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Figure 1: Our method takes incomplete scene geometry (RGBD or TSDF) as input and outputs complete geometric and semantic results at multiple resolutions
using only a single network. Our method doesn’t need to be retrained for different resolutions. We are able to maintain consistent results over multiple
resolutions.

Abstract
Semantic scene completion (SSC) aims to recover the complete geometric structure as well as the semantic segmentation results 
from partial observations. Previous works could only perform this task at a fixed resolution. To handle this problem, we propose 
a new method that can generate results at different resolutions without redesigning and retraining. The basic idea is to decouple 
the direct connection between resolution and network structure. To achieve this, we convert feature volume generated by SSC 
encoders into a resolution adaptive feature and decode this feature via point. We also design a resolution-adapted point sam-
pling strategy for testing and a category-based point sampling strategy for training to further handle this problem. The encoder 
of our method can be replaced by existing SSC encoders. We can achieve better results at other resolutions while maintaining 
the same accuracy as the original resolution results. Code and data are available at https://github.com/lstcutong/ReS-SSC. 

CCS Concepts
• Computing methodologies → Volumetric models;

1. Introduction

Given partial observation of scenes, 3D Semantic Scene Comple-
tion (SSC) aims to simultaneously infer the complete scene struc-
ture and perform semantic segmentation of the scene [SYZ∗17].
This ability to understand and infer complete scene structure is very

† *Corresponding author: szx@nju.edu.cn

helpful for many realistic applications, including robotics, virtual
reality and interior design. However, the difference in output be-
tween different application devices lies in the different resolutions
required, (i.e. resolution-switchable). Therefore, how to dynami-
cally and seamlessly switch between various resolutions remains a
challenging problem in this area.

Previous work [SYZ∗17, GT18, ZWZ∗18, GCSG19] voxelized
3D scenes to perform SSC, typically using a series of 3D convo-
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lutions to process voxelized scenes. However, these voxel-based
methods still suffer from the low resolution of results due to the
curse of dimensionality [WY10]. Therefore, it is difficult for their
methods to generate high-resolution results. In recent years, some
methods have mitigated the curse of dimensionality by reducing the
network parameters. It allows their methods to produce higher res-
olution as well as low resolution of results. For example, DDRNet
[LLG∗19] proposes a Dimensional Decomposition Residual(DDR)
network that reduces the number of parameters required for 3D
feature processing. CCPNet [ZLL∗19] uses group convolution that
further reduces the parameters. However, their methods can only
generate fixed resolution rather than dynamically switchable.

We believe that the key to the inability of the above methods
to do that lies in the high coupling between resolution and net-
work structure. For example, voxel-based approaches [LLG∗19,
LHW∗20, LLY∗20] typically employ a series of stacked 3D con-
volutional networks to map the input to feature volume, which is
then decoded by 3D channel convolution into voxel-by-voxel cat-
egory labels. In this process, the resolution of the final result is
determined by the feature volume, which is determined when the
network design is completed. Therefore, to produce a different res-
olution of result, the network will inevitably have to be redesigned
and retrained.

In fact, the feature of each voxel can be seen as global features
of a 3D space occupying a certain volume, and the decoding pro-
cess can be seen as global decoding of that space. This leads to a
discretization of the whole process, resulting in a coupling between
resolution and network structure. Inspired by neural implicit repre-
sentation [PNM∗20], we propose to decouple the direct connection
between resolution and network structure. This allows us to gener-
ate results at multiple resolutions without retraining our network.
Experiments show that our method can achieve similar accuracy to
existing SSC methods at 60*36*60 resolution and surpass them at
other resolutions. Ablation studies show the effectiveness of decou-
pling. Our contributions are as follows:

• We propose a resolution-switchable 3D semantic scene comple-
tion method. It decouples the direct connection between resolu-
tion and network structure with three key designs: i) resolution
adaptive feature generation. ii) Resolution-adapted point sam-
pling strategy for testing and iii) category-based training sample
generation for training.

• We introduce a distance-based interpolation method that con-
verts the feature volume generated by SSC encoders into a con-
tinuous feature representation (the RAF), it allows us to calculate
the feature of any point in the 3D space. During the test, we adopt
a dynamic point sampling strategy according to the final resolu-
tion of results, it allows us to achieve good results at different
resolutions. Finally, during training, we sample training points
category by category, it provides a better supervision signal for
our network.

• The encoder of our method can be replaced with existing SSC
encoders. In the future, if any better network is proposed, the
encoder can be directly used as ours.

2. Related Work

2.1. Semantic Scene Completion

Scene semantic completion aims to simultaneously recover
the complete geometric structure of scene observations as
well as the semantic segmentation results. SSCNet [SYZ∗17]
first proposed this task by coupling geometric completion
and semantic segmentation in an end-to-end network in or-
der to make them mutually reinforcing and many subsequent
works [GT18, ZWZ∗18, LHZ∗18, GCSG19, DdCKH19, CGG19,
WTNT19,CHY19,LLY∗20,LLY∗19,CLQ∗20,LHW∗20] have fol-
lowed this paradigm. The expensive cost of 3D CNN, however, lim-
its the resolution of the final reconstruction results.

To generate higher resolutions, the high cost of 3D convolution
needs to be alleviated first. Existing methods can be divided into
two categories to alleviate the problem. Some of these methods try
to adapt to higher resolutions by reducing the number of network
parameters, starting with the network structure. For example, Effi-
cientNet [ZZY∗18] introduces sparse convolution, which greatly
reduces the computational cost by computing only the non-zero
values of voxels. DDRNet [LLG∗19] introduced a dimensional de-
composition residual network for the 3D SSC task. They decom-
pose a k×k×k convolution into 1×1×k,1×k×1,k×1×1 con-
volutions, reducing the number of parameters needed for 3D fea-
ture processing and making the network more lightweight. CCP-
Net [ZLL∗19] uses group convolutional networks and a reduced
number of feature channels to reduce the number of network pa-
rameters further. Although these three methods have the ability to
generate higher resolutions, their methods are designed for a fixed
resolution. Without redesigning and retraining, their methods aren’t
able to generate results at another resolution. It is worth noting that
CCPNet [ZLL∗19] is resolution-independent because they use a
U-shape network structure and their output can maintain the res-
olution of the original input, but unlike our method, their method
requires retraining for different resolutions, but ours does not.

Some other methods attempt to use a different 3D representa-
tion like point cloud [ZLHQ21, TCWZ21] to alleviate the prob-
lem. [ZLHQ21] proposes a point-based SSC method, which calcu-
lates the position of a new point by predicting the position offset
of an existing point and concatenates it with the original point to
obtain the complete result. [TCWZ21] also proposes a point-based
method, in which they first turn TSDF into a series of point sets,
then classify the point sets by Pointnet++ [QYSG17], and finally
turn the point results into voxel results. Our method can also be
seen as a point-based method, the difference is that their method is
limited by the capacity of the network and can only obtain a more
sparse point cloud, while our method can theoretically predict the
label of any point in the 3D space, i.e. an infinite number of points.

2.2. 3D Implicit Representation

Implicit representation models 3D structures by implicit functions.
In Poisson reconstruction [KBH06], the concept of indicator func-
tion was proposed. The indicator function outputs 1 for a point if
it is inside the object, and 0 otherwise. With the development of
deep learning, researchers have tried to fit implicit functions us-
ing neural networks. [MON∗19] proposed an OCCNet to predict
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Figure 2: Overview of our method. Our method uses existing SSC encoders to map RGBD or TSDF into a feature volume. Then, we decouple the direct
connection between resolution and network structure with the following designs: 1) Resolution Adaptive Feature Encoding Module which takes feature volume
as input and outputs a resolution adaptive feature(RAF). 2) RAF Decoding Module that decodes RAF via points. 3) Resolution-adapted point sampling module
that adaptively use different sampling strategy to generate a voxel model according to the final resolution during the test. 4) Category-based point sampling
module that generates training data for our network. Our approach is resolution-switchable and can be adapted to different applications and devices.

the occupancy of each point in the space, and [Che19, PFS∗19]
proposes to predict the SDF value of each point. However, these
methods usually represent the geometry as a single feature vec-
tor, which cannot be used in the scene-level reconstruction. There-
fore, in recent years, researchers have focused on how to use im-
plicit representation to perform scene-level reconstruction tasks.
The basic idea of most of the work is to encode the scene lo-
cally and individually rather than globally for the whole scene
[JSM∗20,PNM∗20,CLI∗20]. In this regard, our work is more sim-
ilar to COCCNet [PNM∗20], where they propose a voxel form of
feature encoding and use local features to decode the occupancy of
each point in the space. Unlike their approach, first, their input is
a complete 3D scene geometry, while our input 3D scene geom-
etry is incomplete. Second, their network learns a binary division
of the space (inside or outside), while our network learns a more
fine-grained semantic division of the space (class).

3. Method

Our goal is to seamlessly and dynamically switch the resolution of
results to meet the different requirements of different applications
using a single network and without retraining. For example, for
some mobile applications, storage and computational performance
limitations make these applications only support coarser models.
While for some gaming and VR applications, fine-grained geomet-
ric models are usually required. To achieve this, we propose our
resolution-switchable semantic scene completion method by de-
coupling the direct relation between resolution and network struc-
ture. Figure 2 shows the overview of our method. The next sections
will give comprehensive descriptions of every key design.

3.1. Resolution Adaptive Feature Generation

In this subsection, we will first describe the general process of SSC.
Then we will introduce our first key step in decoupling the resolu-

tion and network - converting the feature volume generated by SSC
encoders into a resolution adaptive feature(RAF).

SSC encoding There are two types of input for semantic scene
completion, one is 3D input such as TSDF, and the other is 2D in-
put such as RGBD. Previous methods [SYZ∗17,GCSG19,LLY∗19]
encode 3D inputs into 3D feature volumes using 3D convolution
or 3D dilation convolution and decode them voxel-by-voxel. As
for 2D inputs, a 2D to 3D feature projection process is usually in-
volved before using 3D convolution [LLG∗19,LHW∗20,LLY∗20].
This process can be summarized as y = D(F(I)). The input I
(TSDF, RGBD) is first mapped by the encoder F to the feature
volume V ∈ Rh×w×d×c where c represents the dimension of the
feature. Then, V is decoded into voxel-vise category label scores
y ∈ Rh×w×d×K , where K represents the number of categories. D
usually consists of multiple 3D convolutions with a kernel size
of 1× 1× 1. Our method directly borrows the encoders of these
methods to map RGBD or TSDF to feature volume V . To fur-
ther improve the quality of the feature volume, we also concate-
nate the voxel-vise label score y with the feature volume. We
use the pseudo-code torch.cat([V,y],dim=3) to calculate
the new feature volume V . The final shape of the tensor V is
h×w×d × (c+K). This new feature volume is used to generate
our resolution adaptive feature.

RAF Encoding Feature volume mentioned above is resolution-
dependent, it cannot be adapted to the needs of results with dif-
ferent resolutions. To solve this problem, we propose to use an in-
terpolation function to assign a feature to each point in the space.
Few interpolation functions can be chosen. For example, the most
used trilinear interpolation, see Figure 4(a). Here, we introduce an-
other interpolate function, i.e. distance-based interpolation to gen-
erate RAF. Let {xi|i= 1, ...,8} be the spatial 8-neighborhood points
of point x, which are located on the 8 lattice points of the voxel. Let
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Figure 3: An illustration of ’preference’. When the resolution is reduced to
a very low level (see b), the space occupied by a voxel may contain multiple
geometries (in the red box, part of the floor (green) and part of the sofa
(purple)). At this time, the semantic of a voxel often has some "preference".
In the example, the algorithm tends to attribute part of the geometry to the
sofa and part of the geometry to the floor. Note when the resolution is high,
some voxels may also contain multiple geometries. But usually, these voxels
occupy only a small part of the whole and are therefore negligible. So, in
order to better determine the semantic label of each voxel at low resolution,
we design a resolution-adapted sampling strategy. See Section 3.1 for more
details.

{V (xi)|i = 1, ...,8} be the features of the 8-neighborhood points,
then the feature at any point x in the space is

f (x) =
8

∑
i=1

(1− di

∑
8
i=1 di

)V (xi) (1)

where di denotes the Euclidean distance from point x to point xi.
The above equation shows that the feature of x is jointly deter-
mined by the features of its 8 neighboring points, and more fea-
tures are contributed by the points closer to x. In this equation, the
feature weight wi for each lattice point xi is 1− di/∑

8
i=1 di. Intu-

itively, we should normalize these 8 weights such that ∑
8
i=1 wi = 1,

just as the weights in the trilinear interpolation function. However,
we find that the magnitude of features obtained by the interpola-
tion with weight normalization is relatively small, which leads to
a small drop in performance, see Figure 4(d),(e), and Tabel 4 for
comparison.

Compared with the trilinear interpolation function, our distance-
based interpolation function obtain features with larger magnitude
in the center region of a voxel. We believe this helps decide each
voxel’s label during test time since we sample points at the center
of the voxels. See Figure 4(c),(d), and Tabel 4 for comparison.

In conclusion, RAF can be seen as a continuous feature represen-
tation, which makes RAF itself have the adaptability to the results
at different resolutions.

In practice, we do not precompute the feature of each point in
the space and store them, because the number of points is infinite.
However, Equation 1 still defines what the feature of each point in
the space is. Therefore, in the implementation, we put the process
of point feature calculation into the feature sampling of the RAF
decoding.

RAF Decoding Although the RAF is a continuous representation,
it can be seen as a collection of features consisting of an infinite

Figure 4: Possible choices of interpolation function and their results. (a)
bilinear interpolation for 2D and trilinear for 3D. (b) our distance-based
interpolation. (c) result of the bilinear interpolation function. (d) result
of distance-based interpolation without weight normalization. (e) result of
distance-based interpolation with weight normalization. In the center re-
gion, the features obtained by our interpolation method have a larger mag-
nitude, which will help in the decoding process. Because for R2 and R3
resolution decoding, we simply sample points at the center of the voxel.

number of points in the 3D space. Therefore, decoding the RAF
only requires decoding each individual point in the space. The fea-
ture of each point is given by Equation 1.

Given a point x in 3D space, we sample its feature f (x) from
RAF using Equation 1. Then, we introduce a point decoder χS that
takes both as inputs and outputs the point label:

χS(x, f (x))→ [0,1]K (2)

where K is the number of classes. Class 1 represents the empty
space, the other classes represent objects of different categories. We
implement a small fully-connected network that comprises multi-
ple ResNet blocks similar to [PNM∗20]. Different from theirs, our
output channel is K and we use fewer layers than theirs since our
training data is few.

3.2. Resolution-adapted point sampling

In this subsection, we present how to generate a voxel result for
a given resolution during the test, which is the second key step in
decoupling the resolution and network.

Given a target resolution R, this resolution can be configured
from a variety of downstream applications such as VR, mobile and
gaming apps, we aim to generate a discrete 3D model for these ap-
plications. It is intuitive to sample points for each voxel and then
decide on each voxel’s label by voting. However, how to sample
points and how many points to sample still need to be discussed.

We propose two sampling strategies, one is uniform sampling
and another is center sampling. The uniform sampling uniformly
samples N(N > 1) points in each voxel while center sampling sam-
ples 1 point at the center of each voxel. The question is what is
the difference between these two strategies and how do we choose
between them?

When the resolution is very low, the space occupied by a voxel
can be very large, and center sampling may not reflect well the
class distribution of that space. For example, a voxel may contain
both parts of the table legs and part of the floor, and a fixed point
at the center of the voxel may cause "preference", see Figure 3 for
more details. When the resolution is high, the 3D space occupied
by a voxel is small. At this time, a voxel can already be seen as a
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Figure 5: We visualize the semantic space obtained with voxel-wise labels
with different resolutions to illustrate the choice of our training data. The
top row shows the semantic space that the GT label can provide. It is easy
to see that the high-resolution voxel-wise label provides more detailed se-
mantic boundaries. As a result, the semantic space trained from the high-
resolution voxel-wise label (second row) is also more detailed. Since our
method can be seen as a voxelization process for this semantic space, a
more detailed semantic space is beneficial for the subsequent generation of
voxel-like results with different resolutions.

good approximation to the continuous space, center sampling and
uniform sampling should make little difference. However, in ex-
periments, we show that applying uniform sampling to high res-
olutions may cause a little drop in performance. Meanwhile, ap-
plying uniform sampling to high resolutions will greatly increase
the computing cost since the number of points will be large. With
the above considerations, we suggest that for low resolution, using
the uniform sampling strategy and eventually deciding the label of
each voxel by voting is a better choice. For high resolution, using
the center sampling strategy and assigning the label of that point
directly to that voxel is a better choice.

3.3. Label Generation and Training

In this subsection, we will discuss how to generate training data for
our point decoder since we only have voxel-wise labels and how to
train it.

Category-based Point Sampling Given a voxel-wise label Y , in-
stead of using the sampling strategy that uniformly samples points
in 3D space as mentioned in [MON∗19, PNM∗20], we propose
a category-based label generation strategy. For each category, we
sample points uniformly in the 3D space occupied by the voxels
of all that categories and assign that category label to these points.
We do this iteratively until all the categories are sampled. Then, the
points of each category are randomly sampled such that the number
of points of the empty category is twice the sum of the number of
points of all non-empty categories, while the number of points of
all non-empty categories is equal to each other. Compared with the
sampling strategy used in [MON∗19,PNM∗20], the category-based
sampling strategy obtains a more balanced point number over dif-
ferent categories and thus provides a better-supervised signal for
our point decoder. In our experiments, we have a total number of
10240 training points per batch.

Since the resolution of our final results needs to be dynami-
cally switched to the needs of the application, this means that our
approach has to achieve good results at arbitrary resolutions. Al-
though our continuous feature representation is theoretically ca-
pable of representing arbitrary resolution models, its performance
is still limited by the resolution of the voxel-wise labels. The
higher the resolution of the voxel-wise labels, the finer the semantic
boundaries they can provide, and vice versa, the coarser they are.
Finer semantic boundaries are beneficial for high-resolution results
and are compatible with low-resolution results, so in our experi-
ments, we use the labels with highest resolution available in the
dataset for training. See Figure 5 for a visual explanation of this
idea.

Training Our model contains two parts that need to be trained, one
is the SSC encoder and the other is the point decoder. Our encoders
can be replaced by existing SSC encoders. So, to fully exploit the
capabilities of the encoder, we first pre-train SSC methods and later
replace their decoder with our point decoder. Then we fix the en-
coder’s parameters and only update the point decoder with the fol-
lowing two losses: one is semantic segmentation loss, which uses
softmax cross-entropy loss to compute the difference between the
predicted point labels and the true point labels:

Lsem =−
K

∑
c=1

wcŷi,c log(
eyi,c

∑
K
c′ eyi,c′

) (3)

where ŷi,c are the binary ground truth vectors, i.e. ŷi,c = 1 if point i
is labeled by class c, K is the number of classes, and wc is the loss
weight. We set wc = 0.8 for empty class and 1 for others. The other
is a geometric loss to assist in the training of the point decoder. The
geometric loss was first proposed in ForkNet [WTNT19]. The core
idea is to separate geometric completion from semantic comple-
tion. This is because coupling geometric completion and semantic
segmentation in one loss term makes optimization more difficult,
while disentangling geometric completion separately can better as-
sist in training the network so that the whole optimization process
can converge faster. To achieve this, for a ground truth one-hot la-
bel vector ŷi, we create another all-zero two-dimensional vector ŷ′i
and set the 1st dimension of ŷ′i to 1 if the 1st dimension of ŷi is 1,
otherwise the 1st dimension of ŷ′i is set to 0. For the point label vec-
tor yi predicted by the point decoder, we sum the values from the
2nd dimension to the K-th dimension of yi and obtain a new two-
dimensional prediction vector y′i . We additionally process y′i using
softmax to ensure that the value of each dimension of y′i is between
[0,1]. Then the geometric loss is obtained by calculating the binary
cross-entropy loss of ŷ′i and y′i :

Lgeo =−[w1ŷ′i,1 log(y′i,1)+w2(1− ŷ′i,2) log(1− y′i,2))] (4)

We set w1 = 0.8 and w2 = 1. Finally, our overall loss is L =
Lsem +λLgeo. In our experiments, we empirically set λ = 2.

4. Experiments

In this section, we first introduce the dataset used in our experi-
ments and the evaluation metrics. Then, we perform comparison
experiments with existing SSC methods at 3 different resolutions
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Table 1: Comparison experiments with AIC [LHW∗20] and DDR [LLG∗19] at three different resolutions on NYUCAD dataset.

SC SSC
R method prec recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

DDR 85.3 83.5 72.8 36.9 70.0 39.2 5.88 31.5 54.9 42.6 30.7 14.2 33.2 20.1 34.5
Ours-DDR 80.9 97.2 79.0 47.5 73.0 49.3 12.3 37.2 59.3 50.5 33.0 7.8 47.9 29.8 40.7

AIC 83.4 85.9 73.2 43.5 70.1 39.9 8.81 35.1 55.7 46.4 33.8 11.2 36.7 23.2 36.8
R1

Ours-AIC 85.2 93.1 80.1 50.7 71.8 52.3 15.7 42.0 60.5 54.6 36.9 10.8 47.4 30.3 43.0
DDR 77.1 94.4 73.6 46.4 91.9 51.7 7.65 37.1 58.4 51.7 31.5 15.7 39.2 24.5 41.5

Ours-DDR 81.6 91.8 75.9 45.1 86.4 53.7 11.5 38.2 60.5 54.5 32.3 7.8 48.5 30.4 42.6
AIC 74.8 96.2 72.6 50.5 91.8 53.3 12.2 35.8 59.2 55.3 31.3 15.2 41.9 27.5 43.1

R2

Ours-AIC 82.7 90.4 75.9 50.9 86.2 54.4 14.2 41.6 60.2 59.3 34.5 11.0 47.4 31.4 44.7
DDR 61.5 94.5 59.2 34.5 47.9 37.4 6.66 29.2 56.7 49.6 25.5 14.3 37.9 22.0 32.9

Ours-DDR 70.3 93.8 67.0 35.7 77.0 40.6 11.3 32.1 58.9 52.7 26.8 8.1 47.1 28.2 38.0
AIC 59.8 96.3 58.3 35.1 47.8 38.2 10.8 27.1 57.6 52.6 24.4 14.2 40.1 24.1 33.8

R3

Ours-AIC 71.8 93.2 68.1 41.4 79.0 42.0 14.7 35.0 59.8 56.4 28.3 11.8 46.2 30.4 40.5

Table 2: Comparison experiments with AIC [LHW∗20] and DDR [LLG∗19] at three different resolutions on NYU dataset.

SC SSC
R method prec recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

DDR 68.1 95.8 66.1 21.0 61.7 33.1 11.8 19.1 51.1 40.5 11.8 9.5 34.5 16.8 28.3
Ours-DDR 70.2 94.5 67.5 26.7 65.3 33.4 19.4 19.4 53.8 40.6 16.8 10.3 32.7 16.4 30.4

AIC 69.4 92.5 65.6 28.8 68.5 34.8 5.8 22.9 52.3 43.5 17.5 7.6 31.5 12.7 29.6
R1

Ours-AIC 68.6 95.4 66.4 28.6 61.2 36.3 13.9 24.5 54.2 44.7 18.7 10.5 36.2 16.5 31.4
DDR 55.6 97.4 54.9 18.1 88.8 32.0 9.9 16.4 51.2 44.1 11.8 8.6 34.3 15.7 30.1

Ours-DDR 64.1 87.6 58.6 23.2 81.3 30.3 18.9 17.5 54.7 45.4 14.4 12.1 34.2 16.2 31.6
AIC 56.9 95.2 55.3 24.0 92.0 30.7 5.1 20.1 53.7 48.4 14.5 10.6 32.5 12.5 31.3

R2

Ours-AIC 62.5 90.1 58.4 25.3 89.7 33.6 11.7 21.5 54.7 48.2 15.7 10.5 36.0 15.5 32.9
DDR 43.8 97.5 43.3 14.4 44.0 21.7 15.3 13.9 52.7 43.1 11.6 11.6 32.9 14.5 25.1

Ours-DDR 53.2 89.5 49.8 16.1 76.8 24.1 16.7 14.1 52.7 43.2 12.1 10.1 33.4 14.0 28.5
AIC 44.6 95.1 43.6 15.0 44.8 21.8 4.6 15.7 52.2 45.9 10.9 9.3 31.2 11.2 23.9

R3

Ours-AIC 51.7 91.3 49.1 17.5 79.1 24.8 10.8 17.1 53.1 45.6 12.0 10.3 34.7 14.1 29.0

to verify the adaptability of our method to the resulting resolution.
Finally, we validate each key design of our method through ablation
experiments to show the effectiveness of decoupling.

4.1. Implementation Details

For the encoder, since SOTA methods [TCWZ21, ZLL∗19] do not
release their codes, we choose two open-source methods DDR
[LLG∗19] and AIC [LHW∗20]. The resolution of the feature vol-
ume encoded by both of their encoders is 60 × 36 × 60. For the
results, we validate our method on 3 different resolution: R1(30×
18×30),R2(60×36×60),R3(120×72×120). For the sampling
method and the number of points, we use the center point sampling
strategy for R2,R3 and the uniform point sampling strategy for R1,
with 16 points sampled in each voxel grid. For generating the train-
ing data for our point decoder, We use the voxel-wise label with the
highest resolution (240×144×240) provided by the dataset.

Overall, we implement our model using PyTorch. We first pre-
train the encoder according to [LLG∗19, LHW∗20]. Then, we fix
the encoder parameters and train our point decoder with a learning
rate of 10−3 using the SGD optimizer with a momentum of 0.9 and

weight decay of 10−4. Our batch size is set to 8 and training stops
when the loss no longer decreases within 5 epochs.

Datasets. We evaluate our method on two SSC datasets. One is
the NYU-Depth-V2 [SHKF12] dataset. This dataset contains 1449
depth scenes. The second dataset is the NYUCAD [FMAJB16]
dataset. This dataset uses synthetic depth maps, which provide
more accurate depth values compared to the NYU dataset. Thus, it
avoids the misalignment problem caused by sensors. Both datasets
provide voxel-wise semantic labels.

Evaluation metrics. For semantic scene completion, we measure
the intersection over union (IoU) between predicted voxel labels
and ground-truth labels for all object categories. The overall per-
formance is also obtained by computing the average IoU for all
categories. For scene completion, all voxels will be categorized as
empty or occupied. If a voxel belongs to any semantic category, it is
counted as an occupied voxel. In addition to IoU, precision and re-
call are also reported. Note that IoU for semantic scene completion
is often considered a more important metric for SSC tasks.
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Figure 6: Comparison results of our method with AIC [LHW∗20] at three resolutions.

4.2. Resolution adaptability

To verify the adaptability of our method to different resolution
results, we perform comparison experiments with existing meth-
ods at three resolutions, R1, R2, and R3. Since DDR [LLG∗19]
and AIC [LHW∗20] can only output the results for R2 resolution,
for this reason, we directly sampled their results by trilinear sam-
pling [TCA∗17] to obtain results at R1 and R3 resolution.

Table 1 shows the comparison results on NYUCAD dataset. Our
method outperforms both DDR [LLG∗19] and AIC [LHW∗20] by
6% in terms of R1 and R3 resolution. Meanwhile, even though their
method is designed for R2 resolution, our method still achieves
nearly 1% over theirs.

Figure 6 shows the visualization results. We give the comparison
results with AIC [LHW∗20]. As seen in Figure 6, at R1 resolu-
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Figure 7: The necessity of dynamically adjusting the sampling strategy for different resolution results during the test.

tion, direct trilinear downsampling of the results may cause loss of
structure, while our method maintains the structure well. Also, at
R3 resolution, our method shows much better details.

Comparison results on NYU dataset are reported in Table 2. Note
the results of DDR and AIC differ from the original results in their
paper on the NYU and NYUCAD datasets because they only open-
sourced the code but not the model. Since our results need to be
calculated based on their encoders, so we retrain their networks
and retest the metrics using their code.

The above results show that we can maintain the accuracy of
DDR and AIC at the original resolution while achieving better re-
sults at other resolutions, which validates the adaptability of our
method to different resolutions.

4.3. Effectiveness of decoupling

In this subsection, we will verify the effectiveness of decoupling.
Specifically, there are three key designs in our method to ensure ad-
equate decoupling of resolution and network: i) Resolution adap-
tive feature encoding. ii) resolution-adapted point sampling strat-
egy and iii) category-based label generation strategy. In the follow-
ing, we conduct ablation experiments for these three strategies to
verify the effectiveness of decoupling.

For the setup, we use AIC as our encoder and leave the other set-
tings unchanged unless otherwise mentioned. Since the NYU and
NYUCAD datasets are relatively similar, we only report ablation
results on the NYUCAD dataset.

Effectiveness of RAF. Instead of using RAF as f , we directly use
discrete feature volume as f and retrain our point decoder. The al-
tered f (x) is calculated as follows: for a point x in 3D space, we
calculate the index value of the voxel to which x belongs and use
the feature of that voxel as f(x). We denote this model as ’Ours-d’.
The comparison results are given in Table 3. It shows that using
only original feature volume cannot achieve good results at all res-
olutions while RAF can.

We also report the performance of different interpolation func-
tions. The results are reported in Table 4. The results in the table
illustrate that our interpolation method will be slightly better than
trilinear interpolation. At the same time, the performance decreases
a little if the weights are normalized, which indicates that the mag-
nitude of the features will result in a better performance with ap-
propriate amplification.

Effectiveness of resolution-adapted point sampling. Instead of

using a dynamic sampling strategy for different resolutions, we use
center sampling (Ours-c) or uniform sampling (Ours-v) strategy
only. The comparison results are given in Table 3. It shows that
using center sampling only does not yield good results at lower
resolutions. Using uniform sampling only will reduce the accuracy
of higher resolution slightly. Also, at higher resolutions, the speed
of inference is much slower than that of center sampling because
of the large number of points used for uniform sampling. Figure 7
gives the visualization results to explain why we need to dynam-
ically adjust the sampling strategy for different resolution results
during the testing phase. The necessity of using uniform sampling
at low resolution is given in Figure 7(a). It can be seen that if center
sampling is used, the final result shows some structure loss, while
using uniform sampling maintains the structure well. (b) gives the
results of different sampling strategies on high resolution. Although
the difference in accuracy between uniform sampling and center
sampling is not significant on high resolution, the use of uniform
sampling causes some unwanted structural noise in local areas such
as the floor, which is the reason for the 1% decrease in the perfor-
mance of using even sampling on high resolution. This is one of
the reasons why, in addition to efficiency, we use center sampling
on high resolution.

Effectiveness of category-based label generation. Instead of sam-
pling category by category, we uniformly sample points in the
whole 3D space just like [MON∗19, PNM∗20] did and determine
the label of the points based on the label value of the voxel in which
the point is located. We retrain our model and denote this model as
"Ours-r" and the results are reported in Table 3. The results show
that sampling only uniformly over the entire space does not train
our network well, however, category-wise sampling does. The rea-
son may be a balanced point number of each class can provide a
better supervision signal, making the network focus on the seman-
tic boundary of each category and thus learn better spatial semantic
partitioning.

5. Conclusion and Limitation.

In this paper, we propose a resolution-switchable semantic scene
completion method. By decoupling the direct connection between
resolution and network structure, we can generate results at multi-
ple resolutions without redesigning and retraining. To achieve this,
we design three key mechanisms. First, by converting feature vol-
ume into a resolution adaptive feature we can achieve better re-
sults at multiple resolutions. Second, the resolution-adapted point
sampling strategy ensures that the lower resolution results are not
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Table 3: Ablation studies on our 3 key designs.

R1 R2 R3
method prec recall IoU mIoU prec recall IoU mIoU prec recall IoU mIoU
Ours-d 79.7 96.8 77.6 39.3 76.0 92.3 71.4 38.5 62.4 93.4 59.5 32.0
Ours-c 90.9 77.3 71.6 37.9 82.7 90.4 75.9 44.7 71.8 93.2 68.1 40.5
Ours-v 85.2 93.1 80.1 43.0 80.4 90.6 74.1 43.5 69.9 93.5 66.5 39.4
Ours-r 90.0 82.3 76.0 37.4 92.3 54.6 52.2 26.7 87.1 67.5 61.3 32.2
Ours 85.2 93.1 80.1 43.0 82.7 90.4 75.9 44.7 71.8 93.2 68.1 40.5

Table 4: Effect of different interpolation functions on the final results. (WN for weight normalization)

R1 R2 R3
method prec recall IoU mIoU prec recall IoU mIoU prec recall IoU mIoU

Ours-dist(with WN) 83.5 90.9 77.1 41.5 78.5 92.2 73.5 44.0 66.6 94.4 63.9 38.6
Ours-trilinear 87.3 81.8 73.1 42.2 80.0 91.3 74.2 44.5 64.2 92.4 60.7 37.5

Ours-dist(without WN) 85.2 93.1 80.1 43.0 82.7 90.4 75.9 44.7 71.8 93.2 68.1 40.5

degraded and that the high-resolution results will not show too
much noise. Ultimately, category-based training point generation
can better learn the division of spatial semantics, thus making our
approach further adaptable at different resolutions. We conducted
experiments on two SSC datasets to verify the adaptability of our
method to the results and the effectiveness of decoupling.

Our method still has the following limitations: first, our method
is currently not an end-to-end method. In the future, it is worth ex-
ploring how to train our method end-to-end and maintain the cur-
rent results. We believe that the key to solving this problem may
lie in how to maintain the quality of the feature volume so that it
is as good as after pre-training. Second, our RAF is generated by a
linear interpolation method. This causes the whole RAF to be too
smooth and lacks sharper "feature boundaries", which affects the
final results. changing it to a nonlinear generation method could
potentially improve the results. We believe these two aspects can
be further improved in the subsequent work.
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