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Abstract
3D scene graph generation (SGG) aims to predict the class of objects and predicates simultaneously in one 3D point cloud
scene with instance segmentation. Since the underlying semantic of 3D point clouds is spatial information, recent ideas of the
3D SGG task usually face difficulties in understanding global contextual semantic relationships and neglect the intrinsic 3D
visual structures. To build the global scope of semantic relationships, we first propose two types of Semantic Clue (SC) from
entity level and path level, respectively. SC can be extracted from the training set and modeled as the co-occurrence probability
between entities. Then a novel Semantic Clue aware Graph Convolution Network (SC-GCN) is designed to explicitly model each
SC of which the message is passed in their specific neighbor pattern. For constructing the interactions between the 3D visual
and semantic modalities, a visual-language transformer (VLT) module is proposed to jointly learn the correlation between 3D
visual features and class label embeddings. Systematic experiments on the 3D semantic scene graph (3DSSG) dataset show that
our full method achieves state-of-the-art performance.

CCS Concepts
• Computing methodologies → 3D point cloud understanding; Graph convolution network;

1. Introduction

A scene graph (SG) not only records the locations and classes of

objects in a scene, it also represents pairwise visual relationships

of objects in the triple structure of a <subject-predicate-object>,

abbreviated as (s, p,o). The accurate understanding of SGG plays

an important role in many computer vision tasks, such as image

generation [JGFF18,XZH∗18,MAA∗19,HBX∗20], visual question

answering [BYCCT17, ZCX19, TZW∗19, RPS21] and image cap-

tioning [LOZ∗17, YPLM18, YTZC19, ZWC∗20]. Therefore, SGG

is treated as a potential task for bridging the huge gap between vi-

sion and natural language domains.

3D scene graph generation has recently interested researchers,

benefiting from the development of Graph Convolution Network

(GCN) techniques [KW17] and proposals of 3D SG datasets

[WDNT20, WAN∗19]. In particular, there are two groups of meth-

ods in solving this challenging task now, i.e., contextual rela-

tionship learning and prior knowledge embedding. Representative

works of the former group [WDNT20,ZYSC21,WWT∗21] tend to

tackle this task by finding contextual relationships between differ-

ent objects through GCN. The latter group of studies [ZHQ∗21]
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Figure 1: An example of misclassification results by knowledge-
based model [ZHQ∗21]. Red represents the wrong result and pur-
ple represents the correct result.

propose to embed the semantic information by encoding the class

label. The core idea of latter group is to fuse features from visual

space and label space, that can predict correct unknown predicate

p from (s,?,o), by changing a probability distribution from a low

score negative triple (s, p,o) into a high score positive (s, p,o)′.

Different from images where RGB pixels are stored in the regu-

lar grid, for point clouds, the underlying semantic and structural in-

formation of point clouds is the spatial layout of the points. Conse-
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Figure 2: Current classification models learn to map input point
clouds to an embedding space (a) while ignoring intrinsic semantic
relationships of labeled data. SC-GCN is introduced to foster a new
training paradigm (b), by explicitly mining entity level SC and path
level SC. As shown in (b), each sample embedding feature is pulled
closer to the same class but pushed far from other classes. In (d),
the previous methods [WDNT20] can only get a small inter-class
variance. A better-structured embedding space (e) is derived by our
method, eventually boosting the performance of the classification
models.

quently, existing point cloud analysis usually face difficulties in un-

derstanding the information of language modalities. Besides, com-

pared with structural images, irregular point clouds cannot benefit

from the semantic context of neighbors by CNN. Figure 1 shows

a typical error scenario. Due to the inability to accurately under-

stand the semantic relationships between entities, the model in-

correctly classifies tail predicates (<lamp-hanging on-ceiling>
to <lamp-close by-ceiling>). Meanwhile, the comparative pred-

icates between the same object class are predicted to the exact

opposite meanings (<picture-bigger than-picture> to <picture-
smaller than-picture>).

Figure 2 provides an in-depth analysis of the impact of the lack

of global contextual semantic relationship from a feature perspec-

tive. For the 3D scene graph generation task with cloud points, the

deeply learned features must be not only separable but also discrim-

inative (Figure 2(e)). Point clouds that are extracted from indoor

scenes may suffer from sparseness, lack of contextual semantic in-

formation, background noise, and inaccurate segmentation of point

cloud objects. As a result, there is a large intra-class variance and a

small inter-class variance in the real-world point cloud dataset (Fig-

ure 2(b)). Hence, it is difficult to distinguish samples for softmax

classifiers.

In this paper, we emphasize that there are two critical limitations

in 3D SGG: 1) Recent works usually face difficulties understanding

global contextual semantic knowledge, which leads to poor recall

of tail predicates; 2) 3D visual structure is lost when propagating

semantic knowledge, resulting in inaccurate comparative predicate

predictions.

We propose a ternary learning framework to jointly model the

3D visual structures and semantic knowledge. As shown in Figure

3, the ternary learning framework consists of three feature inputs

(3D visual-level features, semantic clues and class label embed-

dings). First, the normalized 3D cloud points are encoded by Point-

Net [QSMG17] to extract 3D visual-level features (Figure 3(a)).

After that, to fully understand contextual representations of seman-

tic knowledge, two types of semantic clues are extracted from the

train set. For entity level SC, it is measured by the co-occurrence

of different entities in the training set; for path level SC, it is the

path connections from one entity to another entity in the train-

ing set. Each SC is modeled explicitly by a novel Semantic Clue

aware Graph Convolution Network (Figure 3(b)). The multi-layer

message passing mechanism of SC-GCN dynamic updates seman-

tic clues and visual-level features, which contributes to obtaining a

more powerful semantic knowledge representation. Finally, to con-

struct a relation between the language modality and the 3D visual

modality, we propose a visual-language transformer module to en-

hance the final prediction features by calculating the similarity of

class label embeddings and 3D visual features (Figure 3(c)).

The main contributions of this paper can be summarized as fol-

lows:

• To overcome limitation 1, entity level SC and path level SC are

proposed that are capable of characterizing the context informa-

tion of predicates and the strength of the entity connection in

finer detail, respectively. Correspondingly, a novel SC-GCN is

designed to explicitly model each SC of which the message is

passed in their specific neighbor pattern.

• A visual-language transformer is proposed to tackle limitation

2. It jointly models semantic and visual features by learning a

similarity matrix. The cross-modal attention mechanism ensures

that the visual structure information is not lost when propagating

semantic knowledge.

• Comprehensive experiments are conducted on the 3DSSG

dataset with the comparison of previous studies. The results

demonstrate the proposed method can alleviate the problem of

incorrect classification of tail predicates and also works well for

the comparative predicates between the same object class.

2. Related work

2.1. 3D scene graph generation based on point clouds

3D scene graph generation based on point clouds has first been

proposed in [WDNT20] and caught increasing attention in com-

puter vision community. The applications for downstream tasks in-

clude robot task planning [AJK∗22, RPH∗21, ZTBZ21], mechan-

ical search [KMMI∗21], augmented reality [TSNI20], 3D scene

generation [DMNT21], scene retrieval [WDNT20] and 3D panop-

tic/semantic segmentation [WWT∗21].

To have a more comprehensive understanding of 3D scenes,

Wald et al. [WDNT20] proposed the first learned method that gen-

erates a 3D scene graph from a 3D point cloud by a GCN. How-

ever, the methods proposed in [AHG∗19] and [WDNT20] only pre-

dict the scene graph in an offline manner. Wu et al. [WWT∗21]

built up 3D scene graphs online by aggregating context features

in a graph neural network. Moreover, the performance of these

methods depends heavily on whether accurate inter-object struc-

tural relationships can be obtained or not, losing sight of the visual

cues lurking inside each edge. Zhang et al. [ZYSC21] created an
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Figure 3: A ternary learning framework is proposed in our motiva-
tion. For 3D visual modality, visual structures (a) are extracted by
MS Pointnet [ZHQ∗21]. For language modality, semantic clues (b)
are extracted from the training set and word embeddings are gen-
erated from Bert [DCLT18] as class label embeddings (c). The SC-
GCN is used to merge visual features and semantic clues. Finally,
the VLT module fuses language knowledge and visual features to
obtain more robust prediction features.

EDGE-oriented Graph Convolutional Network (EdgeGCN) to ex-

ploit multi-dimensional edge features for explicit relationship mod-

eling. Although promising results have been obtained, the long-

tailed effect in the real 3D scenes is really complex. To remedy

this, Zhang et al. [ZHQ∗21] effectively enhanced the accuracy of

tail classes predictions by incorporating the one-hot class label em-

beddings with perceptual information.

Although these methods leverage context relationships and em-

bed semantic representations, they have the limitation of captur-

ing the relation between the language modality and the 3D visual

modality. Hence, different from [ZHQ∗21], our model formulizes

the co-occurrence information and explicitly incorporates them by

visual-language transformer to help scene graph generation. There-

fore, our model can predict more accurate tail predicates and com-

parative predicates.

2.2. Knowledge representation in scene graph generation

Knowledge representation in the scene graph is the ontological

knowledge embedding of entity classes and co-occurrence prob-

ability, independent of scene-specific features. Embedding prior

knowledge has been proven as an effective method of alleviating

the long-tailed effect problem, which is an active research area.

There are two main aspects in previous works making efforts to in-

corporate Knowledge representation based on the source of knowl-

edge, i.e., knowledge from the datasets and knowledge from learn-

ing features.

Knowledge from the datasets: To integrate richer types of

knowledge, external facts are leveraged from lexical databases such

as WordNet [Mil95], knowledge bases such as ConceptNet [LS04]

and the training set. Chen et al. [CYCL19] proposed to utilize

co-occurrence statistics of triples from the training set as com-

monsense, which addresses the unbalanced distribution issue. To

achieve a better generalization, Hou et al. [HWQ∗19] then took

knowledge graph embeddings that aggregate the representation of

each component of a triplet as commonsense knowledge. Since

these methods failed to exploit the graphical structure of common-

sense knowledge, Zareian et al. [ZKC20] used a commonsense

knowledge graph where each node represents an entity or predi-

cate class and each edge states the interaction probability of two

concepts as commonsense knowledge.

Knowledge from learning features: Zareian et al. [ZWYC20]

proposed the first method to acquire visual knowledge automati-

cally from data, and use that to improve the robustness of SGG.

More recently, unlike previous works, Sharifzadeh et al. [SBT21]

did not consider separate models for perception and prior knowl-

edge. They entangled the perception and prior in a single model

with shared parameters trained by multi-task learning.

However, these methods all have a flaw in that the knowledge

input is incomplete and fail to incorporate 3D visual structure in-

formation. By contrast, we extract structured and explicit seman-

tic knowledge from the dataset. Our method dynamically updates

semantic knowledge with the 3D visual structure to build a more

robust feature representation.

2.3. Vision-language transformer

Inspired by the success of transformer in natural language pro-

cessing tasks, researchers attempt to use transformer architecture

to capture global contextual information for computer vision tasks

[UBH∗22, MKK21, LYY∗19, RKH∗21, CZG∗22].

Carion et al. [CMS∗20] designed a object DEtection TRans-

former (DETR), which shows performance on object detection.

Afterwards, Zhu et al. [ZSL∗20] introduced a attention module to

solve the poor performance on small objects of DETR. In the field

of text-to-image generation, Ramesh et al. [RPG∗21] described a

simple approach for this task based on a transformer that autore-

gressively models the text and image tokens as a single stream of

data. Zheng et al. [ZLZ∗21] employed SEgmentation TRansformer

(SETR) in semantic segmentation tasks and achieve impressive per-

formance. For image-based SGG, Zhong et al. [ZSY∗21] designed

a Transformer-based model to create “pseudo” labels for learning

scene graph via a masked token prediction task.

However, there are no efforts yet to introduce transformer archi-

tecture into 3D SGG tasks. In this paper, we proposed a visual-

language transformer that jointly models semantic and visual fea-

tures by learning a similarity matrix. The cross-modal attention

mechanism ensures that the visual structure information is not lost

when propagating semantic knowledge.

3. Method

3.1. Overview

In this paper, we solve the 3D SGG task by propagating semantic

clues S and incorporating class label embeddings C. Our overall

framework is illustrated in Figure 4. Given the point set P of a

scene s and the class-agnostic instance segmentation M, the task
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Figure 4: An overview of our full method. (a) 3D visual features are first extracted by MS Pointnet. (b) Next, the SC-GCN module connects
the visual entity node and propagates the semantic clues using an SC aware message passing method. (c) After that, the visual-language
transformer module enhances the final prediction features by calculating the similarity of class label embeddings and 3D visual features.
Finally, the 3D scene graph is obtained on the right side.

of 3D SGG first parses the input P into an unclassified scene graph

Gs = {Vs = (Vo ∪Vp),Es}, where Vo =
{

vi
o

}N

i=1
,vi

o denotes the

feature of object node and Vp = {vi
p}M

i=1,v
i
p denotes the feature of

predicate node. Here N is the number of objects and M represents

the number of predicates between objects. There are two types of

undirected edges in Es, where Each edge connects a predicate node

to its corresponding subject node or object node. To establish such

a graph, a 3D visual feature extractor is first used to extract a set

of objects feature vectors Vo. Thereafter, the 3D feature extractor

is adopted to generate visual features Vp for predicates by concate-

nating the object features with the center coordinates of any two

object point sets [XZCFF17].

Now, we get an unclassified scene graph Gs defined in Section

3.1 (Figure 4(a)). We feed the Gs and S into the SC-GCN module,

then output an updated 3D scene graph G′
s by propagating seman-

tic clues S (Figure 4(b)). Finally, we feed the G′
s and C into the

VLT module (Figure 4(c)), which augments the visual appearance

with explicit class label embeddings to generate refined object and

predicate features for final label prediction.

To this end, the 3D SGG task is formulated by the following

probability function P(G | P ,M,S,C), which can be decomposed

into four factors:

P(G | P ,M,S,C) = P(Gs | P ,M)P(G′
s | Gs,S)×

P(Vo | G′
s,C)P(Vp | G′

s,C,Vo),
(1)

where the factor P(Gs | P ,M) means to propose a unclassified

scene graph Gs by a fixed feature extractor. The factor P(G′
s | Gs,S)

relies on the proposed SC-GCN module to propagate semantic

clues in dataset (Section 3.2). The object factor P(Vo | G′
s,C) and

the predicate factor P(Vp | G′
s,C,Vo) are realized by the proposed

VLT module for incorporating class label embeddings C (Section

3.3) and inferring the corresponding class label (Section 3.4).

3.2. Semantic clue aware graph convolution network

In this subsection, the nodes feature in unclassified scene graph

Gs is updated by propagating semantic clues C. Firstly, we attempt

to mine the proposed semantic clues from the training set. Next,

the semantic clues are performed as a co-occurrence matrix to up-

date the node representations in Gs by a novel message passing

scheme in SC-GCN. After optimization through our designed up-

date scheme, the statistical information from the dataset could be

injected into the 3D scene graph. The details are described as fol-

lows:

Step 1: Semantic Clues Mining. We attempt to mine the pro-

posed semantic clues from the training set. Noted that the object

and predicate are considered to be the same entity, different from

previous work [CYCL19], we directly obtain the probabilistic de-

pendencies between entities. For a prediction query (s,?,o)→ p in

the testing set, two corresponding semantic clues are proposed:

• 1. Sent for entity level SC: It is the number of triples
(
ci,c j,ck

)
in train set that given definite entity class ci and ck, where ci,

c j and ck ∈ Co ∪Cp. Instantly, for triple (lamp, ?, ceiling), the
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probability of predicting predicate hanging on should be higher

than predicting close by.

More specifically, for two entity classes of ci and ck, the

ci → ck dependence is modeled in the form of conditional prob-

ability, i.e., p
(
c j | ci,ck

)
. We count the occurrence of class

c j in the presence of class ci and ck, and obtain the co-

occurrence matrix Ment
i, j,k ∈ R(|Co|+|Cp|)×(|Co|+|Cp|)×(|Co|+|Cp|),

where i, j,k ∈ {1,2, ...,(|Co|+ |Cp|)}. Then, the co-occurrence

probabilities matrix Ment is obtained by normalizing Ment
i, j,k =

Ment
i,q,k/∑i�=k Ment

i,q,k,q = 1,2, ..., j, ...,(|Co|+ |Cp|).
• 2. Spath for path level SC: It is the number of path from entity

class ci to ck in the training set. If there are two triples
(
ci,c j,ck

)
and (cp,cl ,ct) in the training set, then it can be regarded as a path

from ci to ct . Triple (ci,same material,ck) and triple (ck,same
material,c j) will bring confidence for predicting triple (ci,same
material,c j). Under the graph view, this can be regarded as the

path from ci to c j.

The path length is limited to less than or equal to 2. Sim-

ilarly, the final Spath is obtained by normalizing Mpath
i, j =

Mpath
i, j /∑ j �=iMpath

i, j .

Step 2: Initial Node States. Given an unclassified scene graph

Gs in Section 3.1, each node is associated with an initial node em-

bedding, namely hi. We use a fully connected (FC) layer R(·) to

map the Vs to the initial node embeddings in Gs:

h(0)
i = R(vi), i ∈ {1, · · · , |Vs|}. (2)

After that, h(0)
i is duplicated (|Co|+ |Cp|) times to obtain (|Co|+

|Cp|) nodes
{

h(0)
i1 ,h(0)

i2 , . . . ,h(0)
i(|Co|+|Cp|)

}
, where node h(0)

ic denotes

the correlation of object hi with class c.

Step 3: Node Updating by Semantic Clue Aware Message
Passing. Knowing from previous studies on image SGG [CYCL19,

ZKC20], co-occurrence probabilities are important to design mod-

els with powerful generalization ability. However, for most current

works, they capture the co-occurrence probabilities mainly in an

implicit and insufficient way, which limits their performance. In

this section, to make better use of two novel types of co-occurrence

probabilities (named semantic clues), a GCN-based model called

semantic clue aware graph convolution network is proposed.

Specifically, for entity level SC, it describes the triple similarity

from the perspective of neighborhood structure, where both neigh-

borhoods h j and hk of each node hi should be considered. We com-

pute the aggregated incoming messages ment(l)
i(ci)

of entity level SC

for hi by the following:

ment(l)
i(ci)

= σ

(
∑

(h j ,hk)∈Ni

|Co|+|Cp|
∑

c j=1

|Co|+|Cp|
∑

ck=1

αent
jk Λ

)
, where

Λ=W entφ
(

h(l−1)
j(c j)

,h(l−1)
k(ck)

)
.

(3)

φ
(
h j,hk

)
= σ

([
h j‖W 1hk

])
is the convert function to fuse the

neighborhood node h j and hk information. The subscript c{i, j,k}
represents the channel of the c{i, j,k}-th class, where c{i, j,k} ∈
{1,2, ...,(|Co|+ |Cp|)}. W 1 is the learnable weight matrix and ‖ de-

notes a concatenation. Ni denotes node hi ’s neighbor nodes. W ent

is linear transformation matrix. In addition, σ indicates LeakyReLU

[MHN∗13] function and l is the layer number in GCN. αent
jk is ag-

gregation attention, which is computed as:

αent
jk =

exp

(
ϕ
(

h j(c j),Ment
i, j,k

)T
hi(ci)

)

∑(h j ,hk)∈Ni
exp

(
ϕ
(

hk(ck),Ment
i, j,k

)T
hi(ci)

) , (4)

where Ment
i, j,k denotes the entity level SC which is defined in Step 1

and ϕ
(

hk,Ment
i, j,k

)
= hk ∗Ment

i, j,k.

Similarly, for path level SC, it describes the overall entity-entity

interactions. By aggregating all the connected pairs, we can get the

incoming message representation mpath(l)
i(ci)

of path level SC as:

mpath(l)
i(ci)

= σ

(
∑

h j∈Ni

αpath
i j W pathh(l−1)

j(c j)

)
, (5)

where W path is the linear transformation matrix. The attention

weights αpath
i j is computed similarly as:

αpath
i j =

exp
(

ϕ
(

hi(c j),Mpath
i, j

))
∑hp∈Ni

exp
(

ϕ
(

hp(p j),Mpath
i,p

)) . (6)

After obtaining the incoming messages ment(l)
i(ci))

and mpath(l)
i(ci)

by

message passing, we merge them with original node features and

adopt the gated recurrent unit (GRU) [CVMG∗14] to update the

state of node i. Then the output hl
i(ci)

after updating is took as the

next layer’s input:

hl+1
i(ci)

= GRU
(

hl
i(ci) +ment(l)

i(ci)
+mpath(l)

i(ci)

)
. (7)

Step 4: Feature Readout. After L message aggregation itera-

tions, we take hL
i as the output embedding of node i. After that, all

of its class channel (|Co|+ |Cp|) are merged by a transform matrix

W out :

vout
i =W out

Concat
({

hL
i j | j = 1, . . . ,(|Co|+ |Cp|)

})
. (8)

The output of SC-GCN is formulated as V ′
s , where V ′

s =
{vout

i }N+M
i=1 . Now, we can obtain the an newly unclassified 3D scene

graph G′
s =

(V ′
s ,Es

)
.

3.3. Visual-language transformer module

So far, we have an isolated graph G′
s with visual appearance and se-

mantic context information. In order to augment the visual appear-

ance with explicit class label embeddings, a visual-language trans-

former module is proposed. Our VLT model establishes the rela-

tionship between 3D visual features and class label embeddings by

computing a similarity matrix. In addition, the self-attention mech-

anism in the Transformer ensures that the two types of cross-modal

features are decoupled from each other without causing perceptual

confusion. The details are described as follows:

Step 1: Class Label Embeddings Mining. The input class la-

bel embeddings can be formulated as C = {ci}|Co|+|Cp|
i=1 , where ci
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denotes the word embeddings of class label i, hence each class la-

bel exactly appears once. Entity-wise word embeddings are con-

structed by pre-trained Bert model [DCLT18]. In ablation experi-

ments, we also compare the impact of different embedding extrac-

tion methods on the final results, e.g., Glove [PSM14] and KISGP

[ZHQ∗21].

Step 2: Visual-Language Cross-Attention. As a representation

of language modalities, the word embeddings of labels contain spe-

cific semantic knowledge in natural language and can be used as

prior support. In order to embed the class label embeddings C into

the unclassified 3D scene graph node features V ′
s , class label em-

beddings are encoded into pairs of key and value maps through

shared convolution layers. The class keys and class values are trans-

formed into the 3D visual space of the query. The query and keys

are utilized to compute the correlation matrix R, denoting correla-

tion scores across visual and language modalities:

R = softmax
((V ′

sUQvis
)⊗ (CUKlab)

)
, (9)

where ⊗ denotes the scaled dot product operation, UQvis denotes

the learnable weights of projection on V ′
s for modal alignment.

With the correlation matrix R, the value is re-weighted to re-

inforce the classes responded in both two modalities. To further

enhance the responses of these classes in the visual modality, we

adaptively fuse the re-weighted values with query values together

to enhance the visual features:

VLCA
s = softmax(RUV labC)V ′

s +V ′
s , (10)

where VLCA
s denotes the visual features with fusing class label em-

beddings. UKlab and UV lab denote the learnable weights of projec-

tion on C.

Step 3: Visual-Language Self-Attention. Besides, we exploit

the self-attention mechanism on the enhanced visual features VLCA
s

across modalities to capture the discriminative and link each node

to the class embeddings for better 3D visual representation:

VP
s = softmax

⎛
⎜⎝VLCA

s UQ

(
VLCA

s UK

)�
√

DP

⎞
⎟⎠VLCA

s UV , (11)

where U{Q,K,V} denote the learnable weights of different projec-

tions on the enhanced query, key, and value across modalities. DP
denotes the hidden dimension of the Transformer. The visual fea-

ture distribution is related to the semantic information DP, so after

each element of the visual feature is divided by DP, the variance

becomes 1 again. It decouples the steepness of the distribution of

visual features from DP, so that gradient values remain stable dur-

ing training. VP
s is the output of the VLT module. The final 3D

SGG results are predicted on the evolved node features VP
s . The

network structure of two fully-connected layers is used to get the

final classification score.

3.4. Learning objective:

Existing work on SGG tends to utilize cross-entropy loss as the

objective function for entity classification [XZCFF17, ZYTC18],

which considers the priority of entities are all equal. The focal loss

is used for entity classification to handle this problem [LGG∗17,

WDNT20, ZHQ∗21]. The focal loss is formulated as:

L= α(1− p)γ
log(p), (12)

where p denotes the classification score of objects and predicates

on the ground-truth class for the i-th node.

4. Experiments

In this section, the performance of the ternary learning framework

is evaluated on the 3D scene graph generation task with the 3DSSG

dataset. We describe the detail of task description and experiment

settings, compare our networks with state-of-art methods, and per-

form ablation studies to demonstrate the effectiveness of SC-GCN

and VLT.

4.1. Task description

The task of 3D scene graph generation aims to predict the object

class and predicate class based on 3D cloud points and correspond-

ing instance segmentation input. Our model is trained and validated

on the 3DSSG dataset [WDNT20] which provides 3D level scene

graph labels (support, proximity, and comparative predicates) and

is built upon the 3RScan dataset [WAN∗19]. The training set of

3DSSG includes 3582 scenes and the testing set is composed of the

remaining 548 scenes. There are 160 object classes and 27 pred-

icate classes. Two standard tasks are followed in [ZHQ∗21] for

evaluation : (1) predicate classification (PREDCLS): given ground

truth labels and bounding boxes of objects, predict predicate labels

of object pairs. (2) scene graph classification (SGCLS): classify the

ground truth bounding boxes and predict predicate labels.

4.2. Implementation details

For a fair comparison, the pre-trained MS PointNet [ZHQ∗21] is

adopted as our backbone. For the VLT module, the same attention

settings are used in [VSP∗17]. The hidden dimension is set as Dp =
512. For class label embeddings, we adopt 768-dim Bert [DCLT18]

trained on the Wikipedia dataset. The Adam [KB14] optimizer is

used with batch size 16 for 40 epochs. The initial learning rate is

0.0001 for the backbone and 0.0003 for other parts, which decays

by a factor of 10 for every 5 epochs. The weight decay is set as

0.0001. All experiments are conducted on an Nvidia RTX 2080Ti

GPU. We implement our approach based on PyTorch [PGC∗17].

The same sub-scene split is followed in [WDNT20]. We reproduce

the methods compared in this paper on the 3DSSG dataset.

4.3. Comparisons with the state-of-the-art methods

Quantitative results and comparison: Table 1 summarizes the

overall 3D scene graph generation results of different methods on

the 3DSSG dataset. The Recall (R) evaluation metric is used, which

measures the fraction of ground truth visual triplets appearing in

top-20, top-50 and top-100 confident predictions.

Our proposed approach significantly outperforms several state-

of-the-art methods on the 3DSSG dataset based on the same evalua-

tion metrics. Co-Occurrence [ZYTC18] has the worst performance
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Table 1: Comparisons with state-of-the-arts on the 3DSSG dataset. GC denotes the graph constrained results. Because the 3D scene graph
generation task inputs the class-agnostic instance segmentation, we only compute the mean of the two tasks of SGCLS and PREDCLS.

Model
SGCLS PREDCLS

R@20 R@50 R@100 R@20 R@50 R@100 Mean

w/ GC

Co-Occurrence [ZYTC18] (2018) 0.148 0.197 0.199 0.347 0.474 0.479 0.307

KERN [CYCL19] (2019) 0.203 0.224 0.227 0.468 0.557 0.565 0.374

SGPN [WDNT20] (2020) 0.270 0.288 0.290 0.519 0.580 0.585 0.422

Schemata [SBT21] (2021) 0.274 0.292 0.294 0.487 0.582 0.591 0.420

SGF [WWT∗21] (2021) 0.275 0.292 0.292 0.526 0.589 0.594 0.428

EdgeGCN [ZYSC21] (2021) 0.280 0.298 0.298 0.547 0.609 0.615 0.441

KISGP [ZHQ∗21] (2022) 0.285 0.300 0.301 0.593 0.650 0.653 0.464

Our method 0.335 0.360 0.362 0.601 0.662 0.728 0.508

w/o GC

Co-Occurrence [ZYTC18] 0.141 0.202 0.258 0.351 0.556 0.706 0.369

KERN [CYCL19] 0.208 0.247 0.276 0.483 0.648 0.772 0.439

SGPN [WDNT20] 0.282 0.326 0.353 0.545 0.701 0.824 0.505

Schemata [SBT21] 0.288 0.335 0.363 0.496 0.671 0.802 0.493

SGF [WWT∗21] 0.290 0.332 0.357 0.557 0.728 0.834 0.516

EdgeGCN [ZYSC21] 0.296 0.338 0.359 0.569 0.779 0.859 0.533

KISGP [ZHQ∗21] 0.298 0.343 0.370 0.622 0.784 0.883 0.550

Our method 0.342 0.377 0.398 0.634 0.793 0.890 0.572

Table 2: Comparison of mean recall on the two tasks of the 3DSSG dataset.

Method
SGCLS PREDCLS

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 Mean

Co-Occurrence [ZYTC18] 0.088 0.127 0.129 0.338 0.474 0.479 0.273

KERN [CYCL19] 0.095 0.115 0.119 0.188 0.256 0.265 0.173

SGPN [WDNT20] 0.195 0.226 0.231 0.321 0.384 0.389 0.291

Schemata [SBT21] 0.238 0.270 0.272 0.352 0.426 0.433 0.332

SGF [WWT∗21] 0.242 0.281 0.282 0.453 0.531 0.532 0.387

EdgeGCN [ZYSC21] 0.245 0.291 0.292 0.543 0.621 0.622 0.436

KISGP [ZHQ∗21] 0.244 0.286 0.288 0.566 0.635 0.638 0.443

Our method 0.254 0.297 0.298 0.577 0.640 0.643 0.452

among these methods. On this basis, KERN network [CYCL19]

and Schemata [SBT21] improve the accuracy of 3D scene graph

generation by 0.067 and 0.113 on average, respectively. These re-

sults indicate the capability of prior knowledge. SGF [WWT∗21]

and EdgeGCN [ZYSC21] have improved the GCN in the model at

varying degrees on the basis of SGPN [WDNT20], and the results

have been improved to a certain extent (0.428 and 0.441), indicat-

ing that the task of SGG is sensitive to the features of propagation in

GCN. KISGP [ZHQ∗21] achieves better results through pre-trained

class label embedding. Our method significantly improves the base-

lines in two standard tasks. In particular, the accuracy can achieve

0.508 which exceeds KISGP by 0.044. The results demonstrate the

robust representation capability of the ternary learning strategy. We

also present the Recall on the two tasks without constraint in Table

1. Still, our method achieves the best results on these metrics.

Owing to the scarcity of the tail class annotation in 3DSSG, pre-

vious studies usually achieve poor performance on less frequent

classes. Hence, the Mean Recall (mR) is also utilized as an evalua-

tion metric [CYCL19, TZW∗19].

As shown in Table 2, these are fairer measures for an unbiased

SGG [TNH∗20]. Co-Occurrence [ZYTC18] reflects the importance

weight of each class, which can achieve a better effect on the Mean

Recall, for which our method shows a large absolute gain. The

mean of the mR over all two evaluation metrics is 0.452 for our

method. This value outperforms the two recently effective meth-

ods EdgeGCN [ZYSC21] (0.07 for SGCLS, 0.247 for PREDCLS)

and KISGP [ZHQ∗21] (0.103 for SGCLS, 0.07 for PREDCLS) on

average. All results show that our method is especially capable of

dealing with the class imbalance problem.

4.4. Qualitative results

Figure 5 shows three challenging scenes. Our model solves the

incorrect identification of tail classes and incorrect classification
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Figure 5: Qualitative examples of the improvement in 3D scene graph generation. On the right side of each scene, the result of the KISGP
[ZHQ∗21] is at the top, and our result is at the bottom. The purple predicates are those correctly classified relationships (in ground truth),
and the red predicates are those incorrectly classified relationships. For better viewing, we only show failure cases. The scene ID of the test
set is below the picture.

of predicates between the same objects by introducing semantic

knowledge. For example, considering the 3D scene on the Figure

5(a), we succeeded in correcting the bias in the class label embed-

dings based on the semantic clues (from close by to hanging on,

lamp-hanging on-ceiling has a high co-occurrence probability in

the train set, we use entity level SC to propagate this information).

Considering the Figure 5(b), the visual appearance of the box is de-

ceptive, which easily makes the model randomly "guess" a result

in the label embedding space (lower than or higher than, smaller
than or bigger than). With our novel VLT method, we correctly

identify the comparative predicates between two boxes. The predic-

tion is precise because our model propagates the 3D visual appear-

ance of the important neighbors. Another interesting example is the

Figure 5(c). Our model can correct not only comparative predicates,

but also proximity predicates (right and left).

4.5. Ablation study

In our ternary learning framework, two modules are proposed, an

SC-GCN and VLT. In this section, we investigate the contributions

of the proposed SC-GCN and VLT to the performance of 3D scene

graph generation. We show the ablation performance on the 3DSSG

dataset in Table 3.

Effectiveness of semantic clues in SC-GCN: We conduct ex-

periments by removing two types of semantic clues from our SC-

GCN, leading to a network with only GCN layers. When only the

3D visual features are enabled, the model works the same as the

GCN-based method and also has a similar performance as KISGP

[ZHQ∗21]. The isolated semantic SC (EXP 2 and EXP 3) boosts

the performance slightly with the additional information from train

set. PREDCLS and SGCLS are improved significantly when the

entity level SC and path level SC both work (EXP 4). The learned

semantic features help GCN fully understand the entity dependen-

cies in the dataset and have a strong, positive effect both on SGCLS

and PREDCLS.

Message passing iterations L in SC-GCN: The role of mes-

sage passing parameter L is also evaluated in Table 3 (see EXP

6-8). According to our experiments, the model, by learning feature

representations with only one GCN layer for message passing (L =

1), achieves 0.489 on average, which is lower than the model us-

ing 2 GCN layers (L = 2). This results indicate that increasing the

layer number is beneficial to propagate the context information of

adjacent nodes. Interestingly, when using more GCN layers (L =

3), we do not observe any benefit (0.488 on average). The reason is

that the redundant information in semantic knowledge embeddings

causes the output features of nodes to be over-smoothed, and the

representation vectors of nodes tend to be consistent, which makes

it impossible to distinguish nodes of different classes. Therefore,

this suggests that L = 2 is the optimal choice.

The impact of VLT: In this paper, we design one insightful mod-

ule to build intrinsic interactions across 3D visual and language

modalities, i.e. visual-language transformer module. To be specific,

to exploit the effectiveness of the VLT module, Experiment 5 in

Table 3 directly takes the output results of SC-GCN for prediction.

The results show that our VLT module could effectively improve

the performance, e.g., 0.02 for SGCLS and 0.055 for PREDCLS

on average.

4.6. Further analysis

Effects of different class label embeddings: To verify the ef-

fects of different class label embeddings, we utilize Bert [DCLT18],

Glove [PSM14] and KISGP [ZHQ∗21] to respectively extract class

label embeddings as the inputs of our proposed framework. Com-

pared with the obvious performance gain in Table 3 (EXP 9-11),

it can be found that adopting different label embeddings from dif-

ferent extraction methods has little effect on the final classification

performance. That is, as representations of different modalities, la-

bel embeddings are important inputs for our proposed framework,

but the choice of specific extraction methods, e.g., Bert or Glove is

not the key factor in our framework.

Why does our global scope of semantic relationships help
more on recall? To intuitively illustrate the performance gains

brought by the ternary learning framework, we compare the perfor-

mance of each class of KISGP [ZHQ∗21] and our proposed method

as shown in Figure 6. In general, Recall@5 of the tail predicates

(e.g., lying on, and cover) has been improved by different pro-

grams at the cost of a massive decrease in the results of the head

predicates (e.g., supported by, left, and right). This shows that our
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Table 3: Ablation studies on the proposed semantic clue aware graph convolution network and visual-language transformer module.

Exp Module
SGCLS PREDCLS

R@20 R@50 R@100 R@20 R@50 R@100 Mean

1 Our full method (SC-GCN+VLT) 0.335 0.360 0.362 0.601 0.662 0.728 0.508
2 w/o entity SC 0.331 0.353 0.353 0.595 0.655 0.665 0.492

3 w/o path SC 0.290 0.320 0.333 0.598 0.640 0.651 0.472

4 w/o entity & path SC 0.284 0.310 0.315 0.594 0.630 0.631 0.461

5 w/o VLT 0.305 0.338 0.355 0.561 0.631 0.634 0.471

6 SC-GCN (L=1) 0.326 0.359 0.361 0.583 0.632 0.673 0.489

7 SC-GCN (L=2) 0.335 0.360 0.362 0.601 0.662 0.728 0.508
8 SC-GCN (L=3) 0.324 0.354 0.357 0.591 0.648 0.659 0.488

9 label embeddings by Bert 0.335 0.360 0.362 0.601 0.662 0.728 0.508
10 label embeddings by Glove 0.324 0.354 0.357 0.591 0.648 0.718 0.499

11 label embeddings by KISGP 0.334 0.364 0.368 0.593 0.651 0.722 0.505
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Figure 6: Improvement in PREDCLS of our full model for R@5 in comparison with KISGP [ZHQ∗21] under a graph constraint.

semantic knowledge still has the ability to alleviate the long-tailed

effect. Specifically, our method achieves a 0.65% improvement on

smaller than and 0.22% decrease on bigger than, which indicates

that our model solves the problem of comparative predicates recog-

nition error between the same objects after combining 3D visual

structure features. Relying on explicit labels and well-defined se-

mantic clues, rather than embedded in latent space, our model has

broader explanatory and predictive potential. This means that our

results are beyond the simple reflection of the statistical bias of a

semantic space which achieved a more generalized performance.

How semantic clues affect feature distribution? We record ini-

tialized features of the unclassified scene graph Gs (Figure 7(a)),

and the refined graph G′
s (Figure 7(b)) from the SC-GCN module,

and their corresponding labels on the 3DSSG dataset. Then we take

the average for the features according to the labels and use the t-

SNE [VdMH08] method to visualize them as shown in Figure 7.

Note that if features of some classes are closed to each other, the

edges between those close classes are more likely to be activated.

From the enlarged regions in Figure 7 we can find that by in-

troducing our semantic clues on the cluttered initialized features,

the entity features which share high co-occurrence probabilities are

likely to be closed to each other, such as hanging on and lamp,

ceiling and shower. From these results we can find that our seman-

tic knowledge can be well incorporated in the 3D scene graph gen-

eration process to guide the feature refinement, therefore producing

better recall results.

More qualitative results: Additional qualitative results for 3D

scene graph generation are shown in Figure 8. The 3D scene graphs

are generated in the PREDCLS task. For the Figure 8(a), we cor-
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Figure 7: Visualization of initialized and refined entity features by t-SNE [VdMH08].
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Figure 8: Additional qualitative examples of the improvement in 3D scene graph generation.

rectly identify the comparative predicates between three pillows.

Another interesting phenomenon is for the Figure 8(c), we classi-

fied a predicate same symmetry as that was difficult to identify as

a result of our introduction of visual features, and SOTA [ZHQ∗21]

recognizes it as same as.

Failure Cases: we analyze the qualitative results and summarize

the following most common failure cases to clarify the limitation

of the model: 1. The 3D object is incorrectly detected. 2. The pred-

icates have similar meanings. 3. The model predicts the wrong tail

predicate instead of the correct head predicate. The failure cases are

shown in Figure 8. For the Figure 8(c), neither SOTA [ZHQ∗21]

nor our model detected tv stand. We conjecture that Failure 1 can

be improved by a better object detector or a more robust feature ex-

tractor such as DGCNN [WSL∗19]. Failure 2 caused by the human-

labeled annotations (For the Figure 8(d), both left and close by can

correctly describe the relationship between shelf and kitchen cab-
inet). Failure 3 (For the Figure 8(b), attached to is falsely detected
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as supported by) is caused by the imbalanced predicate distribu-

tion both in the 3D scene graph dataset and in the real world.

5. Conclusions

In this article, we introduce a novel ternary learning framework to

build the global scope of semantic context as well as interactions

between 3D visual modality and language modality. Specifically,

for building the global scope of semantic context, we distill two

types of semantic clues from the training set and design a novel

SC-GCN model to obtain more powerful semantic representation.

For constructing the interactions between the 3D visual and lan-

guage modalities, we propose a visual-language transformer mod-

ule to embed the class label embeddings into the 3D visual struc-

ture learning. According to our experiments, with the aid of SC-

GCN and VLT, our full method can better understand the given 3D

scene and produce more precise 3D scene graph results. Our results

achieve new state-of-the-arts on the 3DSSG dataset.

However, due to the imbalance of annotations, the ability of

our model to predict infrequent predicates is still limited. In future

work, we consider using a more robust point cloud feature extractor

and the global features of all points, rather than inputting the point

cloud of each object in isolation. This idea can be extended to end-

to-end 3D scene graph generation without inputting segmentation

results. Moreover, since this paper has explored the use of struc-

tured semantic knowledge of dataset to improve 3D scene graph

generation, our work also opens a promising direction for few-shot

learning or zero-shot learning in 3D SGG.
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