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Figure 1: We present an uncertainty-aware overlap prediction network for partial point cloud registration, which is able to suppress confusing
overlapping regions, thus obtaining more reliable overlap scores and more exact dense correspondences for robust registration. The redder
or more green points in (b) are the points with higher uncertainties. The colorful points in (c) are points with higher overlap scores. The
green lines denote the correct correspondences and the red lines represent the wrong correspondences.

Abstract
High-confidence overlap prediction and accurate correspondences are critical for cutting-edge models to align paired point
clouds in a partial-to-partial manner. However, there inherently exists uncertainty between the overlapping and non-overlapping
regions, which has always been neglected and significantly affects the registration performance. Beyond the current wisdom, we
propose a novel uncertainty-aware overlap prediction network, dubbed UTOPIC, to tackle the ambiguous overlap prediction
problem; to our knowledge, this is the first to explicitly introduce overlap uncertainty to point cloud registration. Moreover, we
induce the feature extractor to implicitly perceive the shape knowledge through a completion decoder, and present a geometric
relation embedding for Transformer to obtain transformation-invariant geometry-aware feature representations. With the merits
of more reliable overlap scores and more precise dense correspondences, UTOPIC can achieve stable and accurate registration
results, even for the inputs with limited overlapping areas. Extensive quantitative and qualitative experiments on synthetic and
real benchmarks demonstrate the superiority of our approach over state-of-the-art methods.

CCS Concepts
• Computing methodologies → Point-based models;

† Co-corresponding authors: H. Chen and M. Wei.

1. Introduction

3D sensors are becoming increasingly available and affordable, in-
cluding various types of 3D laser scanners, and RGB-D cameras© 2022 The Author(s)
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(such as Microsoft Kinect, Intel RealSense, Stereolabs ZED, and
Apple Truth Depth Camera) [WYW∗18,YLX∗19]. This benefits to
accurately represent scanned surfaces, detailing the shape, dimen-
sions, and the size of various objects [CWL∗22]. However, the raw
point clouds directly captured by these sensors unavoidably require
a registration step to synthesize a complete model or a large-scale
scene from multiple partial scans [LXW∗22].

The problem of partial point cloud registration has been ex-
tensively explored [WS19b, YL20, AHY∗21, WLD∗21, HGU∗21,
FLLW21, YL22, WYF∗22, CWX∗22], yet not well-solved. Gen-
erally, the central of accurate registration lies in two aspects: (i)
localizing reliable overlapping regions and (ii) establishing accu-
rate correspondences. Specifically, one can sample more match-
ing points from the overlapping portions of two scans [HGU∗21,
WYF∗22], or treat the overlap scores as the confidence of corre-
spondences [YL22]. The larger the overlap ratio of a point cloud
pair is, the easier the overlap region is to be exploited to stitch the
point cloud pair for a precise alignment. Therefore, faithfully de-
tecting the most reliable overlapping regions is essential for robust
partial registration. On the other hand, given accurate overlapping
regions, if the learned features are less distinctive, numerous outlier
matches may still lead to a poor alignment [AHY∗21, WLD∗21].
Moreover, there always exists inherent uncertainty between over-
lapping and non-overlapping regions. For example, points near the
boundary between overlapping and non-overlapping regions are
quite ambiguous, especially when the overlap ratio is low or there
exist noise and/or outliers. Such kind of uncertainty may confuse
the prediction of overlapping points and correspondences, thus sig-
nificantly hindering the performance of registration.

Unlike most of the existing registration methods, we propose to
disentangle partial point cloud registration into two sub-goals: (i)
to first enhance the feature representation with ample prior shape
knowledge and transformation-invariant geometry relation embed-
ding, and (ii) to introduce the uncertainty into point cloud registra-
tion to solve the ambiguous overlap prediction problem.

We follow this path and introduce UTOPIC, a neural model for
partial point cloud registration with UncerTainty-aware Overlap
PredICtion. First, based on the observation that if two partial point
clouds can be recovered to their complete versions, it will be eas-
ier to align them, we employ a completion decoder to implicitly
enrich the feature extractor with geometry shape priors. Second,
we collaborate the geometric relation embedding of each point
cloud with the Transformer model [VSP∗17] to obtain more re-
liable and geometry-aware feature representations. Based on the
above learned features, we propose an uncertainty quantification
scheme to measure the overlap uncertainty of each point (see from
Fig. 1 (b)), and then lower the importance of uncertain regions for
subsequent overlap prediction and dense matching. Finally, qual-
ity rigid transformation parameters are computed, by considering
both overlap scores and correspondences (see from Fig. 1 (c)) in
the SVD solver. Experiments on both synthetic and real-scanned
data and detailed analysis show that our approach achieves state-
of-the-art performance compared with its competitors.

Our main contributions are as follows:

• We design a novel point cloud registration network, which is the

first to explore the overlap uncertainty to predict high-confidence
overlap and accurate correspondences for robust registration.

• We employ a completion decoder to implicitly enrich the feature
extractor of prior shape knowledge, which can be used to output
more reliable deep features.

• We introduce a geometry transformer incorporated with geomet-
ric relation embedding, which better captures the global contex-
tual information in both feature and geometry spaces and en-
hances cross-feature fusion.

• We propose an uncertainty quantification scheme, which is ca-
pable of alleviating the ambiguity of overlapping regions.

2. Related Work

2.1. Feature-based Methods

Feature-based point cloud registration methods usually contain two
sub-stages: first extracting powerful feature descriptors and then
recovering the transformation with robust pose estimators, e.g.,
RANSAC. Traditional feature-based methods [RBB09, STDS14]
use handcrafted features to construct descriptors. With the pros-
perity of deep learning techniques, learning-based descriptors
[CPK19, HGU∗21, AHY∗21, WLD∗21] achieve more impressive
and substantial improvements. FCGF [CPK19] designs a point de-
scriptor based on fully convolutional network and sparse tensor,
which is widely used for correspondence search and registration.
[AHY∗21] achieves rotation invariance by PCA on the neighbor-
hood to find the normal axis. Predator [HGU∗21] introduces an
overlap attention module and uses probabilistic sampling mecha-
nism for robust RANSAC, which significantly improves the perfor-
mance of registration for low-overlap point cloud pairs. In contrast
with the descriptors that rely on local reference frame, [WLD∗21]
achieves the rotation invariance by grouping equivariant feature
learning. However, establishing correspondences based on feature
descriptors becomes more challenging when the input scans have
ambiguous geometry structures. Besides, these methods are time-
consuming due to RANSAC-like estimators.

2.2. Direct Registration Methods

Direct registration methods estimate the transformation parame-
ters with a neural network in an end-to-end manner. This kind
of method can be further divided into two classes, according to
whether depending on correspondences.

The correspondence-based methods first extract point-wise fea-
tures, then calculate the correspondences and finally employ a SVD
solver to obtain the transformation. DCP [WS19a] mimics the
pipeline of ICP [BM92], and employs a transformer to compute
soft correspondences and a differentiable SVD layer to extract the
transformation. PRNet [WS19b] utilizes a keypoint detector to ob-
tain keypoint-to-keypoint correspondences for partial point cloud
registration. To overcome the disadvantage of matching by sim-
ply taking the inner product of feature vectors, [LZX∗20] learns
to match points based on joint information of the entire geometric
features and Euclidean offset for each point pair. [ZSD∗22] pro-
poses to learn a partial permutation matching matrix, which does
not assign corresponding points to outliers, and implements hard
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Figure 2: UTOPIC contains three parts: Feature Extraction, Uncertainty-aware Feature Enhancement and Overlap-guided Registration.

assignment to prevent ambiguity. RPM-Net [YL20] uses the dif-
ferentiable Sinkhorn layer and annealing algorithm to get soft as-
signments of point correspondences from hybrid features. RGM
[FLLW21] introduces a deep graph matching-based framework for
registration, which takes both local geometry and graph topolog-
ical structure into consideration. By contrast, some other meth-
ods such as [CDK20, PRG∗20, BLZ∗21, LKCP21, CSYT22] fo-
cus more on the removal of outlier correspondences. For example,
DGR [CDK20] and 3DRegNet [PRG∗20] utilize a classifier to pre-
dict a confidence value for each correspondence. [BLZ∗21] incor-
porates spatial consistency for pruning outlier correspondences and
[CSYT22] extends it with a new second-order spatial compatibil-
ity. Additionally, [LCL∗21] and [QYW∗22] adopt a coarse-to-fine
strategy to better align indoor or large-scale outdoor point clouds.
DeepPRO [LHF∗21] directly predicts the point-wise location of the
aligned point cloud to circumvent overlap prediction or keypoint
detection. To deal with the low-overlap point clouds, [WYF∗22]
and [YL22] utilize overlap prediction module to improve the per-
formance of partial registration, but they overlook the inherent un-
certainty between overlapping and non-overlapping regions.

The correspondence-free methods extract global features for
each point cloud and estimate the transformation with optimiza-
tion algorithm or regression. PointNetLK [AGSL19] proposes to
combine the deep feature networks and the conventional Lucas &
Kanade optimization algorithm to tackle the registration problem.
FMR [HMZ20] presents a feature-metric projection error to align
point clouds, which does not need to search the correspondences
so that the optimisation speed is fast. [YEK∗20] leverages a prob-
abilistic registration paradigm by formulating registration as the
minimization of KL-divergence between two probability distribu-

tions modeled as mixtures of Gaussians. PCRNet [SLG∗19] simply
extracts the global features and regresses the transformation from
the combined features. [YYH∗21] and [LWF22] solve the point
cloud registration and completion tasks simultaneously, which fa-
cilitate each other. In summary, the correspondence-free methods
typically use the global features, weakening the importance of lo-
cal structures. In addition, these methods require time-consuming
iterative process to achieve promising results.

2.3. Uncertainty Modeling

Generally, there are two typical kinds of uncertainties one can
model [DKD09]. Aleatoric uncertainty captures inherent noise
from observations, which cannot be reduced even if more data
are observed. On the other hand, epistemic uncertainty exists in
the model parameters which captures our ignorance about which
model generates our collected data. This kind of uncertainty can
be explained, if given enough data. Several recent work [ZFD∗20,
YZL∗21, LZB22] try to model aleatoric uncertainty by learning
the distribution instead of a single fixed uncertainty value. UC-
Net [ZFD∗20] proposes probabilistic RGB-D saliency detection
network via conditional variational autoencoders to model human
annotation uncertainty. [YZL∗21] utilizes a probabilistic represen-
tational model in combination with a transformer for camouflaged
object detection. [LZB22] proposes a confidence estimation net-
work to model the uncertainty, which is used to dynamically su-
pervise the predicted camouflage maps. Inspired by these works,
we propose an uncertainty quantification scheme to capture overlap
uncertainty. To the best of our knowledge, this is the first attempt to
explicitly introduce overlap uncertainty to point cloud registration.
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3. Method

3.1. Problem Formulation and Overview

Given two partial point clouds P =
{

pi ∈ R3 | i = 1, . . . ,N
}

and

Q =
{

q j ∈ R3 | j = 1, . . . ,M
}

, point cloud registration aims at es-

timating a rigid transformation T = {R, t}, where R ∈ SO(3) and
t ∈R3. For the simple cases with strict one-to-one correspondences
between P and Q, the transformation parameters can be solved by

min
R,t

N

∑
i

M

∑
j

Ci, j
∥∥Rpi + t−q j

∥∥2
2 , (1)

where C is the correspondence matrix with ∑
M
j Ci, j = 1,∀i,

∑
N
i Ci, j = 1,∀ j, and Ci, j ∈ {0,1}N×M ,∀i, j. However, for most of

the partial overlap scenes, there are no strict one-to-one correspon-
dences. As a result, the correspondence matrix C cannot satisfy the
above constraints. To solve this problem, we also introduce slack
variables in C as [YL20] to convert inequality constraints back into
equality constraints. Specifically, we add an additional row and col-
umn to C for the points that have no correspondences, thus the new
matrix C ∈ R(N+1)×(M+1) can meet above three constraints.

Considering that the high-confidence overlap region is prone to
provide more reliable correspondences, we further reformulate the
problem of partial point cloud registration as

min
R,t

N

∑
i

M

∑
j

C̃i, jwi, j
∥∥Rpi + t−q j

∥∥2
2 , (2)

where wi, j is the weight computed based on the overlap scores, and
C̃ is the predicted correspondence matrix. We then propose an end-
to-end neural network to predict both the reliable overlap scores
and dense correspondences, based on which the rigid transforma-
tion is computed via the SVD solver.

Fig. 2 shows the overall pipeline of UTOPIC, including three key
parts: feature extraction, uncertainty-aware feature enhancement,
and overlap-guided registration. We first utilize the shared point
feature extractor to encode each point in P and Q, followed by a
completion decoder to implicitly enrich the learned feature with
the prior shape knowledge. Next, we enhance the feature represen-
tation with two sub-modules: a geometry transformer is designed to
enhance the global contextual information and promote the cross-
feature fusion, and an uncertainty quantification scheme is applied
to measure the overlap uncertainty for solving the ambiguous over-
lap prediction problem. Finally, the geometry transformer and affin-
ity matching are adopted again to detect high-fidelity overlapping
regions and accurate dense correspondences, which are then both
leveraged to guide the recovery of the alignment transformation.

3.2. Feature Extraction

For each input point cloud, we extract multi-level point-wise fea-
ture, by using four AdaptConv [ZFF∗21] layers (64, 64, 128, 256)
followed by an MLP, as shown in Fig. 3. The learned point-wise
feature of P and Q are represented as FP ∈ R|P|×V and FQ ∈
R|Q|×V . V is the dimension of the output feature.

It is intuitive that if two partial point clouds can be recovered

to their complete versions, it will be easier to align them. Hence,
we detach the completion decoder from PCN [YKH∗18], for in-
volving rich geometric shape knowledge into the point-wise fea-
ture extractor. The completion decoder produces coarse results P̂,
Q̂ and fine results P, Q. During our early experiments, we find
that it is not necessary to carefully design a completion model,
like [WXH∗21, XWL∗21]. Even though the completion results are
not perfect (see from the left bottom of Fig. 2), it still benefits our
registration accuracy (see from the ablation study in Sec. 4.3). We
only use the completion decoder to enhance the feature representa-
tion. Note also that this completion decoder is only used during the
training stage, while removed during testing.

MLP(512)
AdaptConv(64)

AdaptConv(128)

AdaptConv(256)

AdaptConv(64)

P

PFC

C

C Concatenate

Figure 3: Detailed architecture of the point feature extractor.

3.3. Uncertainty-aware Feature Enhancement

3.3.1. Geometry Transformer

Transformer has been proved to be effective for capturing contex-
tual information within a single point cloud or promoting the cross-
feature fusion of point cloud pairs [WS19a, YLS∗21, WYF∗22,
YL22]. Nevertheless, they only feed transformer with deep fea-
tures and do not take the geometric information into consideration,
which makes the learned features less discriminative. [LH22] intro-
duces a position encoding method but merely using the coordinates
of points. [QYW∗22] proposes a geometric relative position em-
bedding, yet with the large memory consumption. To this end, we
elaborately design a geometry transformer that not only encodes
sufficient geometry information but also occupies relatively low
memory (see from Fig. 4). The proposed transformer consists of a
geometry self-attention module and a feature cross-attention mod-
ule. The two modules are alternately iterated for N times to obtain
hybrid features F̂P ∈ R|P|×V and F̂Q ∈ R|Q|×V .
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Figure 4: Detailed architecture of the geometry transformer.

Geometry self-attention. The geometry self-attention is de-
signed to learn the global contextual information in both feature
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and geometry spaces for each point cloud. We describe the com-
putation for P (the same for Q). Given the features F ∈ R|P|×dt ,
where dt is the dimension of the hidden feature, the output features
Z ∈ R|P|×dt are the weighted sum of all projected input features as

zi =
|P|

∑
j=1

ai, j

(
f jWV

)
, (3)

where ai, j is the weight coefficient and computed by a row-wise
softmax on the attention scores ei, j, which is computed as

ei, j =

(
fiWQ

)(
f jWK

)T
+gi, jWG

√
dt

, (4)

where gi, j is the geometric relation embedding, WQ,WK , and
WV ∈ Rdt×dt are the projection weights for queries, keys and val-
ues. WG ∈ R3×1 is the projection weights for geometric relation
embedding. The right part of Fig. 5 shows the computation of the
geometry self-attention. Note that [QYW∗22] also embeds geom-
etry structure knowledge into the transformer, but with the extra
space complexity of O(N2 × dt). By contrast, our geometry self-
attention only costs O(N2×3). Usually, the feature dimension dt is
far larger than 3, our solution therefore has less space complexity.
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Figure 5: Left: An illustration of the geometric relation embedding.
Right: Computation flow of the geometry self-attention.

Geometric relation embedding. We first define the point triplet
as the group of a target point associated with its two nearest neigh-
bors. Inspired by the handcrafted features, we also define a novel
geometric relation embedding with point-wise distance, triplet-
wise angle and the difference between the perimeter of the local
triangles. In detail, given two points pi and p j, their geometric re-
lation can be described as

(1) Point-wise Distance. Point-wise distance is the distance
ρi, j =

∥∥pi −p j
∥∥

2 between two points in the Euclidean space.

(2) Triplet-wise Angle. We search two nearest neighbors pk1
i , pk2

i
for pi, and form a triplet. Then, we calculate the sum of vector
pk1

i −pi and pk2
i −pi, denoted as pk

i −pi. The triplet-wise angle is

computed as αi, j = ∠
(

pk
i −pi,p j −pi

)
.

(3) Triangle Perimeter Difference. We also denote the two near-
est neighbors of p j as pk1

j and pk2
j , which form a local triangle. As

is shown in the left part of Fig. 5, we compute the perimeter dif-

ference between local triangles as ηi, j =
(

di,k1
i +di,k2

i +dk1,k2
i

)
−(

d j,k1
j +d j,k2

j +dk1,k2
j

)
, where di,k1

i =
∥∥∥pi −pk1

i

∥∥∥
2
.

Finally, the geometric relation embedding gi, j is computed by
aggregating the point-wise distance, triplet-wise angle and the tri-
angle perimeter difference as

gi, j =CAT [ρi, j,αi, j,ηi, j], (5)

where CAT [·, ·] represents the concatenation operation.

Feature cross-attention. Cross-attention is essential for the fea-
ture interaction between two point clouds. Given the features FP,
FQ of P, Q, the cross-attention features ZP of P is computed as

zP
i =

|Q|

∑
j=1

ai, j

(
fQ

j WV
)
. (6)

Similarly, ai, j is computed by a row-wise softmax on the cross-
attention scores ei, j as

ei, j =

(
fP
i WQ

)(
fQ

j WK
)T

√
dt

. (7)

The cross-attention feature of Q is computed in the same way.
The geometry self-attention module encodes the transformation-
invariant geometric relation embedding for each point cloud, while
the feature cross-attention module encourages the feature interac-
tion conditioned on each other. Therefore, the final feature repre-
sentation is more robust and discriminative.
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Extractor

Geometry
Transformer

，N(0  I)

，N(μ  σ)

，N(0  σ)

Sample

Variance

µ

σ

Element-wise multiply Element-wise sum Uncertainty

Figure 6: Overview of the uncertainty quantification module. This
module decomposes the sample operation into a trainable part and
a random part for end-to-end learning.

3.3.2. Uncertainty Quantification

In the partial overlap scenes, it is not trivial to find the one-to-
one correspondence. Outlier points may lead to many mismatches.
To resolve this problem, recent literature [HGU∗21, XLW∗21,
WYF∗22, YL22] is devoted to better feature representation and re-
liable overlap predictions. However, these approaches neglect the
uncertainty that inherently exists between overlapping and non-
overlapping regions and in some other challenging regions, espe-
cially when the overlap ratio is low or there exist noise and outliers.

Motivated by this issue, we propose a probability-based overlap
uncertainty quantification scheme to generate more discriminative
features. In detail, for the input point cloud P, we assign each point
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a Gaussian distribution parameterized by the mean µi and the vari-
ance σi, which are predicted by different MLP layers from F̂P. The
overlap score of pi can be then sampled from the learned distri-
bution, oi ∼ N (µi,σi). Following [YZL∗21], we decompose the
sampling operation into two steps (see from Fig. 6). First, one ran-
dom sample εi is obtained from the standard Gaussian distribution
N (0, I), i.e., εi ∼ N (0, I), and the desired sample is computed by
µi + εiσi. To measure point-wise overlap uncertainty, we then re-
sample K overlap scores for each point from the learned distri-
bution, denoted as OP =

{
o(1), ...,o(K)

}
. According to Bayesian

probability theory, we can treat OP as empirical samples from an
approximate predictive distribution and measure the uncertainty by
calculating the variance as

UP = norm(var(OP)), (8)

where UP ∈ R|P|×1 represents the overlap uncertainty, norm(·) is
the min-max normalization and var(·) is the variance computation.
Also, the overlap uncertainty UQ can be obtained by the same way.

ˆ PF

ˆ QF

Ĉ

C

C

MLP

MLP

Shared

PI - U

QI - U

Train

Test

Test

Random
mask

PF

QF

CMatrix multiply Element-wise multiply Concatenate

Figure 7: The details of the uncertainty-aware weighting module.

3.3.3. Uncertainty-aware Weighting

Once obtaining the overlap uncertainty, the learned point-wise fea-
tures are re-weighted to highlight the regions of low uncertainties.
As illustrated in Fig. 7, we take the features F̂P, F̂Q, the correspon-
dence Ĉ, and the overlap uncertainty UP(UQ) as inputs to compute
the uncertainty-aware features FP

(FQ
) as

F̃P = MLP(cat[F̂P, Ĉ⊗ F̂Q]), (9)

FP
= F̃P ⊙ (I −UP), (10)

where MLP(·) denotes a multi-layer perception. Although this
module is designed to lower the importance of features from the un-
certain regions, the network are expected to pay more attention to
these regions. We take an uncertainty-based random masking strat-
egy, as demonstrated in the right-most part of Fig. 7. During train-
ing stage, we first assign a random number to each point, and then
mask out those features whose associated overlap uncertainty is
larger than the random value. The uncertainty-based random mask-
ing strategy increases the difficulty and diversity of training sam-
ples. As a result, the uncertainty information can be incorporated
into the training procedure. This motivates the network to focus
more on the learning of these uncertain points. Note that the ran-
dom masking strategy is removed during testing stage.

Affinity matching. Notably, in the process of the above
uncertainty-aware weighting, a soft correspondence Ĉ is required.
An affinity matching module is used to generate it. We calculate the
similarity matrix of features F̂P, F̂Q in a learnable way instead of
simple dot-product of feature vector, which can be represented as

Ai, j =
(

f̂P
i

)T
W

(
f̂Q

j

)
, (11)

where W ∈ RV×V is the learnable parameter. For handling outliers
and recovering equality constraints of the correspondences matrix,
we add a slack variable to row and column of the similarity matrix,
and then leverage Sinkhorn [Sin64] algorithm to calculate the soft
correspondence matrix Ĉ. More details please refer to [YL20].

3.4. Overlap-guided Registration

As previously investigated, approaches [HGU∗21, XLW∗21,
WYF∗22, YL22] present different strategies to improve the per-
formance of registration with overlap scores. For example, Preda-
tor [HGU∗21] samples more interest points from overlapping re-
gions for RANSAC. [WYF∗22] applies gumbel softmax to sample
the overlap correspondences. OMNet [XLW∗21] utilizes overlap
masks to highlight the points within the overlap regions. We argue
that only using the predicted overlap points to estimate the rigid
transformation is unreliable for the reason that sparse correspon-
dences from these points may be insufficient and confused due to
repetitive structures, noise and outliers [HMZA21]. Hence, we pro-
pose an overlap-guided registration module to tackle this problem.

With the uncertainty-aware features FP
,FQ, another geometry

transformer is adopted to predict the reliable overlap scores, ÔP

and ÔQ. Meanwhile, the final soft correspondence C is also ob-
tained by an affinity matching module. We then leverage the linear
assignment problem (LAP) solver [JV87] to compute the binary
hard correspondence C̃ from C. Based on observation that the cor-
respondence is more likely to be accurate if a pair of corresponding
points also both lie in the overlapping region, we add this weight
for each correspondence as:

wi, j =


ôP

i ôQ
j

∑
N
i ∑

M
j C̃i, j ôP

i ôQ
j
, C̃i, j = 1

0, C̃i, j = 0
. (12)

Finally, the rigid transformation is easily computed by SVD, ac-
cording to Eq. 2.

3.5. Loss Function

The proposed UTOPIC is trained in an end-to-end way without it-
erative steps, using four loss terms L= Lr +Lo +Lu +Lc.

Registration loss. We adopt the cross entropy loss between the
predicted soft correspondence C and the ground truth correspon-
dence C to train our model. The formula is as

Lr =−
N

∑
i

M

∑
j

(
Ci, j logCi, j +

(
1−Ci, j

)
log

(
1−Ci, j

))
. (13)

The ground-truth correspondence C is computed by mutual near-
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Table 1: Quantitative comparison of different methods on ModelNet, ModelLoNet and ScanObjectNN. The best performance is highlighted
in bold, and the sub-optimal performance is marked by underline.

Dataset Method RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)
IDAM [LZX∗20] 10.8991 7.4032 0.14258 0.09009 14.2849 0.19260
RPM-Net [YL20] 2.5491 0.8849 0.01984 0.00865 1.6914 0.01830

OMNet [XLW∗21] 8.2406 5.8538 0.09341 0.06161 11.4084 0.12982
RGM [FLLW21] 3.0068 0.8072 0.02556 0.00699 1.5610 0.01458

Predator [HGU∗21] 0.6505 0.4609 0.01148 0.00447 0.8643 0.00904
REGTR [YL22] 1.1690 0.1894 0.00434 0.00153 0.3493 0.00306

ModelNet
[WSK∗15]

Ours 0.2238 0.1322 0.00212 0.00131 0.2464 0.00264
IDAM [LZX∗20] 16.9098 11.7129 0.23770 0.15980 22.6078 0.34240
RPM-Net [YL20] 6.6189 2.0453 0.04813 0.01827 3.8514 0.03835

OMNet [XLW∗21] 10.2776 7.7237 0.12428 0.08294 15.0794 0.17329
RGM [FLLW21] 17.8005 5.5261 0.10970 0.04025 9.8361 0.08408

Predator [HGU∗21] 16.0141 3.3206 0.12510 0.03281 5.8900 0.07673
REGTR [YL22] 3.4594 1.3427 0.03216 0.01254 2.5753 0.02617

ModelLoNet
[WSK∗15, HGU∗21]

Ours 2.5463 0.8588 0.02098 0.00765 1.5934 0.01555
IDAM [LZX∗20] 15.9602 8.0429 0.13187 0.07255 15.2581 0.15084
RPM-Net [YL20] 8.1251 2.8829 0.08984 0.03314 5.4576 0.07384

OMNet [XLW∗21] 10.5122 7.9538 0.11367 0.07984 15.2959 0.16384
RGM [FLLW21] 12.6069 3.7596 0.08729 0.02740 7.0376 0.05634

Predator [HGU∗21] 12.6050 4.8842 0.12480 0.04899 9.4936 0.10070
REGTR [YL22] 2.1477 0.7448 0.02268 0.00614 1.3842 0.01247

ScanObjectNN
[UPH∗19]

Ours 3.6790 0.2633 0.01394 0.00179 0.5601 0.00366

est neighbour searching as

Ci, j =

1,
NN

(
q j,T (P)

)
= pi,NN (T (pi),Q) = q j

and
∥∥T (pi)−q j

∥∥
2 < r

0, otherwise
,(14)

where NN (·) denotes the spatial nearest neighbor, T (·) is the op-
eration of the ground-truth rigid transformation from P to Q, and r
denotes the distance threshold.

Overlap loss. The task of predicting overlap scores is regarded
as a binary classification problem and supervised as

LP
o =

1
|P|

|P|

∑
i=1

(
ōP

i log
(

ôP
i

)
+
(

1− ōP
i

)
log

(
1− ôP

i

))
, (15)

where ŌP denotes the ground-truth overlap of P as

ōP
i =

{
1, ∑

M
j Ci, j = 1

0, otherwise
. (16)

The overlap loss LQ
o can be computed in the same way. We then

get a total overlap loss: Lo = LP
o +LQ

o .

Uncertainty loss. To train the uncertainty quantification module,
we define the uncertainty loss Lu, which is a weighted combina-
tion of a standard binary cross entropy (BCE) loss and a Kullback-
Leibler (KL) divergence as

LP
u = λ ·LBCE

(
o(k),ŌP

)
+η ·KL(N (µ,σ)∥N (0, I)), (17)

where o(k) denotes one example drawn from the overlap distribu-
tion, which is used to boost the diversity. λ and η are balance fac-
tors. The final uncertainty loss is Lu = LP

u +LQ
u .

Completion loss. Following PCN [YKH∗18], we use the cham-
fer distance (CD) to supervise the coarse and fine completion re-
sults as

LP
c =CD(P̂, P̃)+CD(P, P̃), (18)

where P̃ is the ground truth completion result. The total completion
loss can be computed as Lc = LP

c +LQ
c

4. Experiment

Datasets. We evaluate our approach on three datasets: ModelNet,
ModelLoNet, and ScanObjectNN.

(i) ModelNet is generated from ModelNet40 [WSK∗15], which
contains synthetic point clouds sampled from 12,311 CAD mod-
els of 40 different categories. We sample 1024 points for each
point cloud, and then adopt the same cropping setting in [YL20]
to simulate the partial-overlap point cloud pairs. Then, one of the
point cloud is transformed by a random rotation in the range of
[0,45]◦ and a random translation t in the range of [−0.5,0.5] along
each axis. Gaussian noise sampled from N (0,0.01) and clipped to
[−0.05,0.05] is also added to each coordinate of the points in the
clean point clouds. Finally, each point cloud is shuffled to reorder
all points. To evaluate the ability of our network to generalize to
different shapes, we use the first 20 categories for training (5,112
samples) and validation (1,202 samples) respectively, and the re-
maining for testing (1,266 samples).

(ii) ModelLoNet is also generated from ModelNet40. The only
difference from ModelNet is that ModelLoNet has an average over-
lap ratio of 53.6%, while ModelNet is 73.5%.
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Overlap Ratio: 70.2% 
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Overlap Ratio: 68.9% 

Overlap Ratio: 57.5% 

(a)

Figure 8: Comparison of registration results of six SOTA methods and UTOPIC on (a) ModelNet, (b) ModelLoNet, and (c) ScanObjectNN.

(iii) ScanObjectNN [UPH∗19] is a real-world point cloud dataset
based on scanned indoor scene data. We use the testing part of
ScanObjectNN containing 581 samples. We do not retrain all com-
pared network models. This dataset is only used for testing.

Evaluation metrics. For the consistency with prior work
[WS19a], we use the anisotropic metrics of Root Mean Square Er-
ror (RMSE) and Mean Average Error (MAE) over Euler angles and
translations. Besides, we evaluate the isotropic error for rotation
and translation proposed in [YL20]. All angles are in degrees.

Comparison methods. We compare our method with six
latest learning-based registration approaches [LZX∗20, YL20,
XLW∗21, FLLW21, HGU∗21, YL22]. OMNet [XLW∗21], Preda-
tor [HGU∗21] and REGTR [YL22] also utilize the overlap predic-
tion. For all compared methods, we use their released public code
and follow the same setting in their original papers to retrain the
networks by our prepared training data.

Implementation details. All experiments are conducted on a
single Nvidia RTX 2080Ti. We train UTOPIC for 200 epochs with
a batch size of 4. The SGD optimizer is used with the initial learn-
ing rate of 0.001. The sampling number K is set to 50. The balance
factors λ,η are 0.5 and 0.1. The repeat number N in geometry trans-
former is set to 3, and the distance threshold r is 0.075. The code is
available at https://github.com/ZhileiChen99/UTOPIC.

4.1. Evaluation on Synthetic ModelNet and ModelLoNet

We quantitatively evaluate the effectiveness of our method on two
synthetic datasets. As reported in Tab. 1, our approach achieves the
smallest registration errors over all metrics compared with other
approaches. REGTR [YL22] and Predator [HGU∗21] also have
impressive results thanks to their overlap prediction mechanisms.
When evaluating on the dataset with lower overlap ratio, it is ob-
vious that the performance of most methods degrades dramatically
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except our approach. In terms of the mean absolute error of rota-
tion in Tab. 1, the margin between UTOPIC and REGTR [YL22]
on the ModelLoNet is even ten times larger than that on the Mod-
elNet. Fig. 8 visualizes several cases that are unseen shapes for all
neural networks. We can observe that UTOPIC achieves the most
satisfactory registration results for partial point clouds of noise and
sampling irregularity. We can also observe from Fig. 8 (b) that, our
method still produces quality alignments, even though the two in-
put pairs contain rather limited overlapping parts.
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Figure 9: Error statistics of RGM [FLLW21] and our method un-
der different overlap ratios.

4.2. Evaluation on ScanObjectNN

We also evaluate the generalization ability of our method on the
ScanObjectNN dataset. The employed models for comparison are
all trained on the ModelNet. As shown in the Tab. 1, the proposed
UTOPIC produces almost the best results, which demonstrates a
better generalization ability to real-scanned data. Nevertheless, the
state-of-the-art methods like [HGU∗21,FLLW21] are less robust to
the data domain gap. Qualitative comparisons are demonstrated in
Fig. 8, which are consistent with the quantitative statistics.

Table 2: Ablation studies on ModelNet. O, C, U and G represent
models with overlap, completion, uncertainty and geometric rela-
tion embedding. The best performance is highlighted in bold.

O C U G RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)
0.3682 0.1907 0.00347 0.00195 0.3495 0.00397√
0.2837 0.1481 0.00241 0.00149 0.2761 0.00300√ √
0.2735 0.1470 0.00238 0.00138 0.2689 0.00277√ √ √
0.2691 0.1404 0.00237 0.00136 0.2600 0.00273√ √ √ √
0.2238 0.1322 0.00212 0.00131 0.2464 0.00264

4.3. Analysis

In this section, we conduct various specified experiments to analyze
the main ideas of UTOPIC.

Ablation study. We perform ablation studies on the ModelNet
dataset for a better understanding of our four main components: (i)
the overlap-guided weights (O), (ii) the completion decoder (C),
(iii) the uncertainty quantification (U), and (iv) the geometric re-
lation embedding (G). The detailed results are recorded in Tab. 2.
Clearly, our full pipeline performs the best on all metrics. Remov-
ing any component degrades the overall performance, suggesting

that all components are beneficial for accurate registration results.
In particular, we observe great improvements for the variant with
the overlap-guided weights. This implies that overlap prediction
is beneficial for partial point cloud registration. This observation
also implies that the importance of uncertainty quantification for
addressing the ambiguous overlap prediction problem.

Different overlap ratios. Although the comparisons on Mod-
elLoNet have indicated the superiority of our UTOPIC for low-
overlap point cloud pairs, it is still meaningful to analyse the vari-
ation tendency of the performance when overlap ratio decreases
gradually. We compare the performance of our approach with RGM
[FLLW21] on ModelNet40. We use the same crop setting of PR-
Net [WS19b]. The number of points is set to 768, 700, 640, 600
and 560 to generate point clouds with approximate overlap ratios
of 0.69, 0.58, 0.47, 0.40, and 0.32, respectively. Fig. 9 shows the
registration errors for different overlap ratios. As observed, our ap-
proach is very stable until the overlap ratio decreases to 0.32, but
still better than RGM [FLLW21].

Ground Truth Overlap UncertaintyUTOPIC Overlap OMNet Overlap

0

1

Figure 10: Visualization of predicted overlap scores and uncer-
tainty. We colorize both of the overlap scores and the uncertainties
based on the right color scale. With the color redder, one point is
more likely to be an overlapping or uncertain point.

Visualization of predicted overlap scores and uncertainty. We
visualize the predicted overlap scores and the uncertainty in Fig. 10.
With the color redder, one point is more likely to be an overlap-
ping or uncertain point. By comparing the predicted overlap scores
between OMNet [XLW∗21] and our method and the ground-truth
result, it is obvious to see that the detected overlapping regions of
our method are more accurate. OMNet [XLW∗21] mistakes some
ambiguous points and produces a wrong overlap mask. Besides, the
redder points in the rightmost sub-figure are the points with higher
uncertainty. They are almost located at the boundary between the
overlapping regions and non-overlapping regions. This is consistent
with our design intuition: precise uncertainty quantification facili-
tates better overlap prediction (Fig. 10 (b)).

Table 3: Error statistics of different self-attention modules.

UTOPIC RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t)
vanilla self-attention 0.2691 0.1404 0.00237 0.00136 0.2600 0.00273
self-attention w/APE 0.2667 0.1466 0.00256 0.00149 0.2718 0.00299
self-attention w/LPE 0.2656 0.1400 0.00226 0.00132 0.2567 0.00266

geometry self-attention 0.2238 0.1322 0.00212 0.00131 0.2464 0.00264

Different self-attention modules. To testify the effectiveness of
the geometry self-attention, we compare four methods in Tab. 3:
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Figure 11: Comparison of registration results on two unseen complex shapes of tiny details from PU-GAN [LLF∗19].

(i) vanilla self-attention [YLS∗21], (ii) absolute position embed-
ding (APE) [SDMR20], (iii) learned position embedding (LPE)
[CWY∗21], and (iv) geometric relation embedding. We observe
that the learned position embedding slightly improves the perfor-
mance, while the absolute position embedding causes degradation.
This is because low dimensional coordinate information without
non-linear mapping is not consistent with the high dimensional fea-
tures. By contrast, our approach achieves the best performance.

Table 4: Analysis of different uncertainty schemes.

UTOPIC RMSE(R) MAE(R) RMSE(t) MAE(t) Error(R) Error(t) OA
w/ PU, RM 0.3561 0.1562 0.00295 0.00152 0.2852 0.00309 82.51%
w/o U, RM 0.3017 0.1547 0.00259 0.00149 0.2791 0.00300 91.19%

w/o RM 0.2612 0.1466 0.00230 0.00142 0.2713 0.00286 95.31%
w/ U, RM 0.2238 0.1322 0.00212 0.00131 0.2464 0.00264 96.46%

Analysis of different uncertainty schemes. We conduct several
experiments to elaborate the crucial role of uncertainty schemes.
As shown in Tab. 4, we regard UTOPIC as the baseline, and com-
pare four variants: (i) with predicted uncertainty (PU) and random
masking (RM), but the variance in Eq. 8 is replaced by the pre-
dicted σi of the Gaussian distribution, (ii) without uncertainty (U)
and random masking (RM), (iii) without random masking (RM),
(iv) with uncertainty (U) and random masking (RM). The over-
lap accuracy is reported as OA in all experiments. The first row in
Tab. 4 indicates that the registration results of this variant degrade
dramatically, which shows the necessity of the computation for un-
certainty in Eq. 8. This is because the predicted variance may not
accurately describe the real variance of the Gaussian distribution,
while the sample variance can approximate the real variance more
reliably. To demonstrate the importance of uncertainty for overlap
prediction as our initial motivation, we remove the uncertainty and
random masking from UTOPIC and compute the overlap accuracy.
We find that the variant without uncertainty only achieves an over-
lap accuracy of 91.19% on average, while the variant with uncer-
tainty achieves 96.46%. Comparing with UTOPIC, the Error(R)
of the variant without random masking degrades from 0.2464 to
0.2713 and the Error(t) degrades from 0.00264 to 0.00286, which
demonstrates the benefits of the random masking strategy.

Unseen complex 3D shapes with tiny geometry details. We
additional present the visual comparisons on two unseen complex
3D shapes with tiny geometry details. The inputs are sampled with
5000 points from the dataset in [LLF∗19]. Notably, all compared
methods are trained on the ModelNet. As shown in Fig. 11, the
sculpture and gargoyle are more geometrically complicated than
the models in ModelNet40, but our approach also works well.

Table 5: Timing statistics in seconds for different approaches per-
formed on ModelNet and ModelLoNet. N is the number of input
points. We report the time for one pair of point clouds.

Method ModelNet (N:717) ModelLoNet (N:512)
IDAM [LZX∗20] 0.07 0.07
RPM-Net [YL20] 0.16 0.13

OMNet [XLW∗21] 0.03 0.03
RGM [FLLW21] 0.17 0.14

Predator [HGU∗21] 0.29 0.23
REGTR [YL22] 0.05 0.05

Ours 0.06 0.06

Timing. Table 5 reports the average running time (in seconds) of
different approaches. The testing data is collected from the datasets
of ModelNet and ModelLoNet. We conduct the test on a single
Nvidia RTX 2080Ti with Intel Core i7-4790 @ 3.6GHz. We find
that only OMNet [XLW∗21] and REGTR [YL22] are faster than
our method, while their performance is less satisfactory.

5. Failure Cases and Limitations.

Despite the promising performance of our approach, it still has
some limitations. First, if the distribution of the overlapping points
is sparse and scattered, it is hard for our approach to align point
clouds well (see from the first row of Fig. 12). This is because clus-
tering points in the same overlapping areas can help generate high-
certainty overlapping points. Second, our method may fail to regis-
ter the point clouds that have no distinctive geometry structures (see
from the bottom row in Fig. 12). This is because geometrically in-
distinguishable features lead to confusing mismatches. Finally, our
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approach does not conduct any downsampling operation. This hin-
ders our method being directly adapted to large-scale point clouds.

Input GT Ours

Figure 12: Two failure examples. UTOPIC fails when: (i) the dis-
tributions of overlap regions are sparse and scattered (Row 1); (ii)
the inputs lack geometrically indistinguishable features (Row 2).

6. Conclusion

We present UTOPIC, a novel uncertainty-aware overlap prediction
network for partial point cloud registration. UTOPIC utilizes the
overlap uncertainty quantification scheme for the first time to solve
the ambiguous overlap prediction problem. Through the comple-
tion decoder and geometric relation embedding, our method cap-
tures rich features of shape knowledge and transformation-invariant
geometry information. Thanks to the reliable overlap scores and
exact dense correspondences, UTOPIC aligns point clouds in high
accuracy, even handling low-overlap or noisy shapes. In the future,
we will try to extend our method to tackle more challenging cases
of large-scale (e.g., LiDAR data) point cloud registration.
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