately but re-
quire a few minutes per image to complete. On the other hand,
feed-forward image encoders are much faster, but they come at
a cost of reconstruction inaccuracy. Instead of inverting images
into the native latent space W € R312 or the extended space
W e RI¥*312 [AQW20], other studies have investigated differ-
ent latent spaces for better reconstruction accuracy and editabil-
ity [WLS21,KKC21,ZLW*21,ZAFW21]. We employ a pre-trained
image encoder, e4e [TAN*21], which projects images into W'
space. Then, we fine-tune the generator to represent the input por-
trait video better given the ede-projected latent codes. This allows
the adapted StyleGAN to reconstruct all the video frames accu-
rately without time-consuming per-image optimization.

Fine-tuning Generators. Training high-quality GANs requires a
considerable amount of computation and data [KLA19, BDS19].
Thus, it is preferred to fine-tune a pre-trained model to adapt
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Figure 2: Challenges in videos. Unlike images, video has much more diversity including unusual poses, expressions, and motion blur. In
addition, natural expression dynamics need to be considered when editing the expression.

to a target data distribution that is similar to the original do-
main. This fine-tuning often accompanies various issues such
as mode collapse. Some methods place constraints on the
trainable weights [MCS20, RCKH20, PA20] or use regulariza-
tion terms [LZLS20, OLL*21] to handle such issues. Recently,
StyleGAN-NADA proposes a method to shift the generator’s do-
main with a powerful text embedding model [RKH*21] in a zero-
shot manner [GPM*21]. Different from existing domain adaptation
methods which focus on translating a source domain (e.g., photo-
realistic faces) to a target domain (e.g., painterly portraits) for the
generation of diverse outputs, we focus on fine-tuning the source
domain model to better reproduce the identity of human faces used
for the training of the target domain. Pan er al. proposed a method
to fine-tune both generator and latent codes for downstream im-
age restoration and manipulation tasks [PZD*21]. The method pro-
posed in PTI [RMBCO21] fine-tunes StyleGAN with test-time im-
ages resulting in a model that better represents the target identities.
During fine-tuning, they minimize changes to the latent space in
order to maintain its editability. We adopt a similar approach so
that the fine-tuned model can better reconstruct the input video at
test-time with temporal coherence.

Face Attribute Editing. Several methods have been proposed to
discover semantic editing directions in the latent space of Style-
GAN. Some methods annotate images or latent codes with seman-
tic labels for supervision [SGTZ20, AZMW21, YNGH21] while
other methods use an unsupervised approach to find semantic di-
rections [HHLP20, WLS21]. StyleCLIP [PWS*21] uses a text em-
bedding model [RKH*21] for a text-based editing. For intuitive
control, Tewari et al. use a 3D parametric face model to learn se-
mantic directions in the latent space [TEB*20b, TEB*20a]. More
recently, a dialog-driven approach has been introduced to manipu-
late a given image [JHP*21]. These editing methods are designed
specifically for images and do not produce temporally coherent re-
sults when applied to videos. Our approach uses these editing meth-
ods to produce intermediate latent codes followed by a refinement
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of the edited codes in a way that preserves the expression dynamics
of the original video.

High-Resolution Video Generation. While StyleGAN has shown
incredible results for image generation, high-quality video gener-
ation remains a challenge [CDS19]. Instead of training a model
specifically for videos, Tian ef al. and Fox et al. have investigated
generating videos using a pre-trained image generator [TRC*21,
FTET21]. These methods take advantage of the fact that walk-
ing in a latent space produces temporally coherent image morph-
ing effects [JCI20, PSN20], which meets the criteria of a video.
StyleGAN-based architecture has also been adopted for temporally
coherent face-swapping in videos [NHSW20]. We also use a pre-
trained StyleGAN to perform portrait video editing while focus-
ing on adapting the pre-trained StyleGAN to test-time videos in
order to produce temporally coherent natural expressions. Concur-
rent works on video editing have been proposed similar to our idea
for video GAN inversion [TMG*22, APW*22]. Unlike the meth-
ods, we additionally propose a method to maintain the meaningful
motion in the original video after manipulating the expressions.

3. Method

Our video editing pipeline consists of six steps. Given an input full-
frame video, (1) we align and crop the video using the alignment
method adopted by the FFHQ dataset. With the cropped frames,
(2) we project them into the latent space of StyleGAN using a
pre-trained network [TAN*21]. Because the image-based GAN in-
version method cannot exactly reproduce the identity of a human
subject in the video, (3) we fine-tune the StyleGAN using the la-
tent codes and their corresponding original frames. (4) We edit the
video in the latent space using a known latent direction. (5) Then,
the edited latent codes are optimized to follow the natural expres-
sion dynamics of the original video while preserving the semantic
changes. Finally, (6) the edited and rendered frames are composed
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Figure 3: Video editing pipeline. Given a full-frame video as input, the video is aligned and cropped following the method of FFHQ
dataset [KLA19]. Then, the cropped video is projected into the latent space of StyleGAN using a pre-trained image encoder. The generator
is fine-tuned using our video adaptation method so that the generator fits to the target input video. To edit the original video, we linearly
combine the latent codes with a known latent direction. We further optimize the edited latent codes for the natural expression dynamics of the
original video. The optimized codes and the adapted StyleGAN are used to render a desired edited portrait video, and the result is composed

back to the original full-frame video.

back to the original full-frame video. The overall pipeline is shown
in Fig. 3.

3.1. Preprocessing

To perform attribute editing in StyleGAN’s latent space, we first
crop and align the portrait video so that it can be aligned the way
the FFHQ dataset [KLLA19] is aligned. This processing is essential
because StyleGAN is trained on an aligned face dataset and cannot
generate portrait images that deviate from the aligned space. We
use a face landmark detection method [BT17] to extract the land-
mark for every frame. Because the face landmark detection method
does not consider temporal information, we use the iterative Lucas-
Kanade method with pyramids to compute an optical flow between
two consecutive frames. The predicted landmark positions from
the optical flow and current positions from the landmark detection
method are blended to incorporate motion information. Finally, 1D
Gaussian filtering is applied to the blended landmark position along
the whole video sequence. We then use the processed landmarks to
align the frames such that the eyes are centered, and the frames are
resized to 1024 x 1024. The transformation parameters are saved to
be later used when composing the edited video to the original input
video (Sec. 3.4).

3.2. Video Inversion via Video Adaptation

After preprocessing all the frames, we project all the frames of
the video into W* space. Given a portrait video, V = {I/|f =
1,...,N} where N denotes a total number of frames, we invert I

into a latent code w/ in W+ space using a pre-trained encoder
ed4e [TAN*21]. After projection, we can generate a reconstructed
video V = {I/|f =1,...,N}, where I/ = G(w/0) is a generated
image from StyleGAN generator G and its network parameters 6.

While V and V are similar, they can be different in terms of ex-
pressions and the identity of a human subject. In order to bridge the
gap between V and V, we fine-tune G such that the reconstructed
video frames V are almost identical to V. For this video adaptation
task, we follow the approach of domain adaptation methods [RM-
BCO21, YL20]. Specifically, given V and W = {w/|f = 1,...,N}
as anchor points, we update G’s network parameter 0 using the fol-
lowing loss terms:

MepipsCrpips( .G :0%)) + Ma Lo (1 ,G(w'16%)), (1)

where L;p;ps measures the perceptual distance between two im-
ages [ZIE* 18], L, computes the L? distance between two images,
and 0 is the tuned parameters of G. After the generator is adapted
to the target video, we can still edit the original video using off-the-
shelf StyleGAN editing operations [SGTZ20, HHLP20, PWS*21,
YNGH21] as our video adaptation does not change the behavior of
the latent space. We provide extensive analysis of the video adap-
tation process and the editability of the adapted StyleGAN after
adaptation in Sec. 4.1.

Implementation Details. We fine-tune G using the Adam opti-
mizer [KB15] with a learning rate of le™3. Both Az pps and Azn
are set to 1. The generator is tuned for about two minutes perform-
ing 1,000 iterations on a single NVIDIA Tesla V100 GPU.

3.3. Expression Dynamics Optimization

Once the input video is projected onto the latent space and the gen-
erator is adapated to the video, we are ready for editing. Given a
known latent direction Awgy;r, for a certain face attribute, we can
edit a video frame I by

Legit = G(Weqir30"), 2

where w,g;; = w + SAwarr, and s denotes a scalar value. For sim-
plicity, we omit the frame index unless noted otherwise.
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In the case of video, we can apply this operation for every sin-
gle frame equally to get the edited portrait video V,g;. This gives
temporally smooth edited results when editing texture styles such
as putting makeups, aging, and deaging. Upon the change of the
expression state of the original video, however, the expression dy-
namics of the V,;, often becomes unnatural. This happens because
the predefined editing does not consider the expression dynamics.
As mentioned in Sec. 1, naively using the pre-defined editing di-
rection changes the lip position resulting in possibly very different
expression dynamics from that observed in V.

To produce a plausible video that closely follows the original
expression dynamics, we propose to optimize the individual latent
codes. According to the FACS, which assumes many of the facial
expressions are related to the movements of lips and eyes, we de-
sign two optimization objectives tailored for each area. The first
objective constrains the inner points of the lips to be similar to the
original video using the following equation:

Liip = Y 10i(1) = 0i(G(Weais + Awopr:67) 2, (3)
l
where ¢ is a pre-trained landmark detection network [WSC*21]
that outputs heatmaps of the landmark. i is the channel index of the
inner lip landmarks, and Aw,; is the latent direction to be opti-
mized. This term helps to preserve the original mouth motion of a
talking-head video after editing.

Another objective is designed for eyes due to their importance in
conveying meanings and emotions. We design an objective to keep
the eye shape in the edited face as follows:

Leye = L1p1ps(Teait © Meye, GWegis + Awopr;0°) © Meye),  (4)

where Meye denotes a predefined eye mask, and © indicates
element-wise multiplication. The objective measures the emotions
conveyed by the eyes as well as the shape of the eyes.

We also use a regularization term to stabilize the optimization.
To ensure that the optimized latent codes does not deviate much
from the original edited latent codes, we enforce Aw,p; to be as
small as possible:

Lreg = [|Awopt |2 (%)
Additionally, to preserve temporal smoothness of the latent codes
we use the following objective:
= f+1
Ltemp = Z ”AW())(pt _Awopr H2a (6)
f

where f indicates the frame index. This enforces Awop; to not
change abruptly from frame to frame.

Our final optimization is expressed as

arg min 7\«[,‘,,[,[,‘], + Xeyel:eye + }\«reg[:reg + A«tempﬁtemp- (7)

AW(),:/

Implementation Details. We use the Adam optimizer [KB15] with
alearning rate of 3¢~ for 200 iterations for a video with 48 frames.
Mip» Aeye> Areg, Aemp are set to 5000, 0.5, 8000, 5000, respectively.
Optimization requires about 10 minutes on 8 NVIDIA Tesla V100
GPUs.
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3.4. Postprocessing

After all the editing is completed, we apply the same transformation
parameters used in the preprocessing step (Sec. 3.1) to composite
the edited portrait video back to the original full-frame video. When
composing, we only use the face region which is extracted from a
face segmentation network [YWP™ 18] trained on the CelebAMask-
HQ dataset [LLWL20].

4. Experiment

In the following sections, we show that our video adaptation
method can successfully reconstruct original videos and support
semantic edits using different types of editing methods [SGTZ20,
YNGH21, HHLP20]. In addition, we show that by using expres-
sion dynamic optimization we can preserve the original expression
dynamics after editing. We further show that our method can be
used in different application scenarios. Refer to the supplementary
materials for video results.

Datasets. To illustrate our approach is general, we per-
form experiments on videos from various sources: FaceForen-
sics++ [RCV*19], RAVDESS [LR18], Pexels [pex], and Youtube.
Videos from Pexels are cinematic and high-resolution. The sub-
jects in the videos are moving their heads slowly with minimal
changes in expression. On the other hand, subjects in the videos
from RAVDESS, FaceForensics++, and Youtube are talking con-
stantly and the expression dynamics become important when edit-
ing. We also shot some videos to validate that our method can han-
dle videos with motion blur. Videos with motion blur are recorded
by adjusting the shutter speed of a camera.

4.1. Video Adaptation and Editing Quality

Full Frame Edited Results. Our method can edit high-resolution
portrait video from Pexels [pex] as shown in Fig. 1. We have
cropped 4K video results to visualize the editing results closely.
While StyleGAN can only generate 1024 x 1024 resolution faces,
the edited face can be upsampled as needed and composed back
to the original video without much perceived loss of details.
Our method is compatible with various editing methods includ-
ing InterFaceGAN [SGTZ20], Latent Transformer [YNGH21], and
GANSpace [HHLP20]. Our method shows temporally coherent re-
sults through video adaptation and expression dynamics optimiza-
tion.

Comparison to Image-based GAN Inversion. We compare our
video adaptation method to image-based state-of-the-arts GAN in-
version method [RAP*21, TAN*21]. As shown in Fig. 4, we tested
out with diverse ethnicity, and our method achieves superior re-
construction quality compared to the other competing methods. In
addition, our adapted StyleGAN can perform high-level semantic
editing while preserving the original identity. Pre-trained image en-
coders [RAP*21, TAN*21] can project video in a frame-by-frame
manner, but using a pre-trained StyleGAN, it cannot accurately re-
construct the input identity and small expression details on lips and
eyes. We additionally experimented with our video adaptation on
videos with motion blur. As shown in Fig. 5, our method success-
fully reconstructs the input frames with motion blur. On the other
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Figure 4: Reconstruction of input videos. For pSp [RAP*21] and e4e [TAN*21], we used the original pre-trained StyleGAN weight trained
on FFHQ. Our video adaptation uses StyleGAN which is fine-tuned to the input video. The last row shows the edited results from our method.

StyleGANy, denotes the video adapted StyleGAN.

hand, using e4e and the original weight of StyleGAN, it is only able
to generate faces that are much sharper than the original.

We quantitatively evaluate our results using several metrics:
MSE, PSNR, MS-SSIM [WSB03], LPIPS [ZIE*18], and ID sim-
ilarity using a pre-traind face recognition network [DGXZ19].
We measure these metrics using the first 50 videos from Face-
Forensics++ [RCV*19] yielding 20,991 frames. As shown in
Tab. 1, our method outperforms the other image encoder methods.
Optimization-based methods [AQW 19, AQW20] take several min-
utes per frame, making it difficult to compare quantitatively against
our method. We will discuss and show some visual results for the
optimization method in our study on design choices.

Design Choices for Video Adaptation We validate our design
choices for the video adaptation pipeline and discuss the differ-
ences between our approach and PTI [RMBCO21]. Our method
shares the test-time generator fine-tuning idea but adapts it to the
video domain. We argue that PTI is not suitable for video appli-
cations in two aspects. First, it is intractably inefficient due to the
time-consuming latent code optimization step. Given an image, a

Table 1: Quantitative comparison on video reconstruction. We
compare our video adaptation method to GAN inversion methods,
ede [TAN*21] and pSp [RAP*21]. | and 1 denote the lower the
better and the higher the better, respectively. The best results are
marked in bold.

Method LPIPS| MSE | (xe-4) MS-SSIMT PSNRT ID Similarity 1
pSp [RAP*21]  0.5025 9.474 0.735 20.564 0.756
ede [TAN*21]  0.3548 10.90 0.730 19.973 0.659
Ours 0.2790 7.810 0.777 21.71 0.832

latent code in WV is obtained from optimization-based GAN inver-
sion [KLA*20] which takes up to several minutes. The processing
time linearly increases with the number of frames in a video. Sec-
ond, PTT uses only a few iterations to optimize for the latent code,
which leads to a sub-optimal latent code when rendered with the
original pre-trained StyleGAN. Also, optimizing the latent codes
separately without enforcing any temporal constraints might lead
to temporally incoherent reconstruction. We overcome both issues
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Figure 5: Motion blurred frames. Unlike the original pre-trained
StyleGAN, after video adaptation, it can reconstruct the blurred
[frame while maintaining editability.

by using a pre-trained image encoder and video adaptation method.
These changes make our method not only orders of magnitude
faster than any optimization-based methods but also more stable
during our video adaptation.

To validate our observation, we design two variants of our
method to use optimized VV latent codes. Our first variant,
Opt.+StyleGANvj,, strictly follows how PTI encodes latent codes
(e.g., running optimization per video frame). However, this variant
takes hours to finish for a video with 100 frames. Our second vari-
ant, R+Opt.+StyleGANy,, uses a more efficient way to find the
latent codes. We recurrently use the previous frame’s latent code to
initialize the current frame’s latent code for optimization and expect
the optimized sequence of latent codes to follow a smoother tem-
poral trajectory and faster convergence. We visualize the generated
results for both variants and our method in Fig 6. When looking at
individual frames, both variants produce comparable results to our
method. However, when looking at the video as a whole, tempo-
ral inconsistency problems caused by the projected latent codes are
quite visible.

To understand why this happens, we project and visualize the la-
tent codes of R+Opt. and ede [TAN*21]. We use Principal Compo-
nent Analysis (PCA) to reduce the dimension and project the latent
codes into 2-D by using the first two components of the PCA. Ad-
ditionally, we group the latent codes using K-means clustering with
k =7 to see how the latent codes are clustered. As shown in Fig. 7,
in case of R+Opt., we can observe that the frames with similar ex-
pressions are not labeled in the same cluster. For example, frame
1 and frame 133 are very similar in terms of both facial expres-
sion and head pose, but labeled as a different cluster. For ede, latent
codes for frame 1 and frame 133 are located in a similar position
in the latent space and labeled in the same cluster. Unlike R+Opt.,
ede is able to project the similar pose and expression to be close to
the latent space of pre-trained StyleGAN.
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Figure 6: Temporal profile of reconstructed video. Given an input
video, we visualize the temporal profile along the red scan line. The
temporal profile is horizontally stacked.

Projected Latent Codes (R+Opt.) Projected Latent Codes (e4e)

40 -20 0 ) ) & B -4 -2 [ 2 4 6

time o—{NNEEN T EE—— time o— NN [NCININE T

Frame 1 Frame 2 Frame 3 Frame 131 Frame 132 Frame 133

Figure 7: Latent codes from R+Opt. and ede [TAN*21]. We
project the latent codes into two-dimensional space obtained by
applying PCA on the latent codes and clustered using K-means
clustering. Each color denotes a cluster. The time bar shows the
cluster label for each frame.

4.2. Expression Dynamics Optimization Quality

We show that expression dynamics optimization enables the gener-
ated frames to follow the original frames’ lip motion while main-
taining the originally edited semantics. As shown in Fig 8, the lip
openness is similar to the original. Also, even when the lip mo-
tion is similar to the original, the corners of the lips still follow
the edited results. For happiness, we observe that the corners of
the lips point upward in the optimized frames but do not do so in
the original neutral frames. Cheekbones are also elevated with the
mouth. For surprise and anger, lips are gathered to show their ex-
pressions. Eyes are conveying the correct intended emotions. Our
method also works well in the case of motion blur is present as
shown in the sixth column of Fig 8. Additionally, we visualize the
temporal profiles as shown in the last column of Fig. 8. Without
the optimization, we can see that the mouth is not closing when the
original frame is (green box). After optimization, we see that the
lip motions are much more similar to the original. In addition, we
observe that the corner of the mouth is slightly elevated from the
original to follow the intended editing (blue box).
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Input Frame

w/o Exp
Dyn. Optim.

w/ Exp
Dyn. Optim.
(ours)

+ Surprise + Anger

+ Happiness + Happiness Temporal profile

Figure 8: Qualitative results on expression editing. Before optimization, the mouth opens for all expressions. After optimization, the mouth
follows the original expression while maintaining the edited expression. See the eyes and corners of lips. Additionally, we visualize temporal
profiles along the scan lines. The temporal profiles are horizontally stacked. See the dotted white box for the differences.

w/o Exp.
Dyn. Optim

Input Frame

w/ Exp.
Dyn. Optim

Reconstruction + Anger + Anger
(e4e + StyleGANy,) - Arched-eyebrow

+ Happiness -+ Happiness
+ Eye-openess

Figure 9: Sequential editing. Expression dynamics optimization
can be performed after sequential editing for both eye and eyebrow
shapes.

As done in GAN-based image editing methods [SGTZ20,
HHLP20, YNGH21], multiple attributes can be manipulated se-
quentially in the latent space of StyleGAN using our method. When
doing sequential editing, we simply change / in Eq. 3 to 177" which
is the edited frame before expression editing. After all the desired
editing including the expression editing is done, expression dynam-
ics optimization modifies the latent code to follow the original dy-
namics of the video while preserving the previously applied editing.
As presented in Fig 9, edited eye and eyebrow shapes are preserved
after the optimization. This shows that the method is capable of
changing any facial features that are related to the eyes and mouth
while preserving the expression dynamics of the original video.

4.3. Application

Continual Learning. In VFX industry, artists often need to edit
the same person in different videos. Since our video adaptation
method adapts StyleGAN to a specific person, after the adaption
using the first video, we can use it to edit another video of the same

Video 1
Video 2

Video 3

Input Frame StyleGAN 0 iter 10 iter

Reconstruction
(StyleGAN,,)

~
Fine-tune StyleGAN,,

Figure 10: Continual learning. After adapting StyleGAN to video
1, we continuously adapt to different videos with the same identity.
By continually learning the same identity, it can adapt within a few
iterations.

Interpolation

Figure 11: Frame interpolation. Red boxes indicate the original
frames. Frames in-between them are the interpolated results.

subject directly to get reasonable results. As shown in Fig. 10, the
previously adapted StyleGAN reconstructs the new target video of
the same person better than the pre-trained StyleGAN before adap-
tation. Given a new video of the same person, we can adapt our
model quickly (under 3 seconds) for 10 iterations, and then the
newly adapted model will reconstruct the input identity even better.
However, we observe that the final adapted StyleGAN is biased to-
ward the first video, e.g., the eye gaze direction in the reconstructed
video 3 look similar to that of video 1.

© 2022 The Author(s)
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Temporal Profile

Input Frame Input Frame ede ede

+StyleGAN2y,  +StyleGAN3y,

(a) Texture Sticking

Re-generated frames after video adaptation

Input Frame ede ede
+StyleGAN2y, +StyleGAN3y,

(b) Face Misalignment

Figure 12: Limitations and capacity of StyleGAN3. Using StyleGAN?2 as a generator, (a) the texture sticking problem cannot be solved as
shown in the temporal profile, and (b) also our method cannot invert misaligned faces well. However, when using StyleGAN3 as a generator,

we can alleviate the above-mentioned problems.

Frame Interpolation. We use the adapted StyleGAN to perform
frame interpolation as shown in Fig. 11. By linearly interpolating
the two latent codes, we can generate infinite in-between frames.
The interpolated results look natural and smoothly transition from
one expression to another. Therefore, we are confident that our
adapted StyleGAN is not locally overfitted to every frame.

5. Discussion

Limitation and Future Work. While our method is able to gen-
erate high-resolution, temporally coherent, and natural-looking
edited portrait video, there are several limitations to be addressed
in the future. Using StyleGAN2, we observe severe texture sticking
artifacts [KAL*21] where high-frequency texture details are glued
to image coordinates. In Fig. 12 (a), this artifact is noticeable as
there are straight horizontal lines around the eyes in the temporal
profile. This problem is known to be originated from the aliasing
artifact caused by convolutions [KAL*21].

Another limitation is in handling misaligned faces as shown
in Fig. 12 (b), which leads to small drifting or floating of the
face when compositing. This artifact is caused by the combina-
tion of errors in our pre-processing and the pre-trained StyleGAN2.
When pre-processing the original video, a fast head or camera mo-
tion results in inaccuracy in the alignment of the subject’s face in
some frames. This misalignment cannot be recovered from the pre-
trained StyleGAN?2 after the video adaptation, because the Style-
GAN2 was trained only with aligned faces and thus is strongly bi-
ased towards well-aligned faces.

As a preliminary attempt to remedy the above issues, we have
tried to leverage the pre-trained StyleGAN3 [KAL*21] rotation
model on FFHQU as the generator. We train an ede image en-
coder [TAN*21] to project unaligned faces onto StyleGAN3’s la-
tent space and test our video adaption method. Results in Fig. 12
show the potential of StyleGAN3 in solving both texture sticking
and face misalignment issues. Our method is not restricted to a spe-
cific GAN backbone, and thus the performance can be improved by
using a better GAN model if the model is invertible.

© 2022 The Author(s)
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6. Conclusion

We present a method for portrait video editing using a pre-trained
StyleGAN. Our method is able to accurately invert the faces in
video frames with challenging poses, expressions, and motion blur.
We further optimize for natural expression dynamics in case of
editing the expression state of a talking-head video. Our method
works well on in-the-wild videos with subjects from different eth-
nic groups, and the edited results can be composited back to the
original 4k resolution videos without much loss in quality. Despite
the potential positive impacts on the creative industry, our method
is susceptible to misuse. While detecting edited faces is out of the
scope of this paper, many works in forensics research focus on
detecting generated and manipulated faces [WWO*19, RCV*19,
YL20]. We believe the methods we develop can further push the
performance of the media forensics technologies.
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