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Abstract
Implicit neural representations, such as MLP, can well recover the topology of watertight object. However, MLP fails to recover
geometric details of watertight object and complicated topology due to dealing with point cloud in a point-wise manner. In
this paper, we propose a point cloud transformer called local offset point cloud transformer (LOPCT) as a feature fusion
module. Before using MLP to learn the implicit function, the input point cloud is first fed into the local offset transformer,
which adaptively learns the dependency of the local point cloud and obtains the enhanced features of each point. The
feature-enhanced point cloud is then fed into the MLP to recover the geometric details and sharp features of watertight object
and complex topology. Extensive reconstruction experiments of watertight object and complex topology demonstrate that our
method achieves comparable or better results than others in terms of recovering sharp features and geometric details. In
addition, experiments on watertight objects demonstrate the robustness of our method in terms of average result.

CCS Concepts
• Computing methodologies → Artificial intelligence; •Mathematics of computing → Graphs and surfaces;

1. Introduction

Three-dimensional objects can be represented as voxels, multi-
views, mesh, point clouds and implicit surface. With the rapid de-
velopment of 3D sensors and depth cameras, 3d point cloud ac-
quisition becomes easy. As an unified representation of 3d ob-
jects, 3D point cloud is widely used in classification, detection,
segmentation, registration, reconstruction and other fields. Point
cloud based reconstruction can be divided into explicit recon-
struction [ABK98,ACK01,MAVDF05] and implicit reconstruction
[YS01, DTS01, TO05, CBC∗01, OBA∗05, ABCO∗03, RJT∗05, F-
COS05, HSD00, IJS03, SSB05, SBS05, DTB06, JWB∗06, Kaz05,
KBH06, KH13, MPS08]. The key of implicit reconstruction is im-
plicit function, which include sign distance function (SDF) and oc-
cupancy function. SDF defines the distance from a given point x to
the shape surface, with the sign determined by whether x is insid-
e the shape volume or not. Traditional methods manually construct
implicit functions, such as SDF [MAVDF05], RBF [CBC∗01], ML-
S [FCOS05], etc., with limited expression ability. With the advent
of deep learning, graphics scholars begin to apply deep learning
methods to point cloud surface reconstruction. The goal is to rep-
resent the implicit functions as neural networks, and then extract
surfaces through the zero-level set of implicit functions. Implic-
it surface reconstruction based on point cloud deep learning can
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be roughly divided into learning implicit function and regression
implicit function. The difference between them is whether real im-
plicit function values are needed as supervision to train the net-
work. The former does not need while the latter does. The repre-
sentative work of regressing the implicit function is [EGO∗20], the
encoder-decoder structure is proposed. The encoder phase learn-
s a high-dimensional representation, and the decoder phase uses
the real sign distance values as supervision to regress the implic-
it function. In addition, neural-IMLS [WWD∗21] first uses IML-
S [ÖGG09] to build real implicit functions, then uses MLP to fit
the implicit functions, and finally calculates the loss. However, the
two methods mentioned above sometimes fail to recover the topo-
logical structure of watertight objects. In contrast to discrete repre-
sentations such as voxelization, mesh, etc., implicit representations
are compact and not limited by pixels.

In this paper, we are interested in learning sign distance func-
tions from a clean or noisy point cloud extracted from a 3d shape.
The recent MLP-based methods, IGR [GYH∗20] , can well re-
cover the simple topology. However, due to the spectral devia-
tion of neural network [RBA∗19], MLP fails to recover the geo-
metric details and complicated topology of the manifold surface.
To solve the above problems, SIREN [SMB∗20] propose sinu-
soidal activation function to replace softplus in MLP to enhance
the expression ability of MLP. Before using MLP to learn SDF, F-
PE [MST∗20, TSM∗20, ZBDB19] uses a set of sinusoidal function
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to encode the input coordinates into the high-dimensional fouri-
er space and SPE [WLYT21] maps the input coordinates into the
high-dimensional spline space by a set of spline function to facili-
tate the expressiveness of MLP. However, the above methods could
not recover SDFs in good quality. In addition to the above prob-
lems, the aforementioned approches learn the implicit function by
MLP which deals with the point cloud in a pointwise manner and
thus ignores the interdependence of the point cloud. Fortunately,
our approach can recover high-quality SDFs and effectively fuse
the information in the neighborhood of point cloud.

The emergence of transformer [VSP∗17] has led to a further de-
velopment in the field of natural language processing. With its ex-
cellent performance, vector transformer has been used in the field
of computer vision [KNH∗21], which has promoted the develop-
ment of the field. The rapid development of transformer in the field
of natural language and computer vision has aroused great inter-
est in graphics. Then point cloud transformer [KNH∗21, HYC∗21,
ZJJ∗21, HJCX21, HKX21, GCL∗21, KB14] were proposed one af-
ter another, achieving the best results in point cloud classification,
segmentation and detection. However, to our knowledge, there is no
work using point cloud transformer to solve the point cloud implicit
reconstruction problem. In order to make use of the manifold topol-
ogy recovery capability of MLP and solve the problems of MLP, we
combine the work of point cloud transformer [GCL∗21] and point
transformer [ZJJ∗21] and propose local offset point cloud trans-
former, LOPCT. Before using MLP to learn the implicit function,
the input point cloud is first fed into the local offset transformer,
which adaptively learns the dependency of the local point cloud
and obtains the enhanced features of each point. In conclusion, our
main contributions are as follows:

(1)To our knowledge, we are the first to use point cloud trans-
former to solve the problem of point cloud implicit reconstruction.

(2)MLP with LOPCT significantly improves the ability of man-
ifold surface reconstruction in terms of geometric details and com-
plex topology.

(3)When there is noise in the normal vector, our method shows
robustness and significantly outperforms other methods in terms of
average results.

2. Related work

2.1. Implicit neural representation

Implicit neural representation(INR) learned by MLP is a compact
representation whose zero level set depicts the shape surface. By
using INR and Eikonal equation constraint, IGR [GYH∗20] can re-
cover the topology of watertight object well. Some scholars believe
that the spectral deviation of neural networks leads to the failure of
MLP to recover geometric details. SIREN [SMB∗20] proposed si-
nusoidal activation function and a new initialization scheme, which
improves the performance of IGR, but fails to recover SDFs in good
quality. In order to enhance the expression ability of MLP, fourier
position encoding module [MST∗20, TSM∗20, ZBDB19] and B-
spline position encoding module [WLYT21] are presented before
using MLP to learn SDF. Unfortunately, FPE contains a lot of im-
purities when reconstructing watertight objects and SPE requires

multi-scale optimization to gradually recover geometric details of
target object. However, We believe that MLP does not consider
the mutual information between points, which leads to its inabil-
ity to recover geometric details and complex topology. Our method
mainly solves the problem that MLP does not consider the mutual
information between points, while SIREN, FPE and SPE mainly
solve the spectral deviation problem of MLP. Therefore, our net-
work structure mainly focuses on point cloud information interac-
tion while other methods transform the time domain problem into
the frequency domain problem.

2.2. Point cloud transformer

PCT [GCL∗21] used offset attention for point cloud classification,
segmentation and normal estimation and got the best results. In or-
der to be robust to noise, a robust normalization method is proposed
and neighborhood embedding is proposed to enhance local feature
representation. PT [ZJJ∗21] proposed local transformer, which first
uses KNN to build the neighborhood and then uses transformer in
the neighborhood to achieve the best result in the scene segmen-
tation task. Recently, Dual Point Cloud Transformer [HJCX21] is
presented to aggregate the well-designed point-wise and channel-
wise multi-head self-attention models simultaneously. In addition,
lightweight point cloud transformer [WJC∗22] is proposed to make
a trade-off between speed and accuracy.

3. Method

In this section, we first briefly review the general formulation of
self-attention operators. Then we will detail our proposed local off-
set point cloud transformer and introduce our network framework
for surface reconstruction. Finally, loss functions and parameter
settings are introduced.

3.1. Background: Self-attention mechanism

Self-attention mechanism can be roughly divided into scalar atten-
tion and vector attention. Scalar self-attention is often used in the
NLP domain and vector self-attention is often used in the CV do-
main.

Let V = {vi} be a set of feature vectors, which is called input
embedding in the NLP, learned by linear layer from inputs. Let ∆ =
{δi} be a set of position encoding used to encode relative positions
between words in a sentence in NLP. The traditional scalar attention
layer can be represented as follows:

yi = ∑
v j∈V

β(wq(vi +δi)
T wk(v j +δ j))wv(v j +δ j) (1)

where yi is the output feature. wq,wk,wv are pointwise feature trans-
formations, such as fully connected layer and convolution layer.
The output of wq,wk and wv are called query vector, key vector
and value vector respectively. β is a normalization function used to
transform the output of inner product into a discrete probability dis-
tribution. The output feature yi are obtained by using the discrete
probability distribution to weight the value vector. So, the output
feature adaptively integrates the semantic information of all input
feature, which is vital importance for downstream tasks.
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Vector attention is frequently used in computer vision and the
computation of attention weights is different which can be formu-
lated as:

yi = ∑
v j∈V

β(α(ϕ(wq(vi),wk(v j))+δ))�wv(v j), (2)

wq, wk, and wv have the same meaning as scalar attention. ϕ is a
relation function such as subtraction and concatenation. There are
three differences between scalar and vector attention. The first d-
ifference between scalar attention and vector attention is the com-
putation of attention vectors, the former by inner product and the
latter by mapping function α. The second difference is where the
position encoding vector is added. The third difference is the way
value vectors are integrated, the former by multiplication and the
latter by Hadamard products.

3.2. Local vector self-attention

Figure 1: Local vector self-attention.

Point cloud is essentially a set of points in a metric space with
rigid transformation invariance, so self-attention is a natural fitting
of point cloud.

Our self-attention machanism depends upon vector self-
attention, as shown in Figure 1. The structure is similar to P-
T [ZJJ∗21], but there are some differences. wq, wk and wv are fully
connected layer which takes as input feature vector obtained by lin-
ear layer from input point cloud. Subtraction relation is used and a
position encoding δ is added to the input of α and the value vector
wv(v j), which combines the characteristics of scalar attention and
vector attention. Our local vector self-attention mechanism can be
formulated as:

yi = ∑
v j∈V(i)

β(α(wq(vi)−wk(v j)+δ))� (wv(v j)+δ) (3)

Here the subset V(i) ⊆ V is a subset of features obtained by KN-
N based on point cloud coordinates. Thus we apply vector self-
attention locally. This operation has two advantages. First, the main
computational cost of the self-attention mechanism comes from the
matrix computation, which will lead to a serious computational bur-
den if all the input embeddings are selected to compute. Second, as
the distance between the surrounding points and the center point in-
creases, they carry less useful information and may contain noise.
If all input embeddings are used, there is no significant information
enhancement and the central point may contain noise. The map-
ping function α is an MLP with two fully connected layers and the
first fully connected layer is followed by a Softplus nonlinearity.

We chose Softplus instead of ReLU because Softplus is differen-
tiable everywhere and therefore allows network parameters to be
constantly updated.

Position encoding plays a vital role in self-attention. It is mainly
used to encode relative positions between sequences. Traditional
position encoding are crafted manually. Here position encoding is
to be learned adaptively by an MLP with two linear layers and one
Softplus nonlinearity, which is defined as follows:

δ = MLP(pi−p j). (4)

Here pi and p j are the 3D point coordinates. We use the difference
between the neighborhood point and the center point to learn the
position encoding because it changes with the neighborhood point.
As a comparison, when the neighborhood point and the center point
are concatenated in the channel dimension, only half of the input
changes with the change of the neighborhood point. Therefore, the
subtraction relation can be used to learn better position encoding.
We used position encoding to learn the attention vector and to inte-
grate the features of each point, hoping that the points farther from
the center would have a smaller proportion and a smaller value.

Normalization function is usually used to normalize attention
vector. Traditional normalization function is set to be Softmax. In
order to increase the robustness to noise, we use the normaliza-
tion method in PCT [GCL∗21]. Let A = {ai, j} be attention matrix
learned by α. Firstly, softmax is used in the first dimension and the
L1 norm is used in the second dimension to normalize the attention
matrix. The equations are as follows:

āi, j = softmax(ai, j) =
exp(ai, j)

∑k exp(ak, j)
(5)

ãi, j =
āi, j

∑k āi,k
(6)

3.3. LOPCT

Figure 2: Local offset point cloud transformer.

We present a local offset point cloud transformer(LOPCT) with
local vector self-attention as its module, as shown in Figure 2.
LOPCT consists of the local vector self-attention layer, linear lay-
ers and a residual connection.

The input of LOPCT is a set of 3D coordinates p. Firstly, the
input point cloud is mapped to the d-dimension space by using the
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linear layer to obtain the input embedding. The purpose of this is
to make the input point cloud contain more semantic information.
Then the local vector self-attention is used in the d-dimension s-
pace, which facilitates information integration between these lo-
calized input embedding producing new feature vectors for point
cloud as its output. Semantic information fusion makes use of the
rich information of the neighborhood effectively, so that each point
in the point cloud is discriminative. When two points of an object
are symmetric, the coordinates are different, but the semantics are
the same. After the encoding of local vector self-attention, when
two points are symmetric, their corresponding feature vectors are
the same. Since each point integrates the semantic features of sur-
rounding points, it can express the same semantics.

Then the linear layer is used to map back to the input space bridg-
ing the gap between the input point cloud and new feature vec-
tors. After that, the difference between the input point cloud and
self-attention feature matrix transformed by linear layer is fed into
the fully connected layer followed by the Softplus nonlinearity. As
pointed out by PCT [GCL∗21], it is beneficial to use the difference
between the input point cloud and the self-attention feature matrix
as input to the integration module. Graph convolution learning has
proved the validity of the Laplace matrix. The point cloud is regard-
ed as a graph, and the self-attention feature matrix as an adjacency
matrix, and the Laplace matrix is approximated by the difference
between the point cloud and the self-attention feature matrix.

Finally, the output of the activation function and the input point
cloud is added in a channel-wise way to get the final output, which
could prevent input information loss during forward calculation.

3.4. Network

Figure 3: Network framework for shape reconstruction. The input
point cloud encoded by LOPCT, is fed into MLP and outputs SDF. K
represents the number of nearest neighbors, D represents the input
embedding dimension, H represents the number of hidden layers,
and C represents the number of neurons at hidden layers.

We present a complete network for point cloud reconstruction.
Our network structure is shown in Figure 3. Given a point cloud ex-
tracted from a manifold surface, the feature-enhanced point cloud
is first obtained through LOPCT and then fed into MLP to predict
SDF.

We use a single LOPCT as feature aggregation module to fuse
input point cloud layout information. We set input embedding di-
mension k is 8 and the number of neighborhood points is 16. The
rationality of the selection is proved by the ablation experiment.

For MLP, we use seven hidden layers, each containing 512 neu-
rons. We use Softplus activation functions behind each hidden lay-
er.

The LOPCT module combines the advantages of local feature
integration, graph convolution and robust normalization, effectively

extracting and fusing the geometric information and deep semantic
information of the input point cloud, and successfully solves the
essential defect of MLP, that is, encoding each point in a point-
wise manner without considering the mutual information between
points.

3.5. Loss function and parameter setting

Suppose the following random experiment occurs: first suppose the
original object consists of N points, subject to an unknown prob-
ability distribution f (x1,x2, · · · ,xN); Then, I ≤ N points are mea-
sured from the original object by the 3D sensor with normal in-
formation. Due to measurement errors, the points and normals ob-
tained are x

′
= x+ ε1, n

′
= n+ ε2, where ε1 and ε2 obey an un-

known distribution. Therefore, the point cloud obtained can be rep-
resented as χ = {(x

′

i ,n
′

i )}I
i=1.

The aim of this paper is to use MLP to learn the implicit function
F(x) of manifold surface. To learn the unknown parameters in the
network, we use the loss function proposed in [WLYT21].

Given point cloud extracted from 3D object, χ = {(x
′

i ,n
′

i )}I
i=1,

the implicit function F(x) meets F(x
′

i ) = 0, ∇F(x
′

i ) = n
′

i , i =
1, · · · , I. So the loss function for above point cloud is

L1 =
I

∑
i=1

(F(x
′

i )
2 + τ‖∇F(x

′

i )−n
′

i‖2). (7)

To ensure F(x) is an implicit function, the margin constrain-
t ‖∇F(x)‖ = 1 [GYH∗20] is used and the loss for points in the
bounding box of 3D object is

L2 = λEx(‖∇F(x)‖−1)2. (8)

Therefore, the final loss function is in the following form:

Lsd f = L1 +L2. (9)

After training, F(x) approximates the potential SDF of the input
point cloud, and we use the Marching Cubes to extract the zero
level set of SDF to form polygonal mesh.

4. Experiment and evaluation

In this part, we introduce experimental settings in 4.1, experimental
data sets and evaluation criteria are introduced in 4.2, some water-
tight object reconstruction results are showed in 4.3. We present
computational resource consumption in 4.4 and experimental re-
sults for noisy data in 4.5. Complex topology reconstruction results
are presented in 4.6. Finally, in 4.7, we present the ablation experi-
ment results.

4.1. Experiment setting

Our implementation was based on PyTorch and all experiments
were based on a GeForce 2080 Ti GPU (11GB of ram). For water-
tight object, we use all points for training, and for object with com-
plex topology, we randomly select 50K points for training. For wa-
tertight object, we first fit the sphere and then initialize our network
parameters with trained weights. For complex topology, we do not
use sphere initialization. In each iteration of the training phase, 2k
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Table 1: Reconstruction results of unstructured point cloud extracted from watertight object. CD are multiplied by 100000, MAE are multi-
plied by 100. MSPE stands for multiscale SPE and SPE* represents the result of not using multiscale optimization.

method
fandisk bunny dragon gargoyle armadillo

CD MAE CD MAE CD MAE CD MAE CD MAE

IGR 1.35 1.43 1.75 0.43 1.43 0.58 1.37 0.61 2.14 0.69
SIREN 1.37 19.20 1.48 15.10 1.41 20.71 3.67 15.59 2.30 20.08

FPE 4983.33 24.44 8599.51 22.38 353.03 26.81 1243.33 22.21 126.00 29.10
MSPE 1.34 0.60 1.60 0.53 1.37 1.35 3.67 1.02 2.41 1.64
SPE* - 27.38 - 20.33 - 25.30 - 20.15 - 26.41
Ours 1.35 0.27 1.60 0.38 1.31 1.67 3.63 1.30 2.18 1.37

GT FPE SIREN MSPE IGR Ours

Figure 4: Visual comparisons on SDF reconstruction from raw point clouds extracted from watertight object. The zero level set of SDF was
extracted by marching cubes, and the polygon mesh of watertight object was obtained.

points were randomly extracted from the input point cloud and the
same number of points were extracted from the 3d bounding box
containing the object. All inputs are encoded by LOPCT. We set the
parameters of LOPCT to d=8 and k=16. The point features encoded
by LOPCT are fed into MLP, and then the loss function is calculat-
ed. The parameters λ and τ are set to 0.1 and 1. LOPCT and MLP
are optimized 20K epochs through Adam [KB14], and the learning
rate was set at 1e-4.

4.2. Datasets and evaluation criteria

datasets To verify the validity of the method, five common water-
tight objects were selected: Armadillo, Bunny, Gargogle, Fandisk,
Dragon, and six common complex topology were selected: Railing,
Slim, Motor, Mould, Hole, and Part.

criteria In this paper, Chamfer Distance (CD), Hausdoff Distance
(HD) and Average Normal Error (NAE) were used to measure the

Table 2: Computational resource requirements. Params represents
space complexity and FLOPS stands for time complexity.

method # Params # FLOPs

IGR 2.10M 4.19G
FPE 0.26M 0.52G

SIREN 0.20M 0.40G
MSPE 1.08M 2.15G
Ours 1.84M 3.68G

quality of extracted mesh. To calculate CD, HD, and NAE, we ran-
domly sample a set of N points χ = {xi}N

i=1, M = {ni}N
i=1 from

the extracted surface and ground-truth surface χ̂ = {x̂i}N
i=1, M̂ =

{n̂i}N
i=1, for watertight object, N=320000, for object with compli-

cated topology, N=50000. The expression of CD is:
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Input FPE SIREN Ours GT

Figure 5: Visual comparisons on SDF reconstruction from raw point clouds extracted from complex topology. The zero level set of SDF was
extracted by marching cubes, and the polygon mesh of manifold was obtained.

CD(χ, χ̂) =
1
N ∑

i
min

j
‖xi− x̂ j‖+

1
N ∑

j
min

i
‖x̂i− x j‖. (10)

The expression of HD is:

HD(χ, χ̂) = max(max
i

min
j
‖xi− x̂ j‖,max

j
min

i
‖x̂i− x j‖). (11)

The expression of NAE is:

NAE(M,M̂) =
1
N ∑

i
min

j
‖ni− n̂ j‖+

1
N ∑

j
min

i
‖n̂i−n j‖. (12)

In addition, this paper uses the Mean Absolute Error (MAE) be-
tween the predicted SDFs and the ground-truth SDFs to measure
the quality of the predicted SDFs.

4.3. Watertight object reconstruction

The numerical results are summarized in Table 1, and the visual
results are shown in Figure 4. It can be seen from the table that I-
GR method has a strong topological recovery ability of watertight
objects, but from the Figure 4, it fails to recover geometric details
of dragon and armadillo. However, our method can recover both
the correct topology and geometric details, indicating that LOPC-
T can improve the geometric details recovery ability of MLP. For
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Table 3: The reconstruction result of unstructured point cloud after adding (-0.018,0.018) uniform noise to normal vector. CD and HD are
multiplied by 100000, NAE are multiplied by 1000 and MAE are multiplied by 100.

method
1% 2%

CD HD NAE MAE CD HD NAE MAE

IGR 14.82 248.03 1.07 0.86 12.77 235.29 1.07 0.83
SIREN 62.32 2787.34 1.20 18.66 98.49 8373.19 2.05 18.63
Ours 2.33 97.58 0.83 0.93 2.26 86.88 0.83 0.92

Table 4: Reconstruction result of complex topology reconstruction. In order to improve the reconstruction efficiency, 50000 points were
extracted from the original object for training, so the expression of complex topology was insufficient in some cases.

data
CD HD NAE

FPE SIREN Ours FPE SIREN Ours FPE SIREN Ours

railing 83154.96 83157.70 83152.30 199093.06 199093.70 199081.03 3.5375 0.71 0.58
slim 2581918.05 2581917.30 2581898.58 14389115.79 14389076.18 14388999.12 4.2632 5.67 5.72
hole 0.42 0.43 0.41 1.42 1.43 1.37 7.19 2.50 2.81

mould 0.01 0.01 0.01 0.01 0.01 0.01 6.69 4.80 5.16
motor 0.62 0.60 0.63 1.77 1.74 1.79 6.84 2.91 2.15
part 0.21 0.21 0.20 0.36 0.36 0.34 15.00 11.03 9.09

CD, our method achieves comparable results with SIREN and M-
SPE, but for MAE, our method has better results, which shows that
our method can recover SDF in good quality. Moreover, The object
recovered from FPE has impurities and its CD index is relatively
large.

4.4. Computational resource analysis

In this section we show the time complexity and space complexity
of the different methods. For time complexity, we use floating point
operation as a metric and for space complexity, we use the number
of parameters of the model as a metric. The comparison results are
shown in Table 2. As can be seen from the table, IGR has the high-
est space complexity and time complexity, while SIREN has the
lowest. The main reason is that IGR uses more linear layers, while
SIREN only uses the new activation function and reduces the use
of linear layers. Compared with IGR, our method has lower space
complexity and time complexity, which proves the effectiveness of
our proposed LOPCT. Although FPE method has low time com-
plexity and space complexity, the watertight objects recovered by
them contain impurities.

4.5. Noisy data reconstruction

In order to demonstrate the robustness of the proposed method on
real-world datasets, we add 1% or 2% uniform noise to the normal
vector of watertight object mentioned in 4.2, and then use the noisy
data for training. Every 200 epochs, we used the trained model to
reconstruct the watertight object, then calculated CD, HD, NAE
and MAE, and finally averaged the results. The numerical results
are shown in Table 3. As can be seen from the table, our method
is robust to noisy data as the noise level increases and consistently
outperforms SIREN and IGR in terms of CD, HD and NAE. In

addition, compared with IGR, our method has a faster convergence
speed and can recover high-quality topologies at the early stage of
training, which can be seen from the average results in the table.

4.6. complex topology reconstruction

Since IGR cannot recover complex topology and SPE relies on
multi-scale training, we only compare with SIREN and FPE. The
numerical results are summarized in Table 4, and the visual result-
s are shown in Figure 5. For CD and HD, our method achieves
the best results on multiple complex topologies, and for NAE, our
method and SIREN achieve comparable results. It can be seen from
the Figure 5 that comparing with the reconstruction of watertight
objects, FPE has more advantages in the reconstruction of complex
topology, but its recovery ability for sharp features is insufficient.
For SIREN, although the plane recovery ability is better than that
of FPE, the recovery of sharp features is also poor. However, our
method can better recover the complex topology and sharp features.
It shows that LOCPT module can effectively improve the recovery
ability of complex topology and sharp features of MLP.

4.7. Ablation study

The results of 3d shape reconstruction were affected by network
parameters and network structure. In order to verify the rationality
of design of parameter and structure, a large number of ablation ex-
periments of reconstruction of watertight objects were conducted.
Every 200 epochs, we test the trained model and output the visual
results, then calculate the CD, HD, NAE on the results, and finally
take the average.

Our LOPCT module first maps the input to the high-dimensional
space, and then does feature fusion in the high-dimensional space,
and finally maps the fused features back to the original space. This
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Table 5: The ablation experiment of Linear layer . CD and HD are multiplied by 100000, NAE are multiplied by 1000 and MAE are multiplied
by 100. With indicates that a linear layer is used, and without indicates that a linear layer is not used.

data
CD HD NAE MAE

with without with without with without with without

fandisk 1.45 1.90 9.97 14.69 3.97 3.72 0.27 0.30
bunny 1.68 2.30 40.29 32.07 0.10 0.10 0.38 0.55
dragon 1.45 1.84 68.38 97.46 0.04 0.04 1.67 1.73

armadillo 2.47 2.27 57.86 59.48 0.05 0.05 1.30 1.25
gargoyle 4.33 4.11 288.29 330.33 0.06 0.06 1.37 1.16

is different from SIREN, FPE, and SPE, who will continue to learn
SDF in higher dimensions. From the average results of Table 5, it
can be seen that the recovery of topological structure and geometric
details is better when linear layer is used. The effect is similar in
terms of SDF recovery quality. But using a linear layer can narrow-
ing the gap between self-attention feature matrix and input point
cloud.

The numerical results of whether to initialize network parame-
ters with a sphere are summarized in Table 6. The overall recon-

Table 6: Ablation experiment of network parameters initialization.
CD and HD are multiplied by 100000, NAE are multiplied by 1000.
WithInit indicates that sphere initialization is used and withoutInit
indicates that sphere initialization is not used.

method CD HD NAE

withInit 2.27 92.96 0.84
withoutInit 2.48 106.81 0.80

struction results with sphere initialization are better than that with-
out sphere initialization. This is because watertight object can be
obtained by deforming spheres and weights trained on spheres can
provide geometric prior information for the network. But in terms
of normal vector recovery, the effect is similar.

For LOPCT module, different input embedding dimension d and
the number of neighborhoods k will affect the final reconstruction
effect. We take fandisk reconstruction results as an example to il-
lustrate the influence of LOPCT module parameters. The average
results are shown in Table 7. We found that the best results were

Table 7: The numerical results of the reconstruction of fandisk. CD
and HD are multiplied by 100000, NAE are multiplied by 1000 and
MAE are multiplied by 100.

(d,k) (8,8) (8,16) (16,8) (16,16) (8,32)

CD 1.50 1.45 1.63 1.58 1.48
HD 11.73 9.97 11.47 10.74 10.75

NAE 3.95 3.97 4.00 3.93 3.87
MAE 0.34 0.27 1.90 1.44 0.35

achieved at d=8 and k=16. When d is equal to 8 and the number of
neighborhoods k is equal to 8, 16, 32, the results become better first

and then worse. This is because if there are too few neighborhood
points, the mutual information between neighborhood points will
be lost, and if there are too many neighborhood points, noise will
be introduced. When the number of neighborhood points k is equal
to 16 and d changes from 8 to 16, the result becomes worse. This is
because the mutual information fusion in a higher dimension will
produce a gap between the original space and feature space, which
is not beneficial for MLP to learn SDF. We find that the increase of
the number of neighborhood points has a favorable effect on nor-
mal vector reconstruction. This is because the number of points is
too small to describe local topological relations.

5. Conclusion

In this paper, LOPCT is proposed, which can effectively solve the
essential problem of MLP dealing with the point cloud in a point-
wise way, so that the sharp features and geometric details of water-
tight object and complex topology can be well recovered, and the
comparable and better results can be obtained. LOPCT has a strong
ability to recover geometric details and sharp features. The correct
topology can be recovered at the early stage of network iteration
and geometric details and sharp features can be recovered with the
update of network parameters. In addition, our method also shows
robustness in the presence of noise in the normal vector.
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