DOI: 10.1111/cgf. 14655

Pacific Graphics 2022

N. Umetani, E. Vouga, and C. Wojtan
(Guest Editors)

Volume 41 (2022), Number 7

MeshFormer: High-resolution Mesh Segmentation with
Graph Transformer

Yuan Li!, Xiangyang He', Yankai Jiangl, Huan Liu!, Yubo Tao!*, Lin Hail!*

I'State Key Lab of CAD&CG, Zhejiang University

Abstract

Graph transformer has achieved remarkable success in graph-based segmentation tasks. Inspired by this success, we propose a
novel method named MeshFormer for applying the graph transformer to the semantic segmentation of high-resolution meshes.
The main challenges are the large data size, the massive model size, and the insufficient extraction of high-resolution semantic
meanings. The large data or model size necessitates unacceptably extensive computational resources, and the insufficient se-
mantic meanings lead to inaccurate segmentation results. MeshFormer addresses these three challenges with three components.
First, a boundary-preserving simplification is introduced to reduce the data size while maintaining the critical high-resolution
information in segmentation boundaries. Second, a Ricci flow-based clustering algorithm is presented for constructing hierar-
chical structures of meshes, replacing many convolutions layers for global support with only a few convolutions in hierarchy
structures. In this way, the model size can be reduced to an acceptable range. Third, we design a graph transformer with
cross-resolution convolutions, which extracts richer high-resolution semantic meanings and improves segmentation results over
previous methods. Experiments show that MeshFormer achieves gains from 1.0% to 5.8% on artificial and real-world datasets.

CCS Concepts

e Computing methodologies — Neural networks; Shape analysis;

1. Introduction

High-resolution meshes have been widely used in various real-
world applications [MPS14, TST96]. The demand for automated
analysis and understanding of high-resolution meshes is increas-
ing. As a crucial part of understanding high-resolution meshes,
the semantic segmentation of high-resolution meshes becomes a
key task [LHMRO8]. Nevertheless, different from general mesh
segmentation, high-resolution mesh segmentation has to consider
the unstable mesh quality due to the difficulties of repairing high-
resolution meshes [ACK13]. The unstable mesh quality of high-
resolution meshes means these meshes may not be closed man-
ifolds, which makes methods based on convolution neural net-
works (CNNs) unworkable and urges us to develop graph-based
methods without closed manifold constraints [HHF*19, HLG*22].
Compared with other graph-based methods, the graph trans-
former [YJK*19], which offers state-of-the-art performance on
graph-based segmentation [ZZH*22], is a promising option. Con-
sequently, we develop a new method named MeshFormer for apply-
ing the graph transformer to high-resolution mesh segmentation.

Direct application of the graph transformer to high-resolution
meshes does not work because of the requirements of unaccept-
able computing resources. A feasible solution is to reduce the data
size: simplify raw meshes, apply the mesh segmentation meth-
ods to the simplified meshes, and map the segmentation results

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

back to raw meshes. However, general simplification may lead
to the loss of high-resolution information in segmentation bound-
aries. The immediate consequences of this information loss are
ragged segmentation boundaries in simplified meshes, leading to
prior errors for learning and mapping, as shown in Fig. 1(a, b).
To avoid ragged segmentation boundaries, we develop a boundary-
preserving simplification algorithm that prioritizes protecting seg-
mentation boundaries over meaningless details during simplifica-
tion. The simplified mesh in Fig. 1(d) demonstrates the utility of
boundary-preserving simplification: the data size is reduced while
the high-resolution information in segmentation boundaries is pre-
served, i.e., avoiding prior learning and mapping errors.

Despite the reduction in data size, the graph transformer’s large
model size still makes it unusable within limited computing re-
sources. In other words, directly applying the graph transformer
to simplified meshes necessitates many convolution layers to ob-
tain the global support of meshes, which may not be acceptable
given limited computing resources. The standard solution is to use
clustering algorithms [HJZS20, TPT17, SYW*22] to build hierar-
chical structures of meshes so that a few convolutions in hierar-
chical structures can obtain global support. Therefore, we devise a
new clustering algorithm based on Ricci flow [CLN06, NLLG19]
to construct hierarchical structures, i.e., different resolutions of the
same mesh. Ricci flow is used because it has adaptive clustering pa-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.1111/cgf.14655

38 Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

Mapping
k=

(2) (b)

Mapping
ke

(d (e)

Figure 1: The segmentation boundaries between tooth and gums (red areas). (a) raw tooth mesh, (b) simplified mesh by general simplifi-
cation (10000 vertices), (c) prediction result of segmentation boundaries, (d) simplified mesh by boundary-preserving simplification (10000
vertices), (e) same mesh with (d) but removing high-frequency information (suggested by [SACO22]).

rameters for diverse meshes and excellent noise resistance in clus-
tering [ZSG10, NLLG19]. The excellent noise resistance helps our
algorithm work reliably in the presence of noise caused by sim-
plification, e.g., the high-frequency noise (unreal sharp shapes) in
Fig. 1(d). The adaptive clustering parameters make our algorithm
robust to diverse meshes. Experiments show that our clustering re-
sults are closer to ground truth than other clustering algorithms,
contributing to better segmentation results. With the above two
components of MeshFormer, the data and model sizes can be con-
trolled within an acceptable range, so massive computing resources
are no longer required. Furthermore, critical high-resolution infor-
mation in segmentation boundaries is retained with the boundary-
preserving principle.

The final component is designed to mine the mesh seman-
tic meanings by convolutions in hierarchical structures. Applying
graph attention convolutions into same resolutions of hierarchical
structures separately, i.e., convolutions within same resolutions,
is a popular choice for mining semantic meanings, such as gra-
phUnets [HJZS20, GJ19]. However, this choice is not enough for
high-resolution segmentation because it ignores the relationship
between the semantic meanings of different resolutions. Recent
studies [WSC*20,ZGZ*21] found that introducing cross-resolution
convolutions can leverage the relationship between the semantic
meanings of different resolutions and enrich high-resolution se-
mantic meanings, which contributes to better high-resolution seg-
mentation results. In other words, without the cross-resolution con-
volutions, i.e., convolutions between different resolutions, some
semantic meanings may be overlooked, resulting in inaccurate seg-
mentation results. Consequently, we propose a new graph trans-
former architecture with cross-resolution convolutions, i.e., repre-
senting hierarchical structures as heterogeneous directed graphs,
adding extra cross-resolution edges with different types, and ap-
plying different convolutions to different edge types. In this way,
cross-resolution convolutions are implemented by the convolutions
on cross-resolution edges.

In a nutshell, a new method named MeshFormer is proposed to
segment high-resolution meshes using the graph transformer. Three
components are designed to overcome three challenges, including a
boundary-preserving simplification to remove unimportant details
for data size reduction, a clustering algorithm to build hierarchi-
cal structures for model size reduction, and a graph transformer

to achieve cross-resolution convolutions for richer semantic mean-
ings. In this way, MeshFormer can achieve better segmentation re-
sults using limited computing resources. The following is a sum-
mary of our contributions.

e A new graph transformer architecture with cross-resolution con-
volutions is proposed for high-resolution mesh segmentation.
Richer high-resolution semantic meanings are extracted, and bet-
ter segmentation results are achieved. Experiments show Mesh-
Former achieves gains ranging from 1.0% to 5.8%.

e A boundary-preserving simplification algorithm is introduced,
retaining important high-resolution information in segmentation
boundaries during simplification.

e A new clustering algorithm based on Ricci flow is developed for
building hierarchical structures, contributing to the model size
reduction and great segmentation results.

2. Related work
2.1. High-resolution segmentation for 3D data

High-resolution mesh segmentation can be transformed into a sim-
ilar segmentation problem on other data, such as point clouds, vox-
els, and images. However, converting high-resolution meshes to
other data presents more intractable issues. When meshes are con-
verted to point clouds, all topology information is lost, making
it difficult for point cloud-based methods [QYSG17, TQD*19] to
achieve the same performance as mesh-based methods [SACO22,
HLG*22]. Another option is the voxel, which is a shape represen-
tation of the entire 3D space. Nevertheless, in high-resolution volu-
metric data, extra 3D representations beyond surfaces will result in
unacceptably high computation consumption [CAL* 16, FBD*21].
Some researchers prefer to project meshes as images [LBD17,
SBR16,SBZB15] so that mesh segmentation can be implemented
by 2D image segmentation. Unfortunately, these methods are sen-
sitive to viewpoints due to occlusion and distortion in projections.
Mesh-based methods are free from the aforementioned issues and
have shown potential, so developing semantic segmentation meth-
ods based on high-resolution meshes would be preferable.

2.2. High-resolution mesh segmentation

Traditional ~ shape descriptor-based segmentation meth-
ods [BKR*16, BK10] can be easily extended to high-resolution

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer 39

mesh segmentation, but these methods cannot achieve good
results due to the lack of semantic meanings for 3D shapes.
Although deep learning-based methods [XLZ*20] can access
semantic meanings, it is difficult for these methods to implement
high-resolution mesh segmentation due to limited computing
resources. Mesh simplification, especially boundary-preserving
simplification, is nearly an unavoidable compromise in this case.
Consequently, we apply these deep learning-based methods to
simplified meshes and discuss their benefits and drawbacks. In
addition, deep learning-based mesh segmentation is a hot topic in
computer graphics. For an overview of previous methods, we refer
the readers to recent surveys [WZ22,XLZ*20]. This section briefly
reviews the state-of-the-art methods that are most relevant to our
work. These methods fall into two categories: methods based on
regular structures and methods based on irregular structures.

Methods based on regular structures. Motivated by the phe-
nomenal success of CNNs in image segmentation, some re-
searchers prefer to introduce CNNs to mesh segmentation. The crit-
ical challenge is that CNNs require inputs with regular structure,
but meshes are irregular naturally. Pioneering works [TPKZ18,
HSBH™19] in this direction mainly depend on parameterization to
map meshes to a regular domain so that CNNs can work. How-
ever, these methods are insensitive to shape information due to pa-
rameterization. Recently, some studies [HHF* 19, HLG*22] avoid
parameterization by defining the convolutions on meshes directly
and achieve state-of-the-art performance, but these methods rely
on the closed manifold surfaces of meshes. Because many high-
resolution meshes do not have closed manifold surfaces, these
methods may not be suitable for high-resolution mesh segmenta-
tion. MeshFormer is superior to these methods for high-resolution
mesh segmentation because it is free from parameterization and
closed manifold constraints.

Methods based on irregular structures regard meshes as irreg-
ular graphs, avoiding the requirement of regular structures. These
methods can be divided into two main types: methods based on
Graph Laplacians and methods based on spatial networks.

Methods based on Graph Laplacians. The Graph Lapla-
cians [MACO91, SHKVLO09] are powerful tools for shape anal-
ysis, inspiring various spectral-based mesh segmentation meth-
ods [Sha08,L.Z04]. However, there are two issues with these meth-
ods. On the one hand, since the Laplacian eigenfunctions are not
the same between different meshes, transferring the coefficients
or learned filters from one mesh to another is difficult. On the
other hand, such processing (e.g., the truncation of high-frequency
information and diffusion) may lead to high-frequency informa-
tion loss. As shown in Fig. 1(e), once high-frequency information
in simplified meshes is overlooked, shape information will suf-
fer severe distortion, e.g., flattened segmentation boundaries, po-
tentially resulting in more segmentation errors. Recently, Sharp et
al. [SACO22] and Smirnov et al. [SS21] presented their solutions
to tackle these two issues. However, these solutions cannot elim-
inate high-frequency information loss in such processing. Unlike
these methods, MeshFormer does not involve the Laplacian eigen-
functions and the above processing resulting in high-frequency in-
formation loss. In addition, MeshFormer considers contextual and
hierarchical information of meshes.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Methods based on spatial networks treat meshes as irregular
graphs from the spatial perspective. Recent segmentation meth-
ods in this direction can be divided into two kinds: random walk
methods and graph convolution network (GCN)-based methods.
For the first kind of method, Lahav et al. [LT20] proposed Mesh-
Walker to build shape understanding based on the shape changes
along 1D walking paths and implement mesh segmentation with
this shape understanding. Nevertheless, noise in simplified meshes
interferes with shape changes, resulting in inaccurate shape under-
standing and segmentation results. For the second kind of method,
GCN-based methods, such as CurvaNet [HJZS20], combine GCNs
and U-Nets to implement mesh segmentation. There are two flaws
in these methods. Firstly, because GCNs are low-pass filters, they
rapidly lose most high-frequency information. Second, recent stud-
ies [WSC*20, WYC*21] suggest that U-Nets may not be ideal for
high-resolution mesh segmentation because they ignore the cross-
resolution convolutions. MeshFormer is also a method based on
spatial networks. However, MeshFormer is built with attention
mechanisms [VSP*17, VCC*18] and Ricci flow [Kap03], which
means it has strong anti-noise capabilities and alleviates high-
frequency information loss efficiently [ZSG10, FLL22, LSM*21].
Thus, MeshFormer is more suitable for simplified meshes than pre-
vious methods. MeshFormer also overcomes the drawbacks of U-
Nets with cross-resolution convolutions and achieves better seg-
mentation results with richer semantic meanings.

3. Method

As shown in Fig. 2, MeshFormer is made up of three components.
To begin with, we apply boundary-preserving simplification on
high-resolution meshes to reduce data size while preserving criti-
cal high-resolution information. Secondly, we execute Olliver Ricci
flow [O1109, BLL*20] on simplified meshes to implement cluster-
ing on meshes and obtain hierarchical structures. Finally, we create
a new graph transformer called mesh transformer to implement se-
mantic segmentation.

3.1. Boundary-preserving simplification

A mesh can be defined as M = (V,E), where V € RM3 s the
coordinate matrix of A vertices and E € RM? is the correspond-
ing adjacent matrix of M. If faces containing this vertex have dif-
ferent labels, this vertex is considered the segmentation bound-
ary. The goal of boundary-preserving simplification is to simplify
the mesh while protecting high-resolution segmentation boundaries
from simplification to avoid ragged segmentation boundaries. The
following is a description of our algorithm in detail. First, we
encode the shape information of M to a shape descriptor matrix
F=(F,..F, ...,F;L)T, where F; is the shape descriptor of i-th ver-
tex v;. The key challenge is encoding rich shape information to F
costlessly. A natural solution is to form each descriptor by con-
catenating a set of shape features with low calculation consumption
and comprehensive scales. Therefore, we select features with cheap
calculations from both local and global perspective and fuse these
features as shape descriptor. The local features include coordinate
after principal component analysis correction, normal vector, shape
diameter [BKR*16], fast point feature histogram [RBB09], and
four kinds of curvature (mean, maximum, minimum, average). The

40 Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

Y .
Boundary-preserving || Hierarchical structure

Mesh Transformer) (@ global node

___________________ @ cluster node

simplification construction

source node

face embedding
B node embedding
ﬁ attention feature
ﬁ attention weight
“€» 4= orig. edges
<4 attention edge

M-Blocks

Point2Face

<+
Segmentation _J \cross-resolution edges)

Figure 2: The structure of MeshFormer: boundary-preserving simplification, clustering algorithm for building hierarchical structures, mesh

transformer.

Figure 3: (a) Alignment of two vertices on the edge eii,- (b) Projec-
tion from cij, 10 k different directions in [HJZS20]. (c) Projection
from ¢;, to k different directions in MeshFormer. The blue lines
represent the projected curvatures.

global features include heat kernel signatures and scale-invariant
heat kernel signatures [BK10]. Second, we use shape descriptor
matrix F as the input and train a XGBoost [CHB*15] to calculate
the probability matrix P = (Py, ..., P;, ...,P;L)T, where P; is the prob-
ability that v; belong to segmentation boundaries. Finally, we apply
the QEM algorithm [GH97,0KV 15] to simplify meshes by collaps-
ing edges and protecting vertices with high probabilities being seg-
mentation boundaries in simplification. Specifically, given an edge
e;j between v; and v;, the error of collapsing e;; is redefined from
the quadratic error Q;; to Q;; - exp(max(P;,P;)). By introducing the
weight exp(max(P;, P;j)), the error of collapsed edges on segmen-
tation boundaries exceeds non-boundary parts, so QEM prefers to
collapse edges on non-boundary parts. When v; and v; collapse to
a NeW VerteX Vnew, Prew can be calculated as max(P;, Pj).

In a word, boundary-preserving simplification increases the er-
rors of collapsed edges on segmentation boundaries by assigning
large weights, thereby protecting segmentation boundaries from
simplification and avoiding ragged segmentation boundaries. We
choose XGBoost rather than deep learning-based methods in this
process because of the faster speed and less computing consump-
tion of decision tree algorithms [TGI18]. In this way, the data size
can be reduced to an acceptable range, and high-resolution infor-
mation in segmentation boundaries is retained.

3.2. Hierarchical structure construction

Pooling layers [HHF*19, HLG*22] and clustering algo-
rithms [HJZS20, SYW*22] are two popular ways to construct
hierarchical structures. We use clustering algorithms to build

hierarchical structures because previous pooling layers in mesh
segmentation require uniform vertex distributions or closed man-
ifolds. However, the hierarchical structures produced by different
clustering algorithms may produce different segmentation results.
Suitable hierarchical structures have clustering results closer to
ground truth, similar to a better pre-segmentation. Previous clus-
tering algorithms [LZ04, HIZS20] may struggle to build suitable
hierarchical structures due to the noise in simplified meshes and
fixed clustering parameters (e.g., the same cluster number for
five-teeth mesh and 32-teeth mesh). Motivated by Ricci flow’s
anti-noise ability [ZSG10] and convergence guarantee [Tao10], we
develop an adaptive clustering algorithm based on Ricci flow.

Ricci flow, especially graph Ricci flow, is a mature tool for clus-
tering on graph structures. By shrinking the areas with positive
Ricci curvature to a point and spreading out the areas with nega-
tive Ricci curvature, Ricci flow can implement the adaptive cluster-
ing on meshes naturally. The key is how to define the positive and
negative Ricci curvatures, i.e., a Riemann metric for clustering on
meshes [Taol0]. Previous Riemann metrics [NLLG19, NLGG18]
based only on topology produce a clustering process guided by
topology similarity, which is not suitable for clustering on meshes.
Therefore, one of our main contributions is a new Riemann met-
ric based on shape information to achieve the clustering guided by
shape similarity.

Our clustering algorithm includes three steps: (a) We encode the
shape information to edge weights of meshes. Specifically, we cal-
culate the difference between two connected vertices’ directional
curvatures as edge weight. (b) We define a new Riemann met-
ric based on shape information (i.e., edge weights) and implement
clustering with Ricci flow so that vertices with similar directional
curvature can be clustered as one patch. (¢c) We build a three-layer
hierarchical structure based on the clustering results of Ricci flow.
The specifics of these three steps are as follows:

(a) Edge weights based on shape information. Firstly, we cal-
culate the original directional curvatures of each vertex. Given
an edge between i-th vertex v; and the g-th adjacent vertex vj,
of v;, the curvature ¢;;, along the edge e;;, can be calculated as

€ii, .
Cij, = 2n; - ﬁ, where e;;, = v;, — vi, v; represents the coordi-
iig
nate of vertex v;, and n; is the normal vector of v;. Calculating the
curvatures along all edges containing v;, we can obtain the original
directional curvature C; = (¢;1, ...,c[m)T of v;, where m is the de-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer 41

gree of v;. Similarly, we can get the original directional curvature
of any vertex.

Secondly, we define the difference between two connected ver-
tices’ directional curvatures as edge weight. For two connected ver-
tices v; and v;,, directly calculating the difference of C; and G,
is not feasible, because the edge directions of C; and C;, are not
aligned. A suitable choice is to project the C; and C;, to k aligned
directions t; ~ t, where k is 8 suggested by CurvaNet [HIZS20].
Thus, we generate k directions for connected vertices randomly
and rotate the k directions until their k directions are aligned, as
shown in Fig. 3(a). Then, the aligned directional curvatures D; =
(di, ,..,d,»k)T of vertex v; can be calculated as D; = A’ - C;, where

[. . . . [. €ij
Al € R¥™ s a projection matrix and Alpq is max(0,tp - HTQH)
iy

As shown in Fig. 3(b,c), Alis designed to project each curvature
cii, € Cj to k-aligned directions. Compared to the previous projec-
tion in Fig. 3(b), only the positive projections of curvature are pre-
served in our method, so our directional curvature is more sensitive
to curvature changes and closer to the real distribution of curva-
tures. Similarly, we can get the aligned directional curvature D;, of
Vi, Then, the directional curvatures’ difference Siiq between v; and
vi, can be calculated as Zf,: 1 |dio — d; |- Applying the above oper-
ations to all edges, we encode the shape information to edge weight
matrix § € RM?,

(b) Adaptive clustering based on Ricci flow. We define a new
Riemann metric based on shape information (i.e., edge weights)
to implement clustering on meshes. Similar to previous Riemann
metrics [JKLGO8, NLLG19], our Riemann metric W is also based
on the Wasserstein distance [Lot06]:

W) =inf{ | Cost(xy)dy(x)lve Monv)h (1)

where W (v;,v;) represents the Wasserstein distance between vertex
v; and vertex v, X and Y are the neighbors of v; and v; with similar
directional curvature, X X Y represents all the vertex pairs includ-
ing vertices from x € X and y € Y, Cost is a function to sum all
edge weights in the shortest path along edges from x to y, y(x,y) is
a probability measure for the shortest path along edges from x to y,
I'(vi,v}) is the collection of all possible probability measures of the
shortest path along edges between X and Y, and inf() represents the
infimum cost from X and Y. Different from previous Riemann met-
rics [NLLG19,NLLG19], our Riemann metric introduces the shape
information, i.e., defines the Cost function with edge weights. In
this way, our clustering is guided by shape similarity rather than
topology similarity.

We use a fast seed expansion algorithm to find neighbors with
similar directional curvature (i.e., X and Y in Eq. 1) for any ver-
tex xi. In the beginning, we initialize two seed sets: X = {x;}
for vertices and U = @ for edges. Then, we collect neighbors
of all vertices in X as X,y ; and calculate the distance between
Vx € (Xqqj \ X) and X. The distance can be calculated effectively
by aggregating the weights of edges between vy and vy € X. We
add the nearest vertex viearest € (Xq4q;\X) to X and all edges be-
tween Vrearest and vy to U. In the end, repeat the last step until the
Z(X,y)EU Sxy is more than En, where En is a constant threshold dis-
cussed in Sec. 4.5. In this way, by continuously adding the nearest
vertex to X, the neighbors with similar directional curvature to any

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

vertex x| are extracted, which makes our Riemann metric W work-
able.

Next, based on the Riemann metric W, the Olliver Ricci curva-
ture K(v;,v;) of e;; can be described as:
K(vivj) = 1— L(;’fv’) . @)
ij
If two connected vertices have the similar directional curvature,
they will share the same neighbors almost, and W (v;,v;) is less
than edge weight §;; and close to 0. Therefore, the Ricci curvature
K(vi,v j) > 0, and then v; and v; will be clustered. In contrast, if
two vertices have completely different directional curvatures, their
neighbors are very different and W (v;,v;) is much larger than S;;,
so the Ricci curvature k(v;, v j) < 0, and then v; and v; will be pulled
apart. By updating all edge weights as follows:

%= (1= (wivy)) - S5, A3)

the vertices with the similar directional curvature will shrink to one
point in space, and the vertices with different directional curvatures
will separate gradually after several iterations, where S?j- and S?j_l
represent the edge weights in a-th and (o.— 1)-th iterations, respec-
tively, and S?j is the edge weight S;;. Following the mature work-
flow of Ricci flow [NLLG19], we use the maximum modularity to
extract clusters after 40 iterations. Experiments in Sec. 4.2 show
that our clustering results are closer to ground truth than other clus-
tering methods. A specific example of our clustering algorithm can
be found in Appendix A.

(¢) The construction of hierarchical structures. We divided
meshes into patches after the adaptive clustering based on Ricci
flow. Naturally, a three-layer hierarchical structure for each mesh
can be built, as shown in Fig. 2: a source layer including vertices, a
patch layer including patches, and a global layer including the rep-
resentation of the total mesh. To represent this 3-layer hierarchical
structure, we construct a heterogeneous directed graph consisting
of three types of nodes, i.e., source, patch, and global nodes.

Each vertex of mesh is converted into a source node in the source
layer, each edge of the mesh is preserved, and the difference be-
tween two connected vertices’ directional curvatures is used as
edge weight. We convert each patch into a patch node in the patch
layer, and the edge weight between two patch nodes is calculated
as the sum of the weights of all edges between source nodes across
these two patches. In the global layer, a global node is introduced
to provide global support.

In the heterogeneous directed graph, we also add the edges
between different layers (i.e., the cross-resolution edges) to en-
able convolutions between different resolutions. According to the
clustering relationship provided by Ricci flow, we build the bi-
directional edges between source nodes and patch nodes. The
weight of each edge between the source node and patch node is
initialized as the Euclidean distance from the source node to the
centroid of the patch. The global node has bi-directional edges to
any other node, and the initial edge weight is 1/A/, where A is
the number of nodes. Directed edges are assigned different types if
their origin nodes or destination nodes have different node types.
As shown in Fig. 2, we build a heterogeneous directed graph H for
each mesh in this manner.

42 Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

3.3. Mesh transformer

Motivation. As the core of transformer-based methods, attention
mechanisms [VSP*17, VCC* 18] have revolutionized graph-based
segmentation tasks [MCB*22]. By learning a latent importance dis-
tribution of features, attention mechanisms selectively aggregate
important features, contribute to more accurate and richer infor-
mation, and help to achieve better segmentation results [MCB*22].
Thus, we develop the mesh transformer for mesh segmentation.

Input. Both topology and shape information are essential for
mesh segmentation. Consequently, we specify our model’s inputs
from both topology and shape perspectives. We pick the hetero-
geneous directed graph H constructed in Sec. 3.2 as the input
for topology information. We reuse the shape descriptor matrix in
Sec. 3.1 as source nodes’ features and obtain the features of patch
nodes and global nodes by the averaging operation. In this way, we
obtain the node feature matrix F/ € RN XD as the input for shape
information.

Model design. As shown in Fig. 2, the mesh transformer is com-
posed of three components: multiple M-Blocks, a Point2Face layer,
and a multilayer perceptron. M-Blocks capture the semantic mean-
ings of meshes to generate node embeddings. Following M-Blocks,
a Point2Face layer is designed to convert node embeddings to face
embeddings. Finally, based on the face embeddings, a multilayer
perceptron is used to predict the face labels.

(a) M-Block. It is a challenging problem to capture rich semantic
meanings of meshes. As we discussed in Sec. 1, the convolutions
between different resolutions need to be considered because they
can help capture richer high-resolution semantic meanings with the
help of low-resolution semantic meanings and contribute to bet-
ter segmentation results. In addition, the shape noise in simplified
mesh needs to be taken into account. Regardless of noise, directly
applying convolutions to noise features is not a good choice. Thus,
we divide the M-Block into two modules: shape attention for han-
dling noise and topology attention for convolution between differ-
ent resolutions.

Shape attention. Mapping features to multiple subspaces and ex-
tracting important features in these subspaces, multi-head atten-
tion can effectively enhance important information for segmenta-
tion and inhibit noise [VSP*17, ZGZ*20]. Thus, we propose the
shape attention with a feature enhancement operation and a multi-
head self-attention layer. The feature enhancement operation pre-
pares rich shape information for feature extraction, and the multi-
head self-attention layer is responsible for extracting features and
inhibiting noise. Let F{' = (f{, ..., f}, -, far)T be the input of the /-th
M-Block and set Fj as the shape information input F’. The feature
enhancement operation Enhance on j-th node’ feature fJ'- €RP can
be described as:

Enhance(f}) =p(fj® Y, (fi—1)): @)

i€adj(j)
where adj(j) represents the adjacent nodes’ indexes of j-th node,
@ represents the concatenation operation of features, p means the
trainable linear projections from R?P to RP. Through this feature
enhancement, richer shape features, especially the shape changes,
are involved in feature extraction. Then, employing a multi-head

self-attention layer M-Att for feature extraction [VSP*17], the
shape attention SA can be described as:

SA(f}) = f; + M-Att(Enhance(f})).)

Applying SA to all node features, our model emphasizes important
shape features and inhibits the noises.

Topology attention. Taking H and SA(F/) as inputs, the topol-
ogy attention is designed to obtain the rich semantic meanings of
shapes, i.e., achieve the convolutions within same resolutions and
the convolutions between different resolutions. In fact, we have de-
signed cross-resolutions edges and assigned them different types
in the construction of heterogeneous directed graphs. Therefore,
topology attention only needs to apply different convolutions for
different edge types, and then both the convolutions within same
resolutions and the convolutions between different resolutions can
be achieved. Let the shape attention result SA(fj') be f7, the het-
erogeneous directed edge from i-th node to j-th node be e;;, the
edge type of e;; be R;;, the node types of i-th node and j-th node
be 7; and T}, respectively. The topology attention TA on e;; can be
defined as:

TA(eij) =V (f)- Softmax (6™ (Q" (£")- K" (£]'))- (1= Wj)),

(6)
where VT, QT and K”/ are trainable linear projections varying
with node types from RP to RP, 6Fii is the trainable linear pro-
jections varying with edges types from R? to R?, and W;; repre-
sents the edge weight of e;;. Similar to heterogeneous mutual atten-
tion [HDWS20], our topology attention varies with edge types, so
the convolutions between different resolutions can be implemented
without interference to the convolutions within same resolutions.
Even though topology attention has a similar implementation as
the heterogeneous mutual attention [HDWS20], our method does
not ignore the information of edge weights, as shown in Eq. 6. With
TA, we can get the formula of M-Block as:

M-Block(f) = f; + Gelu(Y TA(e;)))
icadj(j)
where Gelu represents the activation function. Feeding our inputs
to M-Blocks, our method captures semantic meanings as the node
embeddings.

(b) Point2Face Layer. Mesh segmentation is based on faces,
but M-Blocks generate embedding for each node, i.e., each vertex
of meshes. To tackle this problem, we propose the Point2Face layer
to convert node embeddings to face embeddings. First, we concate-
nate the embeddings of three connected nodes from different res-
olutions as the new node embedding /" € R3P. Second, given

new new

three node embeddings (7", 5, f5°*)T in any face, we employ
a self-attention layer to calculate the face embedding fr,c. € R3P:

3
fface = Z V(finew) : SOftmaX(Q(finew)) K(finew)) (3
i=1

where V, Q, and K are the trainable linear projections from R3P
to R3P. Applying the above operations on each face, we obtain all
face embeddings.

(c) Finally, we use a multilayer perceptron to predict the labels
of faces based on face embeddings. Because our segmentation re-
sult is based on the simplified meshes, we map our segmentation

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

Table 1: Statistical information of datasets and results of XGBoost.

43

Face number XGBoost
Dataset Average Maximum Minimum Mesh number Ratio of boundaries Recall Accuracy
Telealiens 133.6k 471.5k 97.5k 195 0.027 0.961 0.912
Vases 213.6k 503.2k 24.1k 297 0.046 0.985 0.861
Chairs 88.2k 386.1k 41.9k 393 0.032 0.957 0.909
Tooth (Upper/Lower) 227.01k /213.88k 514.64k /374.29k 67.40k / 68.18k 100 0.020/0.020 0.991/0.989 0.857/0.849

SUQNEI[O L,

SOsBA sey)

ooy

Figure 4: (a) The probabilistic heatmaps of segmentation bound-
aries provided by XGBoost. All probability values are mapped to a
linear colour space from green (0.0) to red (1.0). (b) The mapped
ground truth of meshes after boundary-perserving simplification.
(c) The mapped ground truth of meshes after general simplifica-
tion. (d) The ground truth.

results to raw meshes using the nearest neighbour query. The la-
bel of each face i in raw meshes is the same as the nearest face of
simplified meshes. We use the area of the mispredicted faces as the
training loss.

4. Experiments

We devise three experiments to evaluate the superiority of Mesh-
Former. Firstly, by comparing our boundary-preserving simplifi-
cation with general simplification, we can demonstrate that the
boundary-preserving simplification can avoid the ragged segmen-
tation boundaries, i.e., the prior errors for learning and mapping.
Secondly, by comparing our clustering algorithm with popular
clustering algorithms on mesh segmentation, we can prove that
our clustering algorithm works better in simplified meshes, i.e.,
it provides the clustering results closer to ground truth. Thirdly,
by comparing MeshFormer with the state-of-the-art methods, we
can present the advantages of MeshFormer. For each experiment,

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

we use three high-resolution coseg datasets generated by subdivi-
sion and a real high-resolution tooth dataset. The specific parame-
ters of the dataset can be found in Tab. 1. For each trainable com-
ponent, i.e., boundary-preserving simplification and semantic seg-
mentation, we perform ten-fold cross-validation (90% for training,
10% for testing) and report the average performances. All experi-
ments are repeated ten times on one machine, including two RTX
3090 (GPUs) and AMD 5950 (CPU).

4.1. Boundary-preserving simplification

According to the statistical results of face numbers in Tab. 1, each
dataset involves some meshes containing over 370k faces, imply-
ing that applying previous deep learning-based methods directly
will consume unacceptable computing resources. As a result, sim-
plification is a necessary choice. However, if we use general sim-
plification without protecting segmentation boundaries, some prior
and mapping errors at segmentation boundaries would be raised.
As shown in Fig. 4, we simplify meshes and map ground truth on
simplified meshes back to the raw meshes. The general simplifica-
tion causes massive ragged label errors in segmentation boundaries,
i.e., the imprecise labels for learning and inevitable errors in map-
ping. Therefore, to solve the imprecise labels, our algorithm uses
XGBoost to predict the boundary-probability of each vertex inde-
pendently and protects vertices with high probabilities being seg-
mentation boundaries in simplification. We increase the samples
of segmentation boundaries to 50% to address the issue of unbal-
anced labels between segmentation boundaries and non-boundary
parts on meshes. With an initial learning rate of 0.05 and a maxi-
mum depth of 6, we train the XGBoost for 100 epochs.

As shown in Tab. 1, our algorithm maintains over 95% recall and
over 80% accuracy on multiple datasets, which can be attributed to
the scale-comprehensive features. The excellent recalls and good-
enough accuracies mean that most segmentation boundaries are
identified and protected in simplification. The results in Fig. 4 ver-
ify our analysis: compared with general simplification, the simpli-
fied results of our algorithm effectively eliminate the inaccurate la-
bels of boundaries, i.e., the prior errors for neural networks and the
mapping mistakes.

4.2. Hierarchical structure construction

We compare our clustering algorithm with two popular clustering
algorithms in mesh segmentation: hierarchical clustering [HIZS20]
and spectral clustering [TPT17, LZ04]. To illustrate the superior-
ity of our algorithm, we use two metrics to measure the difference

44 Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

Table 2: Accuracy of different methods. g represents the accuracies in general simplified meshes, s represents the accuracies in boundary-
preserving simplified meshes, and point cloud represents the accuracies in point cloud data.

MeshCNN PD-MeshNet SubdivNet CurvaNet MeshWalker DiffusionNet DiffusionNet

Datasets @/s) (@/s)) (e/s) (g/53) (g/s) (point cloud) Ours
Telealiens 96.5/94.7 96.9/96.0 97.2/98.1 94.7/92.3 96.7/91.3 95.8/92.7 91.6 9.1
Vases 95.0/93.1 95.6/94.7 96.2/97.1 93.2/91.5 95.3/89.0 93.4/90.4 89.1 99.1
Chairs 95.7/93.3 96.0/94.9 96.1/97.0 96.9/93.2 95.8/89.4 90.9/89.3 88.8 98.9
Tooth (Upper) o —/- —/- 93.3/91.4 92.2/89.5 94.8/91.7 89.2 99.6
Tooth (Lower) —/- —/= -/- 92.8/90.9 91.6/88.2 93.6/91.0 88.8 99.4

Table 3: The number of parameters in different methods (millions). Only the parameter settings with the best performance are reported.

Datasets MeshCNN PD-MeshNet SubdivNet CurvaNet MeshWalker DiffusionNet Ours

Telealiens 2271 1.354 10.752 3.56 12.638 2.76 1.814

Vases 2278 1.354 10.752 1.46 12.638 2.76 1.814

Chairs 2.278 1.354 10.752 1.459 12.638 2.76 1.814

Tooth — - - 14.674 40.98 2.76 2.665
§
g
£

DiffusionNet(g) DiffusionNet(s) MeshWalker(g) MeshWalker(s) SubdivNet(g) SubdivNet(s) Ours Ground truth

Figure 5: The segmentation results of state-of-the-art methods in coseg datasets. g represents the result in general simplified meshes, and s
represents the result in boundary-preserving simplified meshes.

DiffusionNet(g) DiffusionNet(s) MeshWalker(g) MeshWalker(s) Ours Ground truth

Figure 6: The segmentation results of different methods in tooth datasets. g represents the result in general simplified meshes, and s represents
the result in boundary-preserving simplified meshes.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer 45

Table 4: Errors of hierarchical structures. Spec represents the
spectral clustering, Hier represents hierarchical clustering, and
Faces represents the face number of simplified meshes.

errory | Faces
Dataset error| 2 Faces

Ours Spec Hier

Telealiens 73 0.086 0.141 0.174 1.5k
Vases 50 0.083 0.118 0.139 1k
Chairs 42 0.081 0.121 0.123 1k

Tooth(Upper) 1020 0.091 0.115 0.113 20k
Tooth(Lower) 1017 0.097 0.117 0.114 20k

between the clustering results and ground truth. Firstly, to avoid
vertices with the same label being divided into different clusters,
the number of clusters should be close to the number of labels
in ground truth. Thus, we set the difference between the num-
ber of clusters NC and the number of labels Y as the first metric
error] = [NC —Y|. Secondly, to prevent vertices with different la-
bels from being in the same cluster, we define the second metric as
errory = Y0, (X4 | Ly — max(lyt , .., ln,)), Where uy is the num-
ber of labels in the n-th cluster, and /,;; is the face number of i-th
label in the n-th cluster. Theoretically, if error; and error, are 0O,
the clustering results are ground truth. Since other clustering algo-
rithms need to specify the cluster number for each mesh, we adopt
the clustering number generated by our adaptive algorithm as the
clustering number of other algorithms on each mesh.

As shown in Tab. 4, the hierarchical structures generated by our
method have lower error, than other methods, i.e., clustering re-
sults closer to ground truth. The better performance of our algo-
rithm can be attributed to two aspects. First, the changes of direc-
tional curvature are consistent with ground truth: dramatic changes
in boundaries and keeping similar in segmentation targets. Second,
Ricci flow naturally resists noise, which means stable performance
under noise.

4.3. Semantic segmentation

We compare our method with six state-of-the-art methods,
including CNN-based methods (MeshCNN [HHF*19], PD-
MeshNet [MLR*20], and SubdivNet [HLG*22]), graph laplacian-
based methods (Diffusion-Net [SACO22]), and spatial network-
based methods (CurvaNet [HJZS20] and MeshWalker [LT20]). For
a fair comparison, we look for the optimal hyperparameters for
each method within the suggestive ranges and report their best per-
formances on each dataset. The details can be described as follows.

e MeshCNN. We search the collapsed edges’ proportions and the
layer numbers at {0.2,0.3,0.4} and {4,5,6,7}, respectively.

o PD-MeshNet. Since PD-MeshNet has a similar architecture to
MeshCNN, we adopt the same search ranges of hyperparameters
as MeshCNN. According to the suggestions in [MLR*20], we
select the add pooling version for PD-MeshNet.

e SubdivNet. We set the base mesh size and subdivision depth as
256 and 3, respectively, and each mesh is remeshed to 10 dif-
ferent meshes for data augmentation as suggested in [HLG*22].
For a fair comparison, each mesh is viewed as an independent
mesh, so the original segmentation accuracy is reported rather

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

than the voted accuracy. Additionally, we test both ResNet and
DeepVlab structures of SubdivNet and report better accuracy.

e CurvaNet. We set the ratio of preserved nodes in pooling layers
as 0.25 as suggested in [HJZS20] and search the layer number
L e{3,4,56,7,8}.

o MeshWalker. We search the walk length and the number of
GRU layers at 300,600,900 and 3, 6,9, respectively.

o DiffusionNet. We test two versions of DiffusionNet, includ-
ing origin and hks versions. Since DiffusionNet is also a point
cloud segmentation method, both mesh predictions and point
cloud predictions are involved in the comparison. In addition,
the number of eigenfunctions is increased to 256 due to more
high-frequency information raised by simplification.

e Our method. For three coseg datasets, we set the layer number
L, the feature dimension D, and the head number for multi-head
attention layers as 4, 120, and 8, respectively. We use the same
hyperparameters as the coseg datasets for the tooth dataset, but
increase the layer number to 6. We train MeshFormer using the
Adam optimizer [KB15], setting the initial learning rate as 0.001,
decaying the learning rate with a factor 0.5, and running each
epoch with batch size 1.

For all methods, we ensure that 600 epochs are conducted in
training processes. Additionally, we simplify all meshes to accept-
able data sizes because none of the above methods can be directly
applied to high-resolution meshes within limited computing re-
sources. For three coseg datasets, we simplify each mesh until the
face numbers match the suggestions in MeshCNN [HHF*19]. For
the tooth dataset, we simplify tooth meshes to 20k faces. Note that
many real-world tooth meshes are not closed manifolds, and con-
verting these meshes with complex topological errors into closed
manifolds is still a challenging problem, so the dual graph-based
methods cannot be applied to the tooth datasets. In this paper,
we define accuracy as the area ratio of faces with correct predic-
tions. To implement a more comprehensive comparison, we test
other methods on both general simplified meshes and boundary-
preserving simplified meshes. The accuracies of all methods are
listed in Tab. 2.

Compared with point cloud-based DiffusionNet, mesh-based
methods generally perform better due to complete topological in-
formation. Compared with other mesh-based methods, our method
achieves gains from 1.0% to 5.8%. The reason can be attributed to
three points.

e Firstly, the prior and the mapping errors are reduced by
boundary-preserving simplification. In contrast, previous meth-
ods with general simplification have to suffer prior and mapping
errors. For example, after general simplification, the segmenta-
tion labels of meshes become not accurate (i.e., ragged segmen-
tation boundaries) due to inappropriate simplification occurring
in boundaries, as shown in Fig. 4(c). These imprecise segmen-
tation labels bring prior errors for learning and mapping errors
(Fig 1(b)). Therefore, it is difficult for previous methods with
general simplification to obtain the same performance as Mesh-
Former.

e Secondly, since our method based on Ricci flow and attention
mechanisms has good anti-noise ability naturally, our method
can handle the noise raised by boundary-preserving simpli-

46 Y. Li etal. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

Table 5: The time consumption for differents methods (seconds).
g represents general simplification and s represents boundary-
preserving simplification.

Time (seconds)

Methods Simplification ~ Extra computation ~ Segmentation All
MeshCNN 2.54(g) 0 1.31 3.85
CurvaNet 2.54(g) 0.18 (Features) 0.07 2.79
PD-MeshNet 2.54(g) 0 1.47 4.01
SubdivNet 4.99(s) 9.86(Remesh) 0.05 14.9
DiffusionNet 2.54(g) 0 0.02 2.56
MeshWalker 2.54(g) 0.21 (Paths) 0.17 2.92
Ours 4.99(s) 1.74 (Ricci flow) 0.11 6.84

fication. Most previous methods can also use our boundary-
preserving simplification in a plug-and-play manner, but they
cannot achieve better results in the same way due to the
shape noise. The better performance of SubdivNet on boundary-
preserving simplified meshes validates our analysis. Although
SubdivNet has similar architectures to other CNNs [HHF*19,
MLR*20], it employs the extra remeshing operation to alleviate
noises, resulting in improved accuracy on boundary-preserving
simplified meshes.

e Thirdly, our transformer implements the convolutions between
different resolutions that capture richer high-resolution seman-
tic meanings and contribute to better segmentation results. Thus,
our method outperforms SubdivNet, especially in segmentation
boundaries, as shown in Fig. 5 and Fig. 6. The ablation study
in Sec. 4.4 provides precise quantitative gains of convolutions
between different resolutions.

As shown in Tab. 3, our method also has fewer parameters than
most previous methods. In addition, we also record and analyze
the computation time. We select 20 closed tooth meshes with 200k
vertices and test the computation time of all methods. As shown
in Tab. 5, the computation time is divided into two parts: time
for pre-computation (i.e., simplification and extra computation)
and time for segmentation. Unlike the segmentation task, the pre-
computation does not involve many parameters and an exclusive
GPU computation mode, so we employ 10 parallel processes for
pre-computation and one single process for segmentation. For pre-
computation, boundary-preserving simplification and Ricci flow
bring more gains and take more time, but the increase of compu-
tation time is acceptable on non-real-time segmentation tasks, i.e.,
approximately increase two seconds from the average performance
of other methods (4.66s). For the segmentation, our method is well
above the average performance (0.11s vs 0.52s). In a word, our
method achieves the best accuracy, and the increase of computa-
tion time is in an acceptable range for non-real-time segmentation.

4.4. Ablation study

The gains of MeshFormer can be attributed to four main factors: the
boundary-preserving simplification for fewer prior errors, the clus-
tering algorithm for the clustering results closer to ground truth,
the cross-resolution convolutions for the richer high-resolution se-
mantic meanings, and extra shape attention for noise handling. We
discuss the gains brought by these factors independently.

Table 6: Accuracies of different models in Ablation study.

Dataset ~ Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Ours

Telealiens 97.0 98.7 97.9 97.7 98.7 98.3 99.1
Vases 96.4 97.6 97.1 96.3 98.2 98.1 99.1
Chairs 97.1 98.6 98.4 97.8 98.3 982 989

Tooth (Upper) 96.2 96.3 96.7 95.2 97.0 97.1 99.6
Tooth (Lower) 95.9 95.4 95.8 94.5 96.1 96.3 994

The gains from boundary-preserving simplification. We build
Model 1 by replacing the boundary-preserving simplification in
MeshFormer with QEM and discuss the ability of MeshFormer to
defeat the prior errors. The accuracies of Model 1 in Tab. 6 show
that MeshFormer suffers performance loss due to the prior errors
but still has better performance (0.8% gains on average) than previ-
ous methods, which can be attributed to the strong ability of Ricci
flow and mesh transformer.

The gains from Ricci flow-based clustering algorithm. We
build new models by replacing our clustering algorithm with the
spectral clustering algorithm (Model 2) and the hierarchical cluster-
ing algorithm (Model 3), respectively. As shown in Tab. 6, similar
to a better pre-segmentation, our clustering results closer to ground
truth bring better segmentation results (i.e., more than 0.4% abso-
lute improvements) than Model 2 and Model 3. Similarly, Model
2 outperforms Model 3 since its clustering results are closer to the
ground truth than Model 3.

The gains from the cross-resolution convolutions. Model 4
and Model 5 are created by removing all the edges between differ-
ent resolutions and the directed edges from low resolutions to high
resolutions in our model, respectively. All information exchanges
between different resolutions are blocked in Model 4 due to the
lack of cross-resolution edges, and only part information exchanges
are preserved in Model 5 (similar to U-Nets). MeshFormer, which
includes complete information exchanges, outperforms these two
models by 2.24% on average, as shown in Tab. 6. The main rea-
son is that complete information exchanges between resolutions
can broaden the range of convolutions and provide richer high-
resolution semantic meanings for segmentation, resulting in better
results [WSC*20, WYC*21].

The gains from shape attention. Model 6 is created by re-
moving the shape attention from M-Blocks. Without shape atten-
tion from M-blocks, our model loses more than 0.7% accuracy, as
shown in Tab. 6. In M-Blocks, shape attention focuses on extract-
ing important shape features and inhibiting the noise, and topology
attention is responsible for obtaining semantic meanings of meshes
by convolutions. Without shape attention to alleviate noise, Model
6 cannot achieve the same performance as our model.

4.5. Hyperparameter Analysis

We discuss the impact of important hyperparameters in three com-
ponents of MeshFormer on real-world tooth datasets and report
the averaged performance of the upper and lower tooth meshes. In
the boundary-preserving simplification, we adjust the sampling ra-
tio of segmentation boundaries as {30%,40%,50%,60%}, respec-
tively. The recall of XGBoost increases with the ratio of boundary

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer 47

100 = recall sraccuracy [Eaccuracy]
.00, 100 100% 1.00
[cammnl
095 sl T e | 9% /\ﬂ 097
0.90 98% z:jf 0.94
0.85 B\B\a\ﬂ o
0.80 e 09
AT esflogye 234 467 90 10150130 010
ratio a—order layers feature dimension
(a) (®) (©

Figure 7: (a) The performance under different ratio of boundary
nodes. (b) The accuracies under different size of neighbors. (c) The
accuracies under different L. (d) The accuracies under different D.

nodes, but the accuracy decreases, as shown in Fig. 7(a); so, the
balance between recall and accuracy can be adjusted based on the
demand. In the clustering algorithm, we sum the weights in the a-
order neighbours for all vertices and set the average value as En. To
evaluate the influence of a, we set a as {2,3,4,5}, respectively, and
record the accuracies as shown in Fig. 7(b). The results in Fig. 7(b)
show that our method has stable performance with different a. In
mesh transformer, we discuss the influence of layer number £ and
the feature dimension D. Fig. 7(c) shows the gradually increasing
trend of our method’s accuracy with a larger layer number £. Simi-
larly, according to the accuracies under different D in Fig. 7(d), our
algorithm also performs better with a larger feature dimension and
eventually converges.

4.6. Limitations

Although our method achieves the best performance in high-
resolution mesh segmentation, it still suffers two limitations. To
begin with, our method obtains semantic meanings of meshes with
convolutions in connected graphs, similarly to previous methods.
Consequently, our method is ineffective for unconnected graphs,
i.e., meshes containing multiple isolated parts. Introducing some
visual features might help us solve this limitation, but it would over-
complicate our method. Second, according to Tab. 5, our method
cannot support real-time segmentation, which is also a common
drawback of current deep learning-based methods. Using a com-
puter with multiple GPUs to run the algorithm may solve the prob-
lem, but it will consume more computing resources. Fortunately,
most high-resolution mesh segmentation tasks, such as tooth seg-
mentation, do not require real-time processing.

5. Conclusion and future work

Limited computing resources and insufficient semantic meanings
are the directed obstacles to achieving good performance with the
graph transformer architecture. We propose MeshFormer contain-
ing three components to remove these two obstacles. Experiments
prove the effectiveness of MeshFormer and each component of
MeshFormer. MeshFormer shows a good generalized performance
in the real-world mesh segmentation, i.e., tooth segmentation. Fur-
thermore, our experiments show that previous deep learning-based
methods can also be benefited from our method in a plug-and-play
manner. For example, SubdivNet achieves better accuracy with
boundary-preserving simplification. In the future, we tend to im-
prove MeshFormer by accelerating feature computation and sim-
plification for supporting real-time segmentation tasks.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

6. Acknowledge

This research was supported by National Major Scientific Research
Instrument Development Project under Grant 81827804, the Na-
tional Natural Science Foundation of China under Grant 61972343,
and the Key Research and Development of Zhejiang Province un-
der Grant 2021C03032.

References

[ACK13] ATTENE M., CAMPEN M., KOBBELT L.: Polygon mesh re-
pairing: An application perspective. ACM Computing Surveys 45 (2013),
1-33. 1

[BK10] BRONSTEIN M. M., KOKKINOS I.: Scale-invariant heat ker-
nel signatures for non-rigid shape recognition. In Proceedings of CVPR
(2010), pp. 1704-1711. 2,4

[BKR*16] BALDAcCCI A., KAMENICKY R., RIECICKY A., ET AL.:
Gpu-based approaches for shape diameter function computation and its
applications focused on skeleton extraction. Computers & Graphics 59
(2016), 151-159. 2,3

[BLL*20] BAIS.,LINY.,LUL., WANG Z., YAU S.: Ollivier ricci-flow
on weighted graphs. CoRR (2020). 3

[CAL*16] CICEK O., ABDULKADIR A., LIENKAMP S. S., BROX T.,
RONNEBERGER O.: 3d u-net: learning dense volumetric segmenta-
tion from sparse annotation. In International conference on medical
image computing and computer-assisted intervention (2016), Springer,
pp. 424-432. 2

[CHB*15] CHEN T., HE T., BENESTY M., KHOTILOVICH V., TANG
Y., CHO H., CHEN K., ET AL.: Xgboost: extreme gradient boosting. R
package version 0.4-2 1 (2015), 1-4. 4

[CLNO6] CHOW B., LU P., NI L.: Hamilton’s Ricci flow, vol. 77. Amer-
ican Mathematical Soc., 2006. 1

[FBD*21] FAYYAZ M., BAHRAMI E., DIBA A., NOROOZI M., ADELI
E., VAN GooL L., GALL J.: 3d cnns with adaptive temporal feature
resolutions. In Proceedings of CVPR (2021), pp. 4731-4740. 2

[FLL22] FAN C., Liu T., L1u K.: Sunet: Swin transformer unet for im-
age denoising. CoRR (2022). 3

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. ACM Transactions on Graphics (1997), 209-216.
4

[GJ19] GAo H., J1 S.: Graph u-nets. In Proceedings of ICML (2019),
pp- 2083-2092. 2

[HDWS20] Hu Z., DONG Y., WANG K., SUN Y.: Heterogeneous graph
transformer. In Proceedings of WWW (2020), pp. 2704-2710. 6

[HHF*19] HANOCKA R., HERTZ A., FISH N., GIRYES R., FLEISH-
MAN S., COHEN-OR D.: Meshcnn: a network with an edge. ACM
Transactions on Graphics 38 (2019), 1-12. 1, 3,4, 9, 10

[HJZS20] HE W.,JIANG Z., ZHANG C., SAINJU A. M.: Curvanet: Geo-
metric deep learning based on directional curvature for 3d shape analysis.
In Proceedings of KDD (2020), pp. 2214-2224. 1,2,3,4,5,7,9

[HLG*22] HuS.,LiuZ.,GuoM., CA1]J., HUANG J., MU T., MARTIN
R.: Subdivision-based mesh convolution networks. ACM Transactions
on Graphics 41 (2022), 1-16. 1,2,3,4,9

[HSBH*19] HAIM N., SEGOL N., BEN-HAMU H., MARON H., LIP-
MAN Y.: Surface networks via general covers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (2019),
pp- 632-641. 3

[JKLGO8] JIN M., Kim J., Luo F., GuU X.: Discrete surface ricci flow.
IEEE Transactions on Visualization and Computer Graphics 14 (2008),
1030-1043. 5

[Kap03] KAPOVICH M.: Geometrization conjecture and Ricci flow. Tech.
rep., 2003. 3

48 Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

[KB15] KINGMA D., BA J.: Adam: A method for stochastic optimiza-
tion. In Proceedings of ICLR (2015). 9

[LBD17] LE T., Bul G., DUAN Y.: A multi-view recurrent neural net-
work for 3d mesh segmentation. Computers & Graphics 66 (2017), 103—
112. 2

[LHMRO8] LAIY., HU S., MARTIN R., ROSIN P.: Fast mesh segmen-
tation using random walks. In Proceedings of the ACM symposium on
Solid and physical modeling (2008), pp. 183-191. 1

[Lot06] LoTT J.: Some geometric calculations on wasserstein space.
arXiv preprint math/0612562 (2006). 5

[LSM*21] LUTHRA A., SULAKHE H., MITTAL T., IYER A., YADAV
S.: Eformer: Edge enhancement based transformer for medical image
denoising. CoRR (2021). 3

[LT20] LAHAV A., TAL A.: Meshwalker: Deep mesh understanding by
random walks. ACM Transactions on Graphics 39 (2020), 1-13. 3,9

[LZ04] LiuR., ZHANG H.: Segmentation of 3d meshes through spectral
clustering. In Proceedings of the Computer Graphics and Applications,
12th Pacific Conference (2004), pp. 298-305. 3, 4,7

[MACO91] MOHAR B., ALAVI Y., CHARTRAND G., OELLERMANN
O.: The laplacian spectrum of graphs. Graph theory, combinatorics,
and applications 2 (1991). 3

[MCB*22] MIN E., CHEN R., BIAN Y., XU T., ZHAO K., HUANG
W., ZHAO P., HUANG J., ANANIADOU S., RONG Y.: Transformer
for graphs: An overview from architecture perspective. arXiv preprint
arXiv:2202.08455 (2022). 6

[MLR*20] MILANO F., LOQUERCIO A., ROSINOL A., SCARAMUZZA
D., CARLONE L.: Primal-dual mesh convolutional neural networks. Ad-
vances in Neural Information Processing Systems 33 (2020), 952-963. 9,
10

[MPS14] MARINACCI F., PAKMOR R., SPRINGEL V.: The formation of
disc galaxies in high-resolution moving-mesh cosmological simulations.
Monthly Notices of the Royal Astronomical Society 437 (2014), 1750—
1775. 1

[NLGGI18] NiC.C.,LINY.Y., GaolJ., GU X.: Network alignment by
discrete ollivier-ricci flow. In Graph Drawing and Network Visualization
(2018), pp. 447-462. 4

[NLLG19] NiC., LIN Y., Luo F., GAo J.: Community detection on
networks with ricci flow. Scientific reports 9 (2019), 1-12. 1,2, 4,5

[OKV15] ODAKER T., KRANZLMUELLER D., VOLKERT J.: Gpu-
accelerated real-time mesh simplification using parallel half edge col-
lapses. In International Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science (2015), pp. 107-118. 4

[O1109] OLLIVIER Y.: Ricci curvature of markov chains on metric spaces.
Journal of Functional Analysis 256 (2009), 810-864. 3

[QYSG17] Q1 C., Y1 L., Su H., GUIBAS L.: Pointnet++: Deep hier-
archical feature learning on point sets in a metric space. Advances in
neural information processing systems 30 (2017). 2

[RBB09] Rusu R. B., BLODOW N., BEETZ M.: Fast point feature
histograms (fpfh) for 3d registration. In Proceedings of ICRA (2009),
pp- 3212-3217. 3

[SACO22] SHARPN., ATTAIKI S., CRANE K., OVSJANIKOV M.: Diffu-
sionnet: Discretization agnostic learning on surfaces. ACM Transactions
on Graphics 41 (2022), 1-16. 2,3, 9

[SBR16] SINHA A., BAlJ., RAMANI K.: Deep learning 3d shape sur-
faces using geometry images. In Proceedings of ECCV (2016), pp. 223—
240. 2

[SBZB15] SHI B., BAl S., ZHOU Z., BAI X.: Deeppano: Deep
panoramic representation for 3-d shape recognition. IEEE Signal Pro-
cessing Letters 22 (2015), 2339-2343. 2

[Sha08] SHAMIR A.: A survey on mesh segmentation techniques. Com-
puter Graphics Forum 27 (2008), 1539-1556. 3

[SHKVL09] SHARMA A., HORAUD R. P., KNossow D., VON LA-
VANTE E.: Mesh segmentation using laplacian eigenvectors and gaussian
mixtures. In Proceedings of AAAI (2009). 3

[SS21] SMIRNOV D., SOLOMON J.: Hodgenet: learning spectral geome-
try on triangle meshes. ACM Transactions on Graphics 40 (2021), 1-11.
3

[SYW*22] SHU Z., YANG S., WU H., XIN S., PANG C., KAVAN L.,
Liu L.: 3d shape segmentation using soft density peak clustering and
semi-supervised learning. Computer-Aided Design 145 (2022), 103181.
1,4

[Taol0] TAO T.: lii. 78 ricci flow. In Princeton Companion to Mathemat-
ics. 2010, pp. 279-281. 4

[TGI18] TREBOUX J., GENOUD D., INGOLD R.: Decision tree ensemble
vs. nn deep learning: efficiency comparison for a small image dataset. In
International Workshop on Big Data and Information Security (2018),
pp- 25-30. 4

[TPKZ18] TATARCHENKO M., PARK J., KOLTUN V., ZHOU Q.: Tan-
gent convolutions for dense prediction in 3d. In CVPR (2018), pp. 3887—
3896. 3

[TPT17] THEOLOGOU P., PRATIKAKIS I., THEOHARIS T.: Unsuper-
vised spectral mesh segmentation driven by heterogeneous graphs. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39 (2017),
397-410. 1,7

[TQD*19] THOMAS H., QI C., DESCHAUD J., MARCOTEGUI B.,
GOULETTE F., GUIBAS L.: Kpconv: Flexible and deformable convo-
lution for point clouds. In ICCV (2019), pp. 6411-6420. 2

[TST96] THOMPSON P., SCHWARTZ C., TOGA A.: High-resolution ran-
dom mesh algorithms for creating a probabilistic 3d surface atlas of the
human brain. Neuroimage 3 (1996), 19-34. 1

[VCC*18] VELICKOVIC P., CUCURULL G., CASANOVA A., ROMERO
A., L10 P, BENGIO Y.: Graph attention networks. In Proceedings of
ICLR (2018). 3,6

[VSP*17] VASWANI A., SHAZEER N., PARMAR N., USZKOREIT J., ,
ET AL.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017). 3,6

[WSC*20] WANGIJ., SUN K., CHENG T., JIANG B., ET AL.: Deep high-
resolution representation learning for visual recognition. /EEE trans-
actions on pattern analysis and machine intelligence 43 (2020), 3349—
3364. 2,3, 10

[WYC*21] WANG W., YAao L., CHEN L., Ca1 D., HE X., L1U W.:
Crossformer: A versatile vision transformer based on cross-scale atten-
tion. CoRR (2021). 3, 10

[WZ22] WANG H., ZHANG J.: A survey of deep learning-based mesh
processing. Communications in Mathematics and Statistics 10, 1 (2022),
163-194. 3

[XLZ*20] Xi1A0 Y., LAI Y., ZHANG F., L1 C., GAO L.: A survey on
deep geometry learning: From a representation perspective. Computa-
tional Visual Media 6, 2 (2020), 113-133. 3

[YJK*19] YUNS.,JEONG M., KIM R., KANG J., KIM H.: Graph trans-
former networks. Advances in neural information processing systems 32
(2019). 1

[ZGZ*20] ZHANG Y., GONG Y., ZHU H., BAl X., TANG W.: Multi-
head enhanced self-attention network for novelty detection. Pattern
Recognition 107 (2020), 107486. 6

[ZGZ*21] ZHou H., Guo J., ZHANG Y., YU L., WANG L., YU Y.:
nnformer: Interleaved transformer for volumetric segmentation. CoRR
(2021). 2

[ZSG10] ZENG W., SAMARAS D., GU X.: Ricci flow for 3d shape anal-
ysis. IEEE Transactions on Pattern Analysis and Machine Intelligence
32 (2010), 662-677. 2,3, 4

[ZZH*22] ZHOU Y., ZHENG H., HUANG X., HAO S., LI D., ZHAO J.:
Graph neural networks: Taxonomy, advances, and trends. ACM Trans-
actions on Intelligent Systems and Technology 13 (2022), 1-54. 1

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Y. Li et al. / MeshFormer: High-resolution Mesh Segmentation with Graph Transformer

WV, V;
(Vi V) =1~ %
ij
=1- L ~1>0
T o105
Positive Ricci

Curvature W

Same
Neighbors of
Viand V;

Share all neighbors

Clustering Results of Ricci Flow

(a)

Figure 8: An example of Ricci flow.

Appendix A: An example of Ricci flow

We provide an example to elaborate that our clustering algorithm
adaptively divides meshes into patches. As shown in Fig. 8, the de-
tails of the clustering algorithm can be explained as follows. Firstly,
take two connected vertices in meshes, such as V; and V; in Fig. 8.
Then, we sampling the neighbors with similar directional curva-
ture of V; and V; based on the fast seed expansion algorithm in
Sec. 3.2. In this case, the sampling results show that V; and V;
have the same neighbors, so W is 0, which is less than the edge
weight S;; = 107°. Therefore, the Ricci curvature K is positive,
and these two vertices will be clustered into one patch by running
Ricci flow. Following the same process, vertices with similar di-
rectional curvature will be clustered into one patch, and the whole
mesh will be split into patches having similar directional curva-
ture, as shown in Fig. 8. The implementation of MeshFormer can
be found at https://github.com/MeshFormer/MeshFormer.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

49

