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Abstract
Existing methods for skeleton extraction have limitations in terms of the amount of memory space available, as the model must
be allocated to the random access memory. This challenges the treatment of out-of-core models. Although applying out-of-core
simplification methods to the model can fit in memory, this would induce distortion of the model surface, and so causing the
skeleton to be off-centered or changing the topological structure. In this paper, we propose an efficient out-of-core method
for extracting skeletons from large volumetric models. The method takes a volumetric model as input and first computes an
out-of-core distance transform. With the distance transform, we generate a medial mesh to capture the prominent features for
skeleton extraction, which significantly reduces the data size and facilitates the process of large models. At last, we contract
the medial mesh in an out-of-core fashion to generate the skeleton. Experimental results show that our method can efficiently
extract high-quality curve skeletons from large volumetric models with small memory usage.

CCS Concepts
• Computing methodologies → Shape modeling; Shape analysis;

1. Introduction

Skeletons are shape descriptors that concisely capture the shapes’
topology and geometry. 3D shapes admit two types of skeletons:
surface skeletons and curve skeletons. Surface skeletons, or me-
dial surfaces, are surfaces that consist of the centers of all max-
imally inscribed balls inside the shapes. Curve skeletons are 1D
curves that are locally centered inside the shapes. The curve skele-
tons have been extensively used in various applications, such as
3D vessel tracking [AB02], virtual colonoscopies and virtual en-
doscopies, computer animation, action or gesture recognition and
retargeting [TTL∗18, ALL∗20], 3D shape matching, retrieval, and
reconstruction [WCLB09, LH11, JCZ19].

With the advance in data acquisition techniques, such as laser
range and CT/MRI scanners, we have witnessed a boom in high-
resolution 3D data in recent years. For example, the human body
models in the Visible Human Project [Ack98] can consist of over
10 billion voxels, and the range scans of Michelangelo’s sculp-
tures [LPC∗00] can contain up to two billion triangles. The grow-
ing data size poses great challenges in memory and efficiency
for existing methods to extract curve skeletons. Since most exist-
ing methods extract the curve skeleton by contracting the shape
[PK98, ATC∗08, ClO∗10, LHW∗13, QHL∗20] or contracting the
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medial surface for results with better centrality [LB07, CB16,
LW17, LW18, JST16, YSC∗16, LWC20, CWL22], the model or the
medial surface must be allocated to the random access memory
(RAM). This means that the size of models that existing methods
can handle is limited by the amount of memory space available.
Hence, applying existing methods to the out-of-core models often
requires simplifying the model to fit the model in memory. Nev-
ertheless, out-of-core simplification might induce distortion of the
surface, which may cause the skeleton to be off-centered or change
the topology. Another possible solution is to decompose the model
into in-core blocks to fit in memory. However, since the contraction
is global, each time a block is loaded only a small part of the block
can be contracted, and so each block would be repeatedly loaded
until all the contents in the block have been contracted, resulting
in extremely inefficient data access. Besides, existing methods also
suffer from insufficient speed for large models even if the memory
space is enough, as the computation cost grows by geometric pro-
gression as the grid resolution of the volumetric model increases.

In this paper, we address the challenges posed by large mod-
els based on two observations. First of all, inspired by the work
[CWL22] which generates a medial mesh to capture prominent fea-
tures from the medial surface for high-quality skeleton extraction,
we observe that capturing the prominent features considerably re-
duces the data size and facilitates the process of large models. Be-
sides, since the medial surface is also defined as the singularities of
the distance field, we find that the prominent features can be cap-
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Figure 1: The pipeline of the proposed out-of-core curve skeleton extraction method. Firstly, an out-of-core distance field (b) is constructed
from the input volumetric shape (a). Then, a medial mesh (c) is extracted from the distance field to capture the prominent features and reduce
the data size. Finally, the medial mesh is contracted in an out-of-core fashion to generate the curve skeleton (d).

tured from the distance field instead of the medial surface, which
saves the trouble of extracting the medial surface from the distance
field and so significantly promote the efficiency for handling large
models. Hence, we propose to generate a medial mesh from the dis-
tance field to efficiently reduce the data size and capture the promi-
nent features for skeleton extraction. Secondly, we observe that
existing works always contract the boundary of the shape or me-
dial surface with some priority guidance to achieve skeletons with
better centrality. Therefore, we can evolve the contraction process
by keeping in-core storage of the most prior contraction boundary,
which also synchronizes the data access with the contraction pro-
cess and avoids repeatedly loading the same data. In this way, we
can realize an efficient out-of-core contraction of the medial mesh
to extract the curve skeleton. Accordingly, we develop a novel out-
of-core curve skeleton extraction method (abbreviated as OoCCS)
for large 3D models.

Our method takes a 3D volumetric shape, denoted as V, as in-
put. As for shapes of other representations, they can be voxelized
to feed in our method, where the grid resolutions should be high
enough for the volumes to accurately capture the shapes’ topology
and geometry. As shown in Figure 1, the pipeline of our method
consists of three steps. The first step is to compute the distance
field inside the shape in an out-of-core fashion similar to existing
work [MTFS07]. The second step is to generate a medial mesh M
from the distance field in an out-of-core fashion to reduce the data
size and capture the prominent features for high-quality skeleton
extraction. The third step is to contract the medial mesh M in an
out-of-core fashion to generate the curve skeleton. In the first step
which constructs the distance field by propagation between local
blocks, we also develop a novel and interpretable ordering measure
that improves the performance by reducing the number of block
propagations. In the last two steps, we also develop novel out-of-
core measures to generate and contract a medial mesh.

In sum, to solve the challenges posed by the large data size, we
present an out-of-core method to extract curve skeletons from large
3D models. Experimental results show that our method can effi-
ciently extract high-quality curve skeletons from large 3D models
with small memory usage, and the resulted curve skeletons are of
high quality, comparable with those from in-core models with ex-
isting methods. We have contributions as follows:

• We propose a novel ordering measure for the out-of-core dis-
tance transform framework [MTFS07], which can improve effi-
ciency by reducing the number of block propagations.

• We define the set cover of the distance field to extend the method
used in [CWL22] to capture prominent features for skeleton ex-
traction and save the trouble of extracting the medial surface
from the distance field.

• We propose an out-of-core contraction framework for the out-
of-core skeleton extraction, where efficient data access can be
realized.

2. Related Work

In this section, we briefly review the related works on medial sur-
face extraction, curve skeleton extraction, and distance field com-
putation.

2.1. Medial surface extraction

The medial surface M of a 3D shape, also called the medial axis,
can be defined as the set of the centers of all maximally inscribed
spheres. Although the definition of the medial surface is simple,
methods for extracting exact medial surfaces are available only for
rather simple shapes, such as polyhedra [Man04] and unions of
balls [AK01a]. For ordinary shapes, the medial surface can only
be approximately extracted by existing methods. According to the
representation of the medial surface, the existing methods can be
divided into three categories: Point-based methods, Mesh-based
methods, and Voxel-based methods.

Point-based methods [MBC12, RAV∗19] take samples on the
shape boundary and generate the medial surface by computing the
centers of inscribed balls that are tangent to the shape boundary at
the sample points. However, their medial surfaces are represented
as point clouds, which is not effective for representing the topolog-
ical structure of the shape and so is limited for further applications.

Mesh-based methods extract the medial surface by comput-
ing the Voronoi diagram of points sampled on the shape bound-
ary [AM96, AK01b, GRS06, JKT13]. These methods provide theo-
retical guarantees of geometric accuracy and topology preservation
when the boundary samples are dense enough. Yan et al. [YLJ18]
propose to use voxel boundary vertices as samples to reduce the
requirement for the sample density with reasonable approximation.
Nevertheless, the out-of-core implementation of these methods re-
mains an open challenge.

Voxel-based methods generally compute a distance field of the
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volumetric shape and extract the medial surface by locating the sin-
gularities of the distance field with some local significance mea-
sure [SBTZ02] or contracting the shape under the guidance of the
distance field [Pud98, LB07] or some centrality measure [JST16].
Unfortunately, these methods suffer from expensive memory and
computational costs for large volumetric models. Michikawa et
al. [MNS09] try to reduce the memory cost by proposing a sim-
plified geodesic measure for extracting medial surfaces from out-
of-core distance transforms. However, the expensive computational
cost for large models remains a great challenge.

2.2. Skeleton extraction

For 3D curve skeleton extraction, most methods extract the curve
skeleton by contracting the 3D shape or its medial surface. Some
methods directly handle the 3D shape by iterative thinning [PK98]
or contraction with different local operators [ATC∗08, TAOH12,
THCO09, ClO∗10, LHW∗13]. However, since the speeds of con-
traction depend on the local boundary geometry, the speeds for dif-
ferent parts of a shape differ. Therefore, these methods often gen-
erate off-centered skeletons.

Hence, for generating centered curve skeletons, many meth-
ods attempt to contract the medial surface of a 3D shape to
leverage the centrality of the medial surface. They extract curve
skeletons by removing the boundary of medial surfaces layer by
layer [LB07,ABS11,CB16], using local contraction operators with
carefully controlled directions and speeds [TJ12, LW17, LW18],
or performing significance measurements on the medial surface
[DS06, RvWT08, JST16, YSC∗16]. Unfortunately, as these meth-
ods adopt an outside-in evolution scheme, they are unavoidably
sensitive to boundary perturbations and generally require tedious
manual parameter adjustment to prune noisy branches. Besides,
the contraction scheme of these methods may result in terminal-
contracted skeletons, which hinders the completeness in represent-
ing the shape. As an alternative, Li et al. [LWC20] adopt an inside-
out evolution scheme to measure centrality on the medial surface,
by which the influences of boundary perturbations can be sup-
pressed. Nevertheless, its mechanisms for detecting ridge curves
of the centrality field to extract skeletons may fail to capture curva-
ture features and terminal features. Recently, Chu et al. [CWL22]
propose to enhance the capture of prominent features for skeleton
extraction by computing a set cover of the medial surface. The set
cover they used can not only eliminate the influence of boundary
perturbations but also reduces redundant prominent features, which
provides a solid base for fast extraction of high-quality skeletons.
But they still follow a contraction framework to generate curve
skeletons from the medial mesh they extracted for capturing promi-
nent features. In sum, though existing methods have achieved great
improvements in the quality of the skeleton, the size of the model
they can handle is still limited by the amount of memory space
available as the shape or the medial surface must be loaded com-
pletely into memory.

There are also some non-contraction methods for curve skele-
ton extraction, such as generating curve skeletons from rendered
images of 3D shapes from many views [LGS12,LS13,THP∗19], or
using deep learning to extract skeletons [XZKS19,XZK∗20]. How-
ever, the former ones either generate spurious branches or fail to

handle complex shapes with severe self-occlusion. The latter ones
are limited to simple articulated shapes. Besides, the deep learning
methods have strict limitations in terms of memory space available
as the model generally needs to be loaded to GPU memory.

2.3. Distance field construction

Distance field construction is a widely studied topic in the field
of computer graphics and image processing. Some surveys can be
found in [JBS06, FCTB08]. Here, we mainly focus on volumetric
distance fields. Early methods try to approximate the distance field
with different definitions of distance [Bor96, RP66, BMA∗98] so
that the distance field can be sequentially computed in a time linear
to the number of voxels. Maurer et al. [MQR03] first compute the
exact Euclidean Distance Transform (EDT) for a binary image of
arbitrary dimension with a time linear to the number of voxels using
dimensionality reduction and partial Voronoi diagram construction.
Researchers have also proposed many methods for parallel accel-
eration with GPU [KMH11, CTMT10, YXM∗15]. However, these
methods require that all voxels are stored in the RAM, meaning that
these methods are limited by the amount of memory available. To
solve this problem, Michikawa et al. [MTFS07] proposed a method
(OOCDT) for out-of-core distance field construction. This method
decomposes an input model into sub-blocks and computes the dis-
tance transform for each block. Inconsistency in distances between
blocks can be resolved by inter-block propagation. This method
provides a framework to compute large distance fields with small
memory usage. Thus, we adopt a similar framework as OOCDT to
compute a distance field in our first step, but propose a novel order-
ing measure for the local block distance transform to improve the
efficiency.

Figure 2: The Data structure for out-of-core computation of the
distance field. (a) Input shape volume V. The voxels occupied by
the shape is colored in white. (b) The two blocks decomposed from
the input volume and their shared unit thick interface are stored as
three separate files. The initialization of the distance field set the
foreground voxels to ∞ and the background voxels to 0.

3. Out-of-core Distance Field Construction

In this section, we first briefly introduce the out-of-core frame-
work for distance field computation [MTFS07] and the efficiency
problem in the process ordering of blocks. Then, we discuss our
improvement in efficiency by proposing a novel priority measure
called boundary index for block ordering. At last, we give the al-
gorithm for the out-of-core distance transform using the proposed
priority measure.
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3.1. Out-of-core framework for distance field computation

The framework for computing out-of-core distance transform
[MTFS07] first decomposes the input volumetric shape V into
l ×m× n blocks. Neighboring blocks Bi and B j share an interface
< i, j > with unit thickness, as shown by the 2D example in Fig-
ure 2. Then, an inside-block distance transform (InsDT) is applied
to each block to compute the local distance field inside the block.
Afterward, inconsistency in distances between blocks is resolved
by inter-block propagation (IntBP), and the distance transforms of
the propagated blocks are updated with InsDT after propagation. In
this paper, we use vi

k and v<i, j>
k to denote the voxel in the block

Bi and the interface < i, j >. For each voxel vk, we store both the
distance vk and the most closest boundary voxel DT (vk). Notice
that vi

k,v
j
k, and v<i, j>

k refer the same voxel, and we always have
v<i, j>

k = min(vi
k,v

j
k).

Inside-Block distance transform (InsDT) computes the dis-
tance transform inside the target block. Different distance trans-
forms algorithms can be used for InsDT. In our method, we im-
plement InsDT by adapting the exact Euclidean distance transform
proposed in [MQR03].

Inter-Block propagation (IntBP) is the propagation between
the target block Bi and its neighboring interface < i, j >. The prop-
agation contains two directions: propagating from Bi to < i, j >
and propagating from < i, j > to Bi. On the one hand, after ap-
plying InsDT to the block Bi, the propagation from Bi to interface
< i, j > should be launched to propagate inconsistency informa-
tion to outside, where the distances at each voxel v<i, j>

k in < i, j >
and the corresponding voxel vi

k in Bi are compared. If vi
k < v<i, j>

k ,
then v<i, j>

k is replaced with vi
k. Such inconsistent voxels are called

collision voxels. On the other hand, before applying InsDT to the
block Bi, the propagation from interface < i, j > to Bi should be
launched to ensure that the inconsistency information from outside
can be eliminated after InsDT, where the distances at v<i, j>

k and vi
k

are compared. If v<i, j>
k < vi

k, then vi
k is replaced with v<i, j>

k .

Block ordering: Notice that in such a framework, the processing
ordering of blocks has a great influence on the performance. Fig 3
shows a 1D simple example. Since the block B1 has more back-
ground voxels (marked as 0 in Figure 3) and the block B2 has more
foreground voxels (marked as m in Figure 3), B1 is closer to the
boundary than B2. Therefore, if we apply InsDT to B1 first like the
ordering (b), the block B1 has no need to be updated. But if we ap-
ply InsDT to B2 first like the ordering (a), we need one more InsDT
for B2 to incorporate the distance information propagated from B1.
When the number of blocks increases, a good ordering can sig-
nificantly reduce the computational cost. Existing work [MTFS07]
uses an empirical ordering method for the blocks. We propose a
novel ordering measure, called boundary Index, for each block to
improve the efficiency as discussed in the following.

3.2. Boundary index

With InsDT and IntBP, we can generate distance fields in an out-
of-core fashion, but the performance is affected by the ordering of
blocks. We observe that when InsDT is applied on a block near the
shape boundary, it is likely that this block requires no more InsDT

Figure 3: A good ordering can reduce the computational cost. The
ordering (a) requires 3 InsDT to construct the global distance field
while the ordering (b) only requires 2 InsDT. [MTFS07]

in the further iterations. This means that we can construct the global
distance field with less number of InsDT if we apply InsDT along
the shape boundary with an inward ordering. Hence, we propose a
priority measure, called boundary index, for each block to measure
the possibility of the block being near the shape boundary. In this
way, by iteratively applying InsDT to the block with the largest
boundary index, we can intuitively reduce the number of InsDT
that is required and improve efficiency.

Clearly, if a block contains more foreground voxels, it is closer to
the shape boundary and should be applied with InsDT earlier. Thus,
the boundary index ci of each block Bi is initialized as σ fi, where
σ is a constant weight and fi is the number of foreground voxels
in Bi. Following the inward ordering idea, when a block is applied
with the InsDT, the collision voxels between the block and its inter-
faces can be regarded as a virtual shape boundary. Therefore, when
propagating to < i, j > from Bi, we update the boundary index c j of
B j as c j +T , where T is the number of collision cells in < i, j >. In
this way, we can find the block that is closer to the shape boundary
by selecting the block with the maximized boundary index. Notice
that the boundary index is initialized with the number of foreground
voxels and updated by the number of collision voxels. Apparently,
the foreground voxels are prior to the collision voxels in finding the
blocks near the shape boundary. Hence, we set σ = 1000 in the ex-
periments to ensure the priority of foreground voxels in finding the
blocks near the shape boundary.

3.3. Algorithm

The flow of the out-of-core distance transform is detailed in Algo-
rithm 1. The algorithm first decomposes the input volumetric shape
into blocks. Then, we initialize the boundary index and the distance
field, where we set the distance of background voxels as 0, and the
distance of foreground voxels as ∞. Afterward, we iteratively se-
lect the block with the largest boundary index to apply the InsDT
and propagate the distance information to the neighboring inter-
faces. Each time we apply InsDT to a block, the boundary index
for this block will be updated as 0, meaning that there is no in-
consistency between the block and its neighboring interfaces. The
iterations stop when there is no inconsistency between the blocks
and all interfaces. The framework can compute large and exact dis-
tance fields with small memory usage.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

4



Yiyao Chu & Wencheng Wang / Out-of-core Extraction of Curve Skeletons for Large Volumetric Models

Algorithm 1: Out-of-Core Distance Transform (OocDT)
Input: V, the input volumetric shape ;
Divide V into blocks;
Priority Queue Q = ∅;
for each Bi ∈V do

Initialize Bi and ci, push ci to Q;
end
while max(Q)> 0 do

t = argmax(Q), Q.pop() ;
/* Load Bt and < t, j > from storage */
Propagate from each interface < t, j > to Bt ;
Apply local distance transform InsDT(Bt ), ct = 0;
Propagate from Bt to each interface < t, j >;
update c j for each neighbor block B j of Bt ;
/* Save Bt and < t, j > to storage */

end

Figure 4: To generate the medial mesh, we first extract a set of
prominent vertices (a) from the distance field, and then construct
edge connections (b) and face connections (c).

4. Medial mesh extraction

Similar to the framework in [CWL22] to capture prominent fea-
tures for high-quality skeleton extraction with a medial mesh, we
also first extract a set of vertices, called prominent vertices, which
significantly reduces the data size, and then generate the medial
mesh by constructing connections among the vertices to capture
the topological structure of the shape, as shown in Figure 4. In-
stead of extracting prominent vertices from the mesh-represented
medial surface [CWL22], we propose novel measures for extract-
ing prominent vertices from the volumetric distance field, which
saves the trouble of extracting the medial surface. We also develop
specialized procedures to leverage the volumetric representation for
connection construction. In the following, we first discuss our de-
veloped procedures for vertex extraction and connection construc-
tion and then introduce our out-of-core implementation.

4.1. Vertex extraction

Inspired by the work [CWL22] which computes a set cover of the
medial surface as prominent vertices for high-quality skeleton ex-
traction to reduce the data size, we propose to extract a set of promi-
nent vertices from the set cover of the distance field to save the
trouble of extracting medial surface from the distance field, which
requires local or global computations for each voxel and is com-
putationally expensive for large volumetric models as discussed in
subsection 2.1. In the following, we first briefly review the set cover
of a medial surface defined in [CWL22]. Then, we extend the defi-
nition of the set cover for distance fields and discuss the rationality

and procedures to extract prominent vertices by the set cover of the
distance field.

Chu et al. define the set cover of a mesh-represented medial sur-
face M in [CWL22] as follows:

Definition 1 Given a medial surface M= {V = {v},E = {e},F =
{f}}, where V,E , and F are the sets of medial vertices, edges,
and facets, respectively, denote the radius function defined on V
as R(v), which decodes the distance of vertex v to the boundary.
We call a set G = {v} a set cover of M if:

G ⊂ V
∀v ∈ V,∃vi ∈ G s.t. v ∈ B(vi,R(vi))

where B(vi,R(vi)) is the inscribed ball centered at vi and with ra-
dius R(vi).

Chu et al. [CWL22] compute a greedy set cover by iteratively
selecting the point on the medial surface that corresponds to the
largest inscribed ball and removing the medial points that are cov-
ered by the selected ball. When no more points can be removed, the
remained points on the medial surface form the greedy set cover.
The greedy set cover eliminates most influences of boundary per-
turbations and considerably reduces redundant prominent features,
which motivates us to leverage this to improve the efficiency of ex-
tracting skeletons from large volumetric shapes.

Inspired by [CWL22], we extend the definition of set cover for a
volumetric distance field D as follows:

Definition 2 Given a distance field D of a shape volume V = {v},
where we use D(v) to represent the distance value for a voxel v of
the volume, we call a set C = {v} a set cover of D if:

C ⊂ V
∀v ∈ V,∃vi ∈ C s.t. v ∈ B(vi,D(vi))

where B(vi,D(vi)) is the inscribed ball centered at vi and with ra-
dius D(vi).

We observe that the preserved points in the greedy set cover G of
the medial surface will also be preserved in the greedy set cover C
of the distance field, which is formed by selecting the voxel with
the largest distance value because the medial surface can also be
regarded as the ridges of the distance field. A 2D example is shown
in Figure 5. Hence, we can use the set cover of the distance field
as a replacement to capture prominent features. The replacement
can save the expensive computational cost of extracting the medial
surface from the distance field, which significantly promotes the ef-
ficiency of handling large volumetric models. However, we notice
that C also preserves many points which do not exist on the medial
surface, as shown by the points near the shape boundary in Fig-
ure 5(d). This is because, except for the medial voxels on the me-
dial surface, the volumetric distance field also contains non-medial
voxels inside the shape. These non-medial points are redundant and
useless for extracting centered curve skeletons. Since they are not
on the medial surface and the data size of the set cover is rather
small, we can easily remove them from the set cover using existing
methods for detecting medial voxels from the distance field. In our
implementation, we use the method in [SBTZ02] by removing the
non-medial points which have zero divergences.
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Figure 5: Using the set cover to capture prominent features. (a) the input shape swan and its medial surface (blue curves); (b) the preserved
points (red dots) in the set cover of the medial surface, and the corresponding inscribed balls (red disks); (c) the distance field of the shape
swan; (d) the preserved points (red dots) in the set cover of the distance field, and the corresponding inscribed balls (red disks);

In sum, we extract a set of vertices that compactly captures the
prominent features of the shape. It is by first computing a set cover
of the distance field, and then removing the voxels whose diver-
gences are smaller than εd = 0.01, as suggested in [SBTZ02].

4.2. Connection construction

With the extracted prominent vertices, we construct edge and face
connections to generate a medial mesh. As discussed in [CWL22],
we can generate a topology-preserving medial mesh if we can keep
the connectivity and genus of the original model with the con-
structed connections.

Edge connection

Since the vertices are extracted from the set cover of a volumet-
ric distance field, no crevice can exist between the neighboring in-
scribed balls corresponding to the vertices. Therefore, to keep the
connectivity, we generate an edge for every two vertices whose cor-
responding inscribed balls have an intersection.

Face connection

To keep the genus of the original shape, we shall avoid creating
or closing a hole in the medial mesh. As discussed above, since
no new hole can exist between intersected inscribed balls, we can
avoid creating a new hole by generating faces for every three ver-
tices that are connected to each other. To avoid closing a hole, we
only generate a face when there is no hole inside the triangle that
is formed by the three vertices. This can be easily determined by
checking whether there exists a background voxel in the triangle.

4.3. Out-of-core generation of the medial mesh

We propose an out-of-core framework to generate the medial mesh
(OocMMG). Similar to OocDT [MTFS07], this framework also
works by inside-block computation and inter-block propagation.
The inside-block computation selects the voxel v∗i inside the block
Bi with the largest distance to the boundary and performs covered
voxel removal and connection construction inside the block. The
inter-block propagation conducts inter-block voxel removal and
connection construction. The flow of the framework is detailed in
Algorithm 2. The algorithm first initializes the priority measure di

for each block Bi as the largest distance of the voxels in the block
to the boundary and initializes the number of remaining voxels R
as the number of voxels inside the shape. Afterward, we iteratively
select the block with the largest di to perform inside-block compu-
tation and inter-block propagation. The iterations stop when R = 0
meaning there is no voxel to be selected or removed. As we always
update di as the largest distances of the remaining voxels in Bi,
we can ensure that, in each inside-block computation, the selected
voxel v∗i in Bi also has the largest distance among the distances
of all remaining voxels inside the shape. This means the proposed
framework can effectively generate a set cover of the global dis-
tance field.

Algorithm 2: Out-of-Core Medial Mesh Generation
Input: V, the input distance field;
Priority Queue Q = ∅;
Initialize the remaining voxels R = 0;
for each block Bi ∈V do

Initialize priority queue Si;
Initialize di, push di to Q;
Add R with the number of non-zeros voxels in Bi;

end
while R > 0 do

t = argmax(Q), Q.pop() ;
/* Load Bt and < t, j > from storage */
Propagate from each interface < t, j > to Bt , update R;
Apply inside-block computation, update dt and R;
Propagate from Bt to each interface < t, j >, update R;
update d j for each neighbor block B j of Bt ;
/* Save Bt and < t, j > to storage */

end

4.3.1. Inside-block computation

Inside-block computation performs vertex extraction and connec-
tions construction inside the target block Bi. First, we select the
voxel vi

k with the largest distance dk among the remaining voxels
inside Bi and compute its divergence to check whether it is on the
medial surface. If it is not, we mark vi

k as removed and re-select
a new vi

k among the remaining voxels till it is on the medial sur-
face. Then, we preserve the selected medial voxel vi

k as a vertex in
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the medial mesh and mark the covered voxels by the inscribed ball
centered at vi

k with radius dk as removed by vertex vi
k. Hence, when

removing voxels covered by the ball corresponding to vi
k, if we find

any covered voxel, which has already been marked as removed by
some other vertex v j

m, we construct an edge to connect vi
k and v j

m.
In this way, we can save the trouble of checking whether there ex-
ists an edge for each pair of two vertices. Then, we generate a face
if the two vertices vi

k and v j
m are connected to the same vertex and

there is no hole inside the triangle formed by these three vertices.

4.3.2. Inter-block propagation

The inter-block propagation for generating medial mesh also con-
tains two directions: propagating from block Bi to the interface
< i, j > and propagating from interface < i, j > to the block B j.
On the one hand, after the inside-block computation for Bi, if the
ball corresponding to the preserved vertex vi

k has an intersection
with a neighboring block B j, the propagation from Bi to interface
< i, j > should be launched to remove the covered voxels outside
Bi. In this propagation, we store the preserved vertex vi

k and its
corresponding distance and connections to the interface < i, j > to
propagate the information for voxel removal and connection con-
struction. On the other hand, before the inside-block computation
of block Bi, a propagation from interface < i, j > to Bi should be
launched to ensure that the selected voxel in Bi should not be re-
moved by other selected voxels outside Bi. In this propagation, we
load the stored information in the interface < i, j > and remove
the voxels which should have been removed by other voxels out-
side Bi, and construct connections with the same procedures in the
inside-block computation.

5. Skeleton Extraction

Similar to the procedures in [CWL22], we extract curve skeletons
from medial meshes in two steps: spike pruning and face contrac-
tion. For spike pruning, we adopt the same method in [CWL22] to
cull the spikes in the form of isolated edges, each of which has one
endpoint that is connected to no other vertex. For face contraction,
in order to extract a centered skeleton, we follow the grassfire anal-
ogy [Blu67] and develop novel out-of-core measures to contract
the faces towards the center. In the following, we first introduce
the data structure of the medial mesh we used and then discuss our
out-of-core spike pruning and face contraction of the medial mesh.

5.1. Data Structure

The data size of the medial mesh has been considerably reduced
compared to the data size of the volumetric shape. If the medial
mesh is small enough to be in-core storage, we can directly perform
the in-core computation to extract the curve skeleton. In case the
medial mesh is still too large, we adopt a new data structure for the
medial mesh to facilitate the out-of-core contraction of the medial
mesh. Inspired by the data structure used in [SOW20], we merge
the extracted vertices and constructed connections to three separate
files to store the medial mesh: vertex.bin, edge.bin, and face.bin.
The vertex.bin file stores for each vertex its coordinates, distance
to the boundary, other attribute information used in the contraction
process, and the location and size of the corresponding information

in the edge.bin and face.bin file. The edge.bin and face.bin file store
for each vertex its neighboring edges and neighboring faces. With
this data structure, we can quickly load the corresponding connec-
tion or attribute information of any given vertex, which provides
a solid basis for synchronizing the data loading with contraction
evolution.

5.2. Spike pruning

We adopt the corresponding measure used in [CWL22] to prune
spikes using the stability ratio proposed in [LWS∗15]. The stability
ratio of an edge (i, j) connecting two vertex vi and v j is defined as
follows:

SR(i, j) =
max{0, ||vi −v j||− |R(vi)−R(v j)|}

||vi −v j||
(1)

where R(vi) is the distance of vi to the boundary and is also the ra-
dius of the inscribed ball centered at vi. As discussed in [CWL22],
we can prune the spikes by culling isolated edges whose stabil-
ity ratio are smaller than εs = 0.6. With the convenience for the
connection query provided by the data structure above, our spike
pruning can be easily implemented in an out-of-core fashion by a
single pass over the edges of the medial mesh.

5.3. Face contraction

To generate a centered skeleton, we perform an out-of-core cen-
trality measurement on the medial mesh and contract the faces to-
wards the center during the measurement. Our centrality measure-
ment follows the grassfire analogy [Blu67] to set fires at all the
boundaries of the medial mesh. Clearly, vertices that are more cen-
tered will take more time to be burned out, which means that the
burning time can be used to measure the centrality of the vertices.
As the fire propagates, each triangular face is contracted to the ver-
tex with the longest burning time among the three vertices of the
face.

In the centrality measurement, the fire front propagation can also
be regarded as a contraction of the boundary of the medial mesh
with the guidance of burning time. As discussed in Section 1, when
the medial mesh is too large to fit in memory, the fire propagation
is unpractical using the in-core block decomposition. Because each
time a block is loaded, the fire propagation can only burn out the
vertices with the shortest burning time and will have to switch to
other blocks under the guidance of burning time, resulting in each
block being repeatedly loaded and off-loaded until all the vertices
in the block have been burned out. Clearly, this is extremely inef-
ficient. With the convenience of the information query provided by
the new data structure, we can solve this problem by synchronizing
the data access with the fire propagation with in-core storage of the
part of the firefront that has a smaller burning time. In this way, a
vertex will be loaded only once when it is on the firefront, and will
be off-loaded only once after it is burned out.

In the implementation, we first detect the border of the medial
mesh to form the initial fire front and initialize the burning time for
the vertices on the initial fire front as the distance to the boundary.
The burning times of the other vertices are initialized to infinity. A
vertex is determined to be on the border of Ms if it is related to
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only one edge in Ms or if one of its related edges has only one
associated face in Ms. With a single pass over the vertex, we can
detect the initial firefront and offload it to the disk. Then, we per-
form an external sort of the firefront according to the burning time
using rsort [AV99]. Afterward, we load a part of the initial firefront
with a shorter burning time to start its fire propagation.

In the fire propagation, we find the vertex vb with the shortest
burning time to be discarded and label it as burned, simulating the
fire burning out this vertex. Each time a vertex vb is burned, its
unburned neighboring vertices on the new border of the burning
medial mesh are added to the firefront and have their burning times
updated via the following equation:

Θ(v) = max
vk∈BN(v)

(Θ(vk)+dist(v,vk))

where BN(v) is the burned neighborhood of v and dist(v,vk) is the
distance between v and one of its burned neighbors vk. Each time
a vertex is burned, we also check for each of its neighboring faces
whether the face should be contracted. If two of the three vertices
constructing the face have been burned out, we contract the face
to the remaining vertex. Notice that we also record the most prior
burning time To of the out-of-core initial firefront, and will continue
to load the remaining initial firefront when To is smaller than all the
burning time of the vertices in the in-core firefront. We continue
this process iteratively until all the faces have been contracted.

6. Results

We evaluate our method on volumetric shapes in different resolu-
tions to show its effectiveness in handling out-of-core models and
compare it with existing methods. We implemented our method in
C++ and run all the experiments on a PC with an Intel i7 CPU
@3.20GHz and 16GB RAM.

6.1. Skeleton quality

To evaluate the quality of our extracted skeletons, we picked a
set of smooth shapes (Dog, Ant, Bird, and Fertility), and compare
our results with those of three state-of-the-art methods, the MCF
method [TAOH12], the ET method [YSC∗16] and the PF method
[CWL22]. In experiments, we feed our method with voxelizations
of smooth shapes with resolution 1283 and divide the volume into
23 blocks for out-of-core computation. To generate the results of
other methods, we use the software implemented in [MGP10] for
the method in [AK01b] to generate the mesh-represented medial
surfaces as input for the ET method and the PF method. Besides,
we use the default parameter setting of the MCF method and the
PF method, and carefully adjust the threshold parameter of the ET
method to prune the spikes.

For quantitative comparison, we use three evaluation metrics: the
center deviation (CD), the contraction error (CE), and the num-
ber of skeleton nodes (vertices). The center deviation proposed
in [LW17] measures the centrality of the skeleton by the center de-
viation on the cross-sections at the skeleton nodes. A smaller cen-
ter deviation value indicates better centrality of the obtained skele-
ton. The contraction error is introduced in [CWL22] to evaluate
the completeness of the skeleton by measuring the terminal con-
traction of the skeleton. A smaller contraction error means that the

skeleton exhibits less contraction at terminations and represents the
shape more completely. The number of the skeleton nodes reveals
the compactness of the skeleton.

Qualitative Comparison: As shown in Figure 6, our method
can generate results that are visually similar to the best results of
existing works. The defective parts of the resulted skeletons are
highlighted with red rectangles. The results of the MCF method
tend to be off-centered and have significant contraction at the ter-
minal of the skeleton. The ET method also contracts the terminal of
the skeleton, which prevents the completeness of the skeleton, and
its results are unsmooth. The PF method and our method can both
generate smooth and complete skeletons, but the results of the PF
method is slightly more centered in some part of the shapes. This
is because the PF method stores for each skeleton node the corre-
sponding medial surface that is contracted to the node and leverages
this information to perform centrality refinement, which is unprac-
tical for large volumetric shapes in terms of efficiency.

Quantitative Comparison: As shown in Table 1, our results
have comparable performance with the best results of existing
methods under the three quantitative metrics. Our method achieves
significantly smaller center deviations than the MCF method and
achieves similar levels of center deviation to the ET method and the
PF method. As for the Contraction error and the number of skele-
ton nodes, our method demonstrates comparable performance with
the PF method and is superior to the other two methods. Hence,
in general, our method can generate centered, complete, and com-
pact skeletons that are comparable to the results of state-of-the-art
methods.

6.2. Memory

To evaluate the memory efficiency of our method, we generate two
volumetric shapes with resolution 512 × 512 × 2048 from three
classic out-of-core models (Buddha, Lucy, and Statue) and evaluate
the performance of our method. Table 2 illustrates the running time
and memory cost for our method to extract the skeletons. Clearly,
our method can extract skeletons from large volumetric shapes with
small memory usage. This means that our method can effectively
address the memory challenge confronted by existing methods.

In our experiments, existing methods exhaust the memory and
crash when extracting skeletons directly from the three out-of-core
meshes. Therefore, for a comprehensive comparison, we select the
Buddha mesh which has a complex topology structure to conduct
an out-of-core simplification [Lin00], and compare the skeleton ex-
tracted by the PF method [CWL22] from the simplified mesh with
the skeleton extracted by our method from the high-resolution vol-
ume. As shown in Figure 7, the resulted skeletons of the PF method
have severely topological errors. This may be caused by two rea-
sons. First, the out-of-core simplification introduces severe distor-
tion of the mesh surface and causes topological errors. Secondly, as
the PF method use the voronoi-based method to generate the medial
surface as its input, it is difficult for existing methods to generate
appropriate samples to guarantee a topology-correct medial surface
for shapes with many surface details. Hence, our low memory re-
quirements bring another advantage that enables us to process vol-
umes in higher resolutions to acquire skeletons with better quality.
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Figure 6: The comparison of our results with the skeletons generated by the MCF method, the ET method and the PF method on different
shapes.

Table 1: Quantitative evaluations of the skeletons extracted using our method and the compared methods for the models in Fig. 6.

Shapes
Center Deviation (CD) Contraction Error(CE)% #Vertices

MCF ET PF Ours MCF ET PF Ours MCF ET PF Ours

Dog 0.0856 0.0594 0.0538 0.617 7.34 4.25 1.58 1.56 615 9037 114 120
Ant 0.0634 0.0215 0.0198 0.0219 6.67 5.32 1.38 1.43 517 7769 68 59
Bird 0.1428 0.1207 0.1233 0.1319 9.63 6.11 1.82 1.89 402 5503 39 42

Fertility 0.0776 0.0535 0.0529 0.0546 - 10.12 7.15 7.36 747 13783 145 141
The Center deviation measures the centrality of the skeletons. The contraction error measures the completeness of the
extracted skeletons in representing the shape. #Vertices is the number of skeleton nodes, which reflects the compactness
of the skeleton. Here, the bold numbers indicate the best values for the corresponding evaluation metrics. "-": MCF
method have no CE value for fertility because it contracts the feature and generates a skeleton with no endpoints.
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Table 2: The performance of our method when processing large volumetric models.

Model
Reconstruction Error Running Time(min) Memory(MB)

Facets Size Voxel Resolution Block OocDT OocMMG Contraction Total

Buddha 1055726 512×512×2048 4×4×16 6.63 0.89 0.13 7.65 69.34
Lucy 14027872 512×512×2048 4×4×16 7.18 1.01 0.12 8.32 73.27
Statue 386488573 512×512×2048 4×4×16 9.46 1.19 0.16 10.81 74.64

Figure 7: Comparison of our skeleton generated from the high-
resolution volume with the skeleton generated from the simplified
Buddha mesh by the PF method.

6.3. Efficiency

We propose two strategies to improve the efficiency of extracting
skeletons from large volumetric models: a novel ordering measure
in the out-of-core distance transform based on boundary index and
using the set cover of the distance field to replace the set cover
of the medial surface. We validate the effectiveness of these two
strategies through two experiments.

Figure 8: Running time (s) for computing OocDT of four models
using two different ordering measures BI and MMD.

To evaluate the proposed ordering measure for OocDT, We pick
a set of shapes (Elephant, Fertility, Vase, and Horse) to compute
the out-of-core distance transform, and compare our ordering based
on boundary index (BI) to the ordering based on MMD adopted
in [MTFS07]. In experiments, we used voxelizations with resolu-
tion 5123 as the input for the OocDT algorithm and divided the vol-

ume into 43 blocks. Figure 8 illustrates the running time for OocDT
using the two different ordering measures. Clearly, our proposed
ordering measure achieves better performance.

Next, we evaluate the replacement of the set cover. We pick two
shapes (Vase and Horse) to extract skeletons for voxelizations in
10 different resolutions n3 (n = 256,512, . . . ,2560) and compare
the running time by using or not using the replacement. In the ex-
periment, we divided the volumes into 43 blocks for the first five
resolutions and 83 blocks for the last five resolutions. As shown in
Figure 9, the replacement of the set cover significantly improves
the efficiency, especially for the large volumetric models.

Figure 9: Running time (s) for extracting curve skeletons of models
in different resolutions using or not the replacement of the set cover.
w. Replacement/ wo. Replacement: with/without replacement.
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7. Conclusion

To solve the challenges in memory and computational cost posed
by the increasing data size, we present a method for out-of-core
curve skeleton extraction of large volumetric 3D models. The
method first computes an out-of-core distance transform, where we
propose a novel ordering measure to improve the efficiency. Then,
we propose novel out-of-core measures to generate a medial mesh
from the distance transform to reduce the data size and capture the
prominent features for skeleton extraction. Finally, the method ex-
tracts the curve skeleton by contracting the medial mesh, where
we propose an efficient out-of-core contraction framework by syn-
chronizing the data loading with the contraction evolution. Exper-
imental results show that our outcomes have comparable quality
with those of the state-of-the-art methods. More importantly, our
method has lower limits in terms of the amount of memory space
available and performs efficiently for high-resolution models.

Limitation and future work. As shown in Table 1, our results are
slightly inferior to those of the state-of-the-art methods in terms of
centrality. This is because our center-oriented face contraction only
propagates the fire along the edges of the medial mesh and omits
the propagation on the faces to reduce the computational cost. The
PF method [CWL22] solves this problem by performing centrality
refinement for each skeleton node on the cross-section. However,
such a centrality refinement requires global intersection computa-
tions, which are computationally expensive for out-of-core models.
Hence, enhancing the centrality of extracted skeletons by the out-
of-core method is an important future work.
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