DOI: 10.1111/cgf.14650

COMPUTER GRAPHICS forum

Volume 42 (2023), number 1 pp. 7-20

Decision Boundary Visualization for Counterfactual Reasoning

Jan-Tobias Sohns, Christoph Garth and Heike Leitte

Technische Universitit Kaiserslautern, Kaiserslautern, Germany
garth@cs.uni-kl.de,leitte @cs.uni-kl.de

Abstract

Machine learning algorithms are widely applied to create powerful prediction models. With increasingly complex models, hu-
mans’ ability to understand the decision function (that maps from a high-dimensional input space) is quickly exceeded. To explain
a model’s decisions, black-box methods have been proposed that provide either non-linear maps of the global topology of the
decision boundary, or samples that allow approximating it locally. The former loses information about distances in input space,
while the latter only provides statements about given samples, but lacks a focus on the underlying model for precise ‘What-
If*-reasoning. In this paper, we integrate both approaches and propose an interactive exploration method using local linear
maps of the decision space. We create the maps on high-dimensional hyperplanes—2D-slices of the high-dimensional parameter
space—based on statistical and personal feature mutability and guided by feature importance. We complement the proposed
workflow with established model inspection techniques to provide orientation and guidance. We demonstrate our approach on
real-world datasets and illustrate that it allows identification of instance-based decision boundary structures and can answer

multi-dimensional ‘What-If-questions, thereby identifying counterfactual scenarios visually.

Keywords: visual model evaluation, machine learning explanation, inverse multi-dimensional projection
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1. Introduction

Decision making in all aspects of life has become increasingly data-
driven and relies on machine learning algorithms to a growing ex-
tent [JM15]. While a misclassified email is merely a nuisance, the
consequences of misclassification in medical therapy planning are
more drastic and require a transparent and trustworthy process. En-
suring transparency and trust for complex machine learning models
is thus an ever-growing challenge; this is in particular true for black-
box models, which are not interpretable on their own.

In this context, providing supplementary human-understandable
explanations for model predictions increases confidence in properly
performing systems [BSO15] and allows the appropriate suspicion
in flawed ones [SSTea20]. Hence, an emerging direction of research
aims at generating explanations for model behaviour in a wide va-
riety of forms [LK19, RSG18, ERH*19]. Without limiting the ex-
planation to a certain architecture, the explanation has to be formed
by probing the black-box model’s decision function. The interesting
section of the decision function is where the classification changes,
which is called the decision boundary. The decision boundary can

be described by samples [WMR17, MM21, RFT18] or visual maps
[MHT18, SGH15, BPP*15].

For a given input to a prediction model, similar inputs for whom
a different outcome is predicted by the model are called counterfac-
tual examples [WMR17]. In particular, local samples of the decision
boundary with regard to a given data instance are counterfactuals.
While counterfactuals do not explicitly shed light onto model-
internal factors leading to the prediction, they provide insight into
what would need to change to generate a different outcome. As
humans inherently deduce their internal explanations from com-
parisons [Lip90], counterfactual- and therefore decision boundary-
reasoning is a preferential explanation approach [WMRI17,
BSR20].

Global samplings of decision boundaries extract scatterplot
projections [LJLH19, WFC*18, JZF*09] or sub-spaces [MM21,
RFT18, YRWGI13] from the high-dimensional input space that vi-
sually separate a given dataset colour-coded according to class af-
filiation. The decision boundary then resides in the interval between
instances having different class labels.
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By regularly sampling the decision function, visual maps pro-
vide an explicit insight into decision zones instead of just sam-
ples. Therefore, the decision boundary can be read exactly, even
if no samples are nearby. Currently, visual maps cover either uni-
variate changes to an instance [KPN16] or the whole dataset under
multi-variate changes mapped to 2D [MHT18, SHH20, RDO0O].
The multi-variate maps employ non-linear dimensionality reduc-
tion, since linear projections fail to capture non-linear manifolds
[XYC*18] even though interaction with local linear embeddings has
been shown to succeed [IMI*10]. Consequently, the non-linearity
strongly distorts the input space, preserving the topology of the de-
cision boundaries but distorting their shape and their distance to ex-
plained samples [REHT19], which are excellent explanations.

In this paper, we propose a framework for the visual explo-
ration of high-dimensional decision functions that enables the vi-
sual identification of feasible instance-based explanations through
counterfactuals. We create dense local linear maps around an in-
stance for answering ‘What-If* questions about the shape and dis-
tance of nearby decision boundaries. We complement the maps with
the mentioned non-linear and one-dimensional decision boundary
techniques to create a comprehensive interactive framework aimed
at classifiers with a limited number of inputs.

2. Related Work

Research on explaining decision functions in machine learning
models has produced a broad range of solution approaches. We
summarize them by their form of explanation: Explanation through
counterfactuals, visual model evaluation, boundaries in labelled
datasets, and decision maps. We discuss existing techniques com-
parable to our work from all fields in the mentioned order.

Counterfactuals. Currently, most of the machine learning liter-
ature is united under the concept that computing a counterfactual
is an algorithmic optimization problem [WMR17, DPB*19, LK19,
CRSPG19]. However, identification of optimal counterfactuals is
NP-hard [TGR20] and the definition of optimality varies on a case-
by-case basis [SF20]. Presenting a diverse set of counterfactuals in-
stead [DMBB20, MST20] increases the chances that an applicable
example is found. Still, explanations through algorithmic counter-
factuals are missing the flexibility, interactivity [SF20] and context
[GHYB20] a visualization can provide.

Visual model evaluation. In the recent years, the analysis of ma-
chine learning models has shifted from raw statistical measures to
interactive tools that present the model’s decision behaviour. Ming
et al. [IMQB18] approximate the decision space of black-box mod-
els with global linear rules that can be visually aligned with human
understanding. The approach was extended to provide both local
and global explanation with visual rules [NP21], which limited the
application to random forest models. Cheng er al. [CMQ20] pro-
posed a similar iteration of scoped rules [RSG18, Mol19, DCL*18]
on interactively refined sub-groups that are evaluated over univari-
ate counterfactuals. They also provide an interface to communicate
and influence diversity in instance-specific counterfactuals.

While a common approach is to abstract from the complex
model to an easier surrogate model [RSG16, MQB18], the decision
space can also be probed explicitly starting from an instance. The

What-If-Tool [WPB*19] and Prospector [KPN16] let a user probe
the model response under manual perturbations to an instance.
The former’s focus is on model evaluation through a test set and
therefore requires trial-and-error probing in text fields while the
latter aids probing by showing model predictions under univariate
changes in a colourmap. We extend this analysis to multi-variate
changes.

Boundaries in labelled datasets. Prediction models are typically
evaluated on a discrete test set of data instances which are then
labelled. Hence, explaining boundaries between these labelled
instances is a parallel problem to the one we are addressing
here. As datasets usually comprise of many dimensions, this
often reduces to the interactive scatterplot exploration through
dimension reduction for which both linear [JZF*09] and non-
linear [YRWGI13, NM12] tools have been proposed. Ranking
the possible perspectives allows filtering for interesting ones
[TMF*12]. Returning to the issue of boundaries, Ma et al. [MM21]
analyse a labelled dataset to compute a set of local linear bound-
aries that approximately separates the sample classes. While
they generate sparse abstractions of the boundaries between
two classes through sub-sectioning, we focus on instance-based
dense exploration to support explanations through contextual
counterfactuals.

Projections of labelled datasets have also been applied to
evaluate prediction models in linear [WPB*19] and non-linear
embeddings. The relevant non-linear embeddings are integrated
into application-specific frameworks. Their aims vary from im-
proving class separability and thereby model performance through
feature selection [RFT18], over latent space interpolation between
two high-dimensional samples [LJLH19], to inspecting model
behaviour on new samples during transfer learning [MFH*21].
Mazumdar et al. [MPNP21] extend on the concept by basing their
dimensionality reduction directly on the internal decision paths of
instances in random forests.

While approaches based on labelled datasets often times pro-
vide sufficient and interpretable explanations, they evaluate a model
solely on a discrete set of instances. As a result, the decision func-
tion can only be approximated from a sparse sampling of the in-
put space, even when the local projections are chosen to show a
clear separation between instances [MM21, MFH*21]. However,
the actual decision function may have arbitrary shapes between
these instances which is not derivable from the instances alone (ref.
Figure 3c). Therefore, our approach moves the emphasis from a
sparse sampling to a dense evaluation of the decision function in
input space.

Dense decision maps. Sampling the input space on the basis of a
two-dimensional embedding creates a dense explanation of the de-
cision function. Espadoto et al. [ERT19] perform an extensive com-
parison for suitable projection techniques, which they later apply
to visualize agreement between classifiers [EAS*21]. They come
to the conclusion that non-linear dimension reductions are suited
best for this application, which is approved by several other ar-
ticles [SGH15, RD00, SHH20]. In case that the classifier explic-
itly defines a reduction function, e.g. a support vector machine,
this mapping should be used [BPP*15]. However, Rodrigues et al.
[REHT19] point out that in general, there are three problems with
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non-linear embeddings. First, non-linear dimension reductions typi-
cally do not feature an inverse projection. Learning an approximate
inverse projection can take significant time [ERH*19, AVBD*12,
AVMC*15], except if it is integrated in the reduction process already
[OEHT?22]. Second, they tend to overfit in confusion zones leading
to uninterpretable noise. Third, the distances to the visible decision
boundary in the map and the real decision boundary in feature space
do not match.

We use linear projections to create dense maps that inherently
do not suffer from these problems. While linear projections have
been considered for this application before [CCWHO8], they were
dismissed due to their poorer performance in cluster separation
[SGH15, ERT19] and possible data point overlap as compared to
non-linear methods [EAS*21]. We show that by providing comple-
mentary interactive selection and interpretation tools, this weakness
can be alleviated.

3. Method

The central idea of a counterfactual explanation is to describe the
local structure of the decision boundary of a classifier that separates
the predicted class from a different one. In order to fully understand
and explore this concept, we will first introduce decision boundaries
formally and motivate our approach (Section 3.1). We continue with
a discussion of desired properties of map explanations (Section 3.2)
and conclude with the construction of an embedding to explore the
decision boundary around an instance (Section 3.3).

3.1. Decision boundary

Consider the point cloud in Figure la which depicts a synthetic
dataset of three anisotropic clusters in 2D. The colours indicate the
class membership. The task of a probabilistic classifier model is to
compute for any given point in 2D space a probability of class af-
filiation. We consider a sample point x to be predicted class A by
classifier f if f predicts a probability for A higher than a defined
target threshold . Assuming a continuous input space, the decision
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(a) Synthetic 2D dataset (b) Learned decision space

boundary is then formed by the set of sample points that lie exactly
on the threshold 7:

B(A) = {x| fax) =1} &)

Without loss of generality, # = 0.5 lends itself as a suitable threshold
for binary classification [BPP*15] and is therefore used throughout
this paper. This threshold can be chosen arbitrarily to match the re-
spective application scenario. In multi-class classification, we con-
sider = 0.5 equally applicable since in our experiments boundaries
locally collapsed to only two neighbouring classes. For regression
analysis, the definition follows analogously with the threshold ¢ as
a chosen target value. In the visualization of the decision space in
Figure 1b, the hue indicates the highest predicted class with satura-
tion dropping to white at f4(x) = ¢ = 0.5. The decision boundary is
the white band in-between classes.

As counterfactual explanations either flip the class with as little
change as possible or reach a certain target threshold, all counter-
factual points will lie on the decision boundary. Thus, they are a
sampling of a decision boundary. If one finds the decision bound-
ary of a class A as the points where the threshold is reached,
they have found all possible counterfactuals. The explanation then
follows from the set of counterfactuals or the choice of a point
within.

While this concept is intuitive in our synthetic example, the set
of points can be difficult to imagine in higher dimensions. In 3D, it
forms surfaces that can still be easily rendered using scalar field vi-
sualization techniques such as isosurfaces [LC87]; for datasets with
more than three attributes, direct visualization is no longer feasible.
As a prediction model forms a continuous function that outputs a
value for any point in the input space, the input space can be con-
sidered a high-dimensional scalar field. A common approach that is
well established for the interpretable rendering of high-dimensional
scalar fields is the use of cutting planes [vWvL93, HJ11]. The gen-
eral idea is to sample the function on a low-dimensional manifold,
commonly a straight line or a plane.

This concept has already been applied for the explanation of
classifiers, namely in the form of partial dependence plots (PDPs).
While the PDPs introduced by Friedman [FriOl] average the

(d) Multivariate Analysis
(Our Approach)

(c) Univariate Analysis

Figure 1: (a) Synthetic 2D data. (b) Input space coloured by model class probability. Hard to view for >2D. (c) Black lines are PDP sampling
for a data point. (d) Our approach. The dashed line is the regular PCA-embedding. The black line is the global PCA-embedding shifted into
an explained data point. The purple line is the local, nearest neighbour-based embedding. The small circles are the nearest neighbours.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



10 J.-T. Sohns et al. / Decision Boundary Vis for Counterfactual Reasoning

sensitivity over a full dataset, the focus of this paper is on explaining
instance-specific behaviour and therefore, we follow the notation of
Krause er al. [KPN16] to inspect the partial dependence of a single
instance. A PDP samples the decision function in one dimension,
keeping all other attributes constant. In Figure 1c, this corresponds
to a line starting in one of the data points and being parallel to the
sampled axis.

The approach can be directly extended to 2D partial dependence
by changing two attributes. This constructs an axis-parallel plane.
As our synthetic dataset is only two-dimensional, this plane per-
fectly describes our scalar field as seen in Figure 1. In practice how-
ever, machine learning is applied to high-dimensional input spaces.
Now, the nD dependency is hard to visualize and 2D planes can be
drawn for arbitrary combinations of axes, resultinginn - (n — 1)/2
possible combinations. For more than a single-digit number of fea-
tures, the amount of plots would be overwhelming.

To solve the visual overload problem, data scientists typically em-
ploy dimensionality reduction algorithms. In these algorithms, nD
data points are projected into 2D by optimizing a stress criterion.
Even though these algorithms are designed to approximate the dis-
tribution of data points and the focus of this paper is exploring a
continuous decision function, the 2D representation can be used to
explore the decision space [AVBD*12, ERH*19]. Geometrically,
the projection embeds a hyperplane in input space for the linear case
and a hyper-surface for the non-linear case. This embedding can be
evaluated by inversely projecting 2D points to input space creating
a densely sampled representation [EAS*21] with small remaining
uncertainty about nD values in-between samples.

3.2. Desiderata

After a comprehensive review of existing work on decision bound-
ary maps and counterfactual explanations in Section 2, we distilled
the following requirements for an interpretable explanation with a
decision boundary map:

* RI: Convey distances in decision space. The aim of a decision
map is to convey the range of scenarios that keep or flip a deci-
sion. Therefore, the visual distances of test samples to the deci-
sion boundary on the map need to be comparable, i.e. there should
be a monotonic relationship between visual and actual distance
to the boundary. As this is hard to achieve for high-dimensional
datasets [REHT19], focusing on specific instances is sufficient for
counterfactual reasoning. The distance measure should reflect the
expected distance between inputs, which in our case is Euclidean
distance.

* R2: Favour likely alterations. Reciting the goal of counterfactu-
als to provide an explanation via an expressive comparison, not
all counterfactuals are equally helpful as explanations. A decision
boundary that is reached via likely changes is more realistic and
therefore more helpful than one with unlikely changes [DPB*19,
PSSR*20, CRSPG19]. The distances in the embedding should re-
flect the likelihood of a change in reality.

* R3: Show a close decision boundary. Reducing dimensionality
is always a trade-off between many possible optimization crite-
ria. The embedding can only cover a small sub-set of the high-
dimensional space. Therefore, the optimization of the embedding

should focus on providing explanatory value in the sense that the
shown decision boundary actually is close to the explained in-
stance [WMR17, LLM*18, DMBB20]. Note that suitable coun-
terfactual reasoning just needs an actionable close boundary, not
necessarily the mathematically closest one [MST20].

3.3. Embedding construction

On the basis of the requirements R/—R3, we now construct a suitable
embedding. The construction process is illustrated on the synthetic
example in Figure 1d. Since plotting an n-dimensional input space
is infeasible, we explain the reduction from nD to 2D by reducing
from 2D to 1D. A 1D line in Figure 1 is, therefore, analogous to a
2D hyperplane residing in nD.

A major decision for creating an embedding with dimensional-
ity reduction is whether to stay linear or allow non-linear distance
transformations. As described in Section 2, in non-linear decision
boundary maps distances between embedding points and decision
boundaries in input space are not matching [REHT19], regardless
of the projection technique [ERT19]. Therefore, non-linear embed-
dings are violating R/. On the contrary, the axis of linear projection
techniques are based on linear feature combinations and therefore
fulfil R1.

From the plethora of linear transformations, we choose PCA
[PeaO1] to build our embedding visualization also utilized by
OptMap [ERHT21] in a related scenario. In contrast to OptMap, we
focus on explaining classifier outputs instead of optimization paths
in the domain space of real-valued functions. Further, in OptMap,
the PCA is trained from samples on a regular grid, while R2 leads
us to base it on the distribution of real data instances. This train-
ing data is not restricted to the training or test dataset of the model
and can be any realistic distribution of samples as long as it is not
strongly biased.

We choose PCA over more discriminant methods like LDA
[Fis36] for two reasons: (1) PCA-axes are optimized to capture the
most variance in the data. Assuming a higher variance in a feature
means that it is more likely to change, the embedding implicitly ac-
counts for feature variability (R2). Since this assumption only per-
fectly holds for a statistical dataset as in Figure 1, we provide ad-
ditional tools to control feature mutability in Section 4.5. (2) Since
we standardize all features before PCA, the analysis is an eigen-
analysis of the correlation matrix. Thus, the covariance of two axes
signals the correlation between the features. As a result, points in
our map adhere to the linear feature correlation in the dataset (R2).
While we cannot expect a dataset to only contain linear correlation,
the assumption usually holds when restricting to local neighbour-
hoods. Hence, we restrict PCA training samples to a set of nearest
neighbours in nD.

Constructing a PCA-hyperplane is not guaranteed to find a deci-
sion boundary at all, especially not a close one. To satisfy R3, we
force the hyperplane orientation towards a close decision bound-
ary by restricting the training samples to a relevant local sub-set.
Therefore, we find a balanced set of nearest neighbours to the ex-
plained point, where half the samples share the predicted class and
the other half is predicted to be in another class. The neighbours
are determined in one ball tree for each class on Euclidean distance
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of standardized feature values. The default of 100 diverse neigh-
bours, 10-15% of the data, worked best in our experiments, but is
adjustable in the interface header.

The hyperplane constructed by the principal components pc; and
pc, is traditionally anchored in the mean of the training data at (0,0).
Because the aim is to explain the decision space around an explained
instance i, we shift the PC-hyperplane into i. Figure 1d (purple line)
provides a sketch of our proposed embedding. The mapping from a
point (x, y) in embedding space to feature space is computed with:

Inv(x, y) = [x, yl[pc1, pé;] + i 2

As this mapping is computationally simple and can be vectorized,
the embedding is sampled once per pixel (x, y) (Figure 1: along the
purple line) and the corresponding points in input space Inv(x, y) are
classified in the model. The predictions form a multi-variate PDP
coloured by the most probable class. The neighbours used for train-
ing are projected into the plane as coloured circles to identify practi-
cally occurring feature combinations, though these could be omitted
to reduce complexity for casual users.

4. Design

In this section, we describe a framework for exploration of lo-
cal decision boundaries through the previously derived sampling
techniques. As our tool allows instance-based explanations through
counterfactuals, we name it CoFFi (COunterFactualFInder). First,
we describe requirements for such a visualization and introduce the
interface. Afterwards, we describe the design decisions of each com-
ponent in the order of a typical workflow.

4.1. Design overview

The review of related work in Section 2 revealed design require-
ments for a holistic analysis of decision boundaries, which can be
ordered from overview to detail.

* DRI: Show the overall class separability and data distribution
[ERT19, SGH15] as well as the focused instance’s placement
therein [SHH20] to give an overview.

* DR?2: Allow univariate sensitivity analysis to support sparse and
simple explanations [WMR17, KS20, KPN16].

* DR3: Provide interpretable, direct analysis of the decision func-
tion under multi-dimensional changes (Section 3.2) to support
multi-variate explanations.

* DR4: Retain flexibility to account for uneven feature model im-
portance [RFT18] or mutability [SF20].

To make the framework usable in practice, we adhere to three
additional design goals.

* DR5: Independence of the underlying machine learning model.
With the ever-changing search for superior model architecture,
fitting a visualization technique on a specific model type severely
limits its usability. As a black-box approach, we only require a
predict function and sample data, thus are model-agnostic.

* DR6: Applicability to common machine learning data. The ex-
ploration of decision boundaries for texts and images is currently
still restricted to exemplary counterfactual generation [CYX*20,

DCL*18, GWE*19], so we focus on tabular data with a num-
ber of dimensions displayable as a list, i.e. less than 30 [CMQ20,
WPB*19, GHYB20, KPN16].

* DR7 :Applicability to a variety of model outputs. In this paper,
we demonstrate it on binary- and multi-classification problems.
Although we have not applied our tool to regression models yet,
they fit into our visualization by setting the boundary threshold ¢
to the target regression value.

Our interface, shown in Figure 2, is split into four major com-
ponents: The fopology view (a), the partial dependence view (b),
the embedding view (c) and the feature selection (d). The compo-
nents each fulfil one of the listed requirements. The topology view
grants insight in the separability of the dataset (DR/). The par-
tial dependence view shows the univariate analysis of the local de-
cision behaviour (DR2). The embedding view extends the explo-
ration to multi-variate space (DR3). The feature selection provides
a guided way of reducing the search space (DR4). Additionally, data
points can be selected and compared in a data table (e). All compo-
nents are linked and update to the current selection. A prototype of
the presented framework is implemented using Python, Bokeh and
Panel [Rud] and is available on GitHub at https://github.com/Jan-
To/COFFI.

The interface is explained on the example of a space shuttle
dataset from NASA [DG17] shown in Figure 2, where nine radi-
ator sensor measurements are given and a fully connected neural
network with three 100-neuron-layers is used to predict the cor-
responding radiator position with 99% accuracy. The dataset con-
tains 58,000 instances over seven classes. To reduce overplotting,
we limit the visible scatter glyphs to maximal 400 instances per
class, but full data can be used for computation while remaining in-
teractive.

4.2. Topology view

The exploration of decision boundaries in high-dimensional space
is only sensible if we know what we are looking for. For a clus-
tered, clearly separable data manifold as in Figure 2, we can expect
the model to form similarly simple decision boundaries. For a com-
plex, hardly separable data manifold as in Figure 3, the decision
boundary could be equally complex. Hence, the first component to
look at after loading in a dataset and a trained prediction model is
the topology view.

The topology view is designed to give an overview of data clusters
and class separability. Each instance of the provided sample data is
rendered as a point in a scatterplot created with non-linear dimen-
sionality reduction. The points are coloured by the predicted class
with misclassified samples having a cross added in the colour of the
ground truth class, if available.

Two state-of-the-art non-linear dimensionality reduction
techniques—t-SNE and UMAP—are available to plot the data
points based on their feature values. The positioning of the data
points approximates the intrinsic manifold of the dataset, while the
colour distribution indicates the class separability. A dataset with
feature-wise distinct classes shows in a clear separation into uni-
coloured clusters as in Figure 2 (orange, yellow and green), while
the other classes seem harder to differentiate. In our experiments,
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Figure 2: Overview of our interface on neural network prediction the radiator position of a space shuttle from nine sensor measurements.
The decision boundaries of sample 755 are explained. The topology view (a) shows clear cluster distribution. The partial dependence view (b)
shows possible predictions under single parameter change. The embedding view (c) shows possible prediction under statistically likely multi-
linear changes. The attributed feature importance (d) in the model mostly lines up with the variance in the embedding. Thus, the embedding
can be assumed to show a representative explanation of decision boundaries. Specific points can be searched and selected in a data table (e).
The black annotations in (c) illustrate the conclusions drawn in Section 4.4.

t-SNE proved better for finding clusters, while UMAP excelled
at capturing the intrinsic manifold. Nevertheless, the outcome of
both algorithms strongly depends on their hyperparameters, so we
included sliders to experiment until a satisfying setting is found.

The downside of these non-linear embeddings is that most of the
information about global distances between points is lost. Conclu-
sions can only be drawn about local similarity. Due to the focus on
immediate locality and the resulting distortion in the non-linear em-
bedding, we frequently experienced points that are distant in the plot
but within each other’s nearest neighbours. In preliminary versions,
we augmented the scatterplot with inverse mappings of non-linear
dimensionality reduction as in [SHH20]. However, in our experi-
ments, the background embedding did not provide additional infor-
mation about class separability compared to just the scatterplot. For
that reason, we chose to not add a background colouring here.

The aim of this workflow is to explain the decision boundary
for a specific data point. If this point is novel, it can be added in
the data table. If we are searching for a point of interest, a sin-
gle different-coloured dot or a colourful glyph-border in the topol-
ogy view provides hints about atypical instances. In the shuttle

example, an instance of the central class High is chosen, demon-
strating the possible variety of adjacent classes. A click selects the
instance and updates the other components to this point.

4.3. Partial dependence view

The most easily understood way to describe decision boundaries is
by illustrating univariate behaviour. In the context of model predic-
tions, this approach is typically called partial dependence analysis
[FriO1]. For each dimension, the class prediction is observed with
one feature altering while the other dimensions are fixed. By de-
sign, partial dependence perfectly captures the univariate behaviour
around the examined instance. As partial dependence is a well-
established technique that still marks the state-of-the-art for inspec-
tion of feature-model relationships [HHC*19, KPN16, WPB*19],
we include them with a new look. Partial dependence is typi-
cally plotted as line charts [WPB*19, HHC*19, CLG*15, FriO1]
or colourmaps [KPN16]. We choose to use a hybrid of colourmaps
and line/area charts called horizon chart [Few08], which combines
the advantages of both previous visualization methods.
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Horizon charts are vertically condensed and colour coded area
charts. The area is segmented into ideally two horizontal bars
[HKAOQ9] which are colour-coded and shifted over each other.
The colour component facilitates highlighting regions of interesting
value range, while the slope conveys an accustomed way of reading
gradients as well as the possibility to read exact values. The low-
ered space constraints of horizon charts over line charts allows us to
show significantly more dimensions at once than previous methods
[WPB*19, HHC*19, CLG*15].

Here, horizon graphs are used to steer attention to features the
model is sensitive about. In that way, they capture the feature spe-
cific volatility in an instance’s prediction. At the same time, the
range of possible predictions for individual feature changes is pre-
sented. Thereby, insight over a plethora of hypotheticals is generated
without actually having to try them out by hand.

The message conveyed by horizon graphs depends on the axis
ranges. The x-axis should cover all possibly occurring feature val-
ues, hence we set it to cover the value range of the training set. The
vertical baseline is the decision boundary threshold ¢ = 0.5, since
our goal is to put emphasis on the pivot point between predicted
classes. The vertical axis is set to 25% prediction change, so that
over two positive bands, the horizon covers the prediction range
between 50% and 100% per prediction per class. The classes each
are colour-coded with more confident classifications coloured with
richer colours. We can, therefore, read the predicted class under all
individual feature changes without any manual work.

The feature values of the currently selected data point are indi-
cated with black lines, while the currently explored counterfactual
is shown with grey lines, which we will learn about in the next sec-
tion. For point 755 selected in Figure 2 none of the sensors measure
an extreme value. Therefore, the neural network predicts 100% class
High, which can be read from the full height of the saturated yellow
area at the black lines. The chart provides hypothesis testing such
as if sensor 1 had been 80 and all other sensor were the same, the
model would have predicted 99% Fpv Open.

Categorical features are visualized as discretized versions of the
horizon charts, which look like stacked bar charts. Ordinal cate-
gories are converted to numerical features. Due to the PCA analysis
of Section 3.3, nominal data are supported through one-hot encod-
ing up to 30 total dataset dimensions.

4.4. Embedding view

The previous evaluation relies on the assumption that features are
changing independently from another. In practice as well as in the
case of a space shuttle radiator, this assumption may be wrong. For
measurements of one sensor to change, the radiator moves its posi-
tion, which inevitably changes the measurements of other sensors.
To convey the decision boundary under reasonable changes, an ex-
planation needs take these dependencies into account. Therefore,
we extended our analysis to multi-variate changes with respect to
the underlying covariance in the Embedding View.

The Embedding View shows the prediction probabilities on a lin-
ear hyperplane based on the inspected point. The necessary cutting
plane is generated as introduced in Section 3.3. As a continuous bi-

jective mapping between the plane and the parameter space exists, a
sample point in parameter space can be created at every position. A
dense regular grid is sampled on the cutting plane to create a smooth
visual impression. For each sample, the class probabilities are pre-
dicted in the machine learning model. From these probabilities, we
create a map of the model predictions on the hyperplane where each
pixel is coloured by the most probable class. The saturation is in-
creased with certainty of the prediction. Hence, decision boundaries
will show as white areas or flips in hue.

A grey biplot [Gab71] of the high-dimensional axes is added to
indicate how feature values change while moving in the sampled
plane. We centre the biplot in the focused data instance and orient
the axes in positive feature direction. Since the hyperplane is created
on centred and normalized training data, the covariance of two axes
in the biplot signals the correlation between them. We can assume
that axes in similar directions are positively correlated, axes in op-
posite directions are negatively correlated and the other axes are not
correlated. Further, the axes scaling attends to the variance of each
feature in the training data, which is encoded in the relative length
of the axes.

The coloured map lets us draw conclusions about multi-variate
decision boundaries. In our linear embedding feature, values in-
crease linearly in the direction of their respective axis. Moreover, the
respective feature value does not change when moving orthogonal to
an axis. Hence, a decision boundary that is linear and orthogonal to
an axis, relies on this feature to cross a certain threshold. The exten-
sion of said boundary signals the generalizability with regard to the
other features, which change when moving along the boundary. De-
cision boundaries that form curves rely on a non-linear combination
of features. We enforce an 1:1 ratio of the plot’s own x- and y-axis
so that when a variable strongly influences a decision boundary, it
is visible as its axis being (close to) orthogonal to that boundary.
The lower part of the decision boundary between High (yellow) and
Fpv Close (teal) in Figure 2c is orthogonal to the feature axes 1 and
2, so one of them or both are the deciding factor here. The linear
boundary ends in a sharp curve when one of the similar-oriented
features 5, 8 or 9 reach a certain value. The partial dependence view
hints towards a further exploration of the interaction with sensor 5
as it shows a teal range on the lower end. The necessary workflow
is described in Section 4.5.

To annotate the embedding, the training instances are projected
into that plane and shown as circles in the plot. The same colouring
schema is used as in the topology view which consists of slightly
more saturated class colours to make circles distinguishable from
the embedding colours. The sample points work as an indicator for
the spatial distribution of real data as well as for the descriptive-
ness of the embedding. Regions where samples share their colour
with the embedding are regions where the cutting plane is illustrat-
ing the behaviour of the model on real data well. Regions where the
colours do not match signal that the cutting plane does not general-
ize to these points. In the example embedding of Figure 2, the Fpv
Open, High and Bypass match with the linear embedding, while the
projection is inferior for the other classes.

A point of interest is focused by clicking on it in any view, in-
creasing its size. The embedding and Partial Dependence View can
then be updated to the selected point with the ‘Shift’-Button. Since
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the samples are orthogonally projected onto the linear embedding,
shifts necessarily are orthogonal to the hyperplane and the embed-
ding slices the parameter space in parallel. Thus, with the same
training data, only the embedding colours change, while the axes
orientation and the location of the sample points stay the same.

On startup and inital selection of a datapoint, the embedding is
based on a (shifted) PCA of all available instances (cf. Figure 1d
black lines, Figure 2c, Figure 3a) for overview and consistency.
However, based on the approach of Section 3.3, the training data of
the embedding should be reduced to the nearest neighbours to bet-
ter adhere to the local manifold around an instance. This is achieved
with the Embed-Button, which then reflects the current number of
training samples and also works on a custom selection drawn in the
embedding or topology plot. All non-selected samples are rendered
transparent, as their projection to the embedding is less meaning-
ful. In our experiments, the closest 100 nearest neighbours provided
a good balance between locality and generalizability, thus, we use
this number throughout our examples, one of which can be seen in
Figure 3. A further benefit of having a linear embedding is its rapid
computation, which mainly depends on the number of dimensions
for neighbourhood search and PCA. In our experiments, the projec-
tion and inverse mapping required under 10 ms, while the model
evaluation of 300x 300 pixels took under 0.3-s scaling linearly with
pixel count and ML model evaluation time. Hence, it is possible to
zoom and pan interactively in the embedding, exploring regions of
interest in more detail.

Lastly, the embedding can be probed at any position by hov-
ering, generating an explanation for the prediction. Clicking in
the embedding creates a grey cross that marks the probed posi-
tion. Simultaneously, the partial dependence view shows the fea-
ture values of the inversely projected point as grey lines. This serves
two purposes. First, precise readings of feature values at the deci-
sion boundaries and beyond can be taken. Second, the comparison
with the black markers of the focused point reveals the necessary
changes that can serve as a counterfactual explanation. In Figure 2,
we selected a multi-variate counterfactual beyond the Fpv Open
boundary that was not evident from individual feature changes in
the partial dependence view. By freely choosing points along the de-
cision boundary, the user can explore a plethora of possible counter-
factual explanations visually. Thus, the explanation can be steered
to personal preference without knowledge about coding, machine
learning models or dimensionality reduction other than PCA. The
steering of the exploration is extended in the next section.

4.5. Feature selection

When analysing the embedding of a high-dimensional reduction,
keeping track of all the feature interactions quickly becomes over-
whelming. A user may not even be interested in explanations that
require many features to change, especially features he can not in-
fluence. At the same time, it is obvious that a model can be more
sensitive to some features than to others. Consequently, the embed-
ding should be adjusted to better capture the model’s ‘view’ on the
parameters and the user’s personal flexibility.

In the feature selection component (Figure 2d), features can be
disregarded for the visual sensitivity analysis by fixing them to the

value of the focused point. The embedding view is then read as:
‘What are the predictions of likely changes to the focused instance
under the assumption that unchecked features do not change?’ In
case, the user has no preferences on which features are immutable
or irrelevant, we provide guidance on how to filter features for an
expressive embedding.

As the embedding should capture the model sensitivity, we eval-
uate its quality by the accordance of the feature influence in the em-
bedding compared to in the model shown in an annotated heatmap in
Figure 2d. Embedding influence is computed over the length of the
feature vectors spanned by PCA. As model-agnostic feature impor-
tance is still a topic of active research, model sensitivity is computed
by the permutation importance measure [BreO1, FRD19] based on
implementation availability. We restrict model importance measure
to the training data of the current embedding, thereby keeping the
measures comparable and adjusting to local differences. In the end,
both measures are normalized for easier comparison. The embed-
ding quality can be assessed by comparing the influence of features
in embedding and model, and improved by adjusting the embedding
to better mirror the model.

5. Case Study

In this section, we demonstrate how the proposed design can be used
to explore decision boundaries and draw conclusions through a case
study on a real-world high-dimensional dataset.

The diabetes diagnosis of members of the Indian Pima tribe is to
be automated. The dataset is pre-selected to contain only females
above 21 year old [RA15]. The dataset contains 768 samples with
eight numerical input features. The output variable signals whether
the patient was diagnosed with diabetes mellitus (orange) or not
(green). We train a random forest classifier with 100 internal trees
and achieve 80% cross-validation accuracy.

We consider a specific female 667 (f667) who is missing the in-
sulin measure, but has average values for all other features, indicat-
ing no clear class affiliation. The model predicts f667 to be healthy
but she actually is diabetic. For the model to be used in practice, both
the female herself and the model developer have interest in why this
error happened. We provide an explanation by exploring the local
decision boundary around the sample point.

After seeing no clear class separation in the topology view in Fig-
ure 3e, we select f667 by clicking it and shifting to (a+d). The par-
tial dependence view (d) updates to show the model’s response un-
der feature changes in one dimension. The green areas left of the
black instance-lines in (d) indicate that a lower pregnancy, glucose,
BMI or age value lowers the prediction for diabetes. Apart from this
expected behaviour, we mark multiple unexpected patterns in Fig-
ure 3d that raise suspicion about model robustness. First, the chances
to be healthy would have been significantly improved had the female
been older than 55 years. Second, a higher glucose value from 111
mg/dl up to 140 mg/dl would improve her prediction even though the
healthy range is anything under 140 mg/dl according to the Amer-
ican Diabetes Association. Lastly, the model would predict her as
a diabetes patient would her BMI be just one higher, but an BMI
increase to between 32 and 42 would have improved her prediction.
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Figure 3: Workflow of local analysis of f667 in the diabetes dataset. (a) Inspecting global map. (b) Restricting to local neighbourhood and
fixing the values of immutable and less-influencial features. (c) Further reduction of axis for closer inspection of boundary artefacts. An
unusual counterfactual is found. (d) Comparing the multi-dimensional counterfactual with the expected sensitivity under individual feature
changes. (e) Topology overview shows no class separation on non-linear manifold.

It is likely that this is a model artefact from overfitting to a biased
training set. We will find out in the following exploration.

While one-dimensional hypotheses are insightful, the medical
measures considered here are unlikely to be changed independently.
Figure 3a shows the global linear embedding shifted to be cen-
tred at our sample. We can, therefore, explore the prediction re-
sults under multi-dimensional alterations to f667’s values respect-
ing the global correlation and variance. The axes show three cor-
related groups of features: pregnancies and age, glucose and blood
pressure, and the rest. While we cannot explain the last group, the
first two are expected since females with more children are gener-
ally older, and glucose increases the blood pressure. It is, therefore,
sensible for our embedding to assume that these features change
proportionally.

Decision boundaries orthogonal to the respective axes indicate
that (1) glucose levels above 155 mg/dl lead to higher prediction
even if the blood pressure rises accordingly and regardless of the

other features; (2) being younger than 29 with less pregnancies helps
reducing the diabetes chance, but is overruled by Glucose values.
The exact values of embedding points can be probed with tooltips
in the embedding and grey lines in the partial dependence view,
demonstrated in Figure 3b and c+d, respectively.

There is also a small orange patch close to {667, which corre-
sponds to the same phenomenon in one-dimensional BMI sensi-
tivity described before. All points on the hyperplane within this
patch are predicted to have diabetes. The important difference to a
well-formed decision boundary here is that this model behaviour is
not generalizable. An algorithmic counterfactual explanation would
have been: ‘If your BMI was slightly higher, you would have been
correctly diagnosed with diabetes’. While this is correct, it leads
to the wrong assumption. To overturn her Al-doctor, f667 gains
weight and increases her BMI by three. She still is rejected even
though she followed the explanation. With our visual inspection, she
would have known that this behaviour does not generalize to higher
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values. In our multi-dimensional linear map, the small size of the
patch immediately shows that this behaviour is not applicable for
similar feature combinations. It can, therefore, be assumed that the
patch is a model artefact from training data that contained an ab-
normal amount of diabetes patients with similar values as f667. We
investigate this further in the next paragraph.

Until now the linear embedding is chosen to approximate the
global covariance. However, a dataset can have non-linear associ-
ations between variables, so we localize the embedding. We restrict
training data of the projection to the nearest 50 neighbours per class.
She further cannot readily change skin thickness, pedigree function,
age or number of pregnancies. Therefore, we mark these features as
immutable as described in Section 4.5. The resulting plot after both
changes is shown in Figure 3b. Through the central orange patch,
we can see that the class shift by increasing BMI only applies if the
other feature values are within a short range. By probing the embed-
ding at the closest points in the orange main area, we formalize a
generalizable counterfactual explanation: 667 needs to change her
glucose level above 155 mg/dl or her BMI above 47.

Lastly, we demonstrate that multi-dimensional probing is not im-
plicitly achieved by adding individual partial dependencies. We fix
the insulin value in the example above to get to Figure 3c. Clicking
in an orange area in the embedding view marks the counterfactual
with a grey cross and updates the grey lines in the partial depen-
dence view (d). Each individual change reduces the likelihood for
diabetes, so their combination is expected to reduce it even further.
However, changing all three at once results in flipping the predic-
tion towards diabetes. The need to assume such interactions van-
ishes with our linear embedding visualization as the likely ones are
presented already.

6. Comparison with Related Work

To assess the quality of our embedding technique, we compare it to
state-of-the-art decision boundary maps, iLAMP [AVBD*12] and
iNN [ERH*19]. We conduct our benchmarks on the breast [DG17],
diabetes, robot [FBVV09] and shuttle dataset. To simulate interac-
tive use of our tool CoFFi, we also implemented a naive feature
filtration where only features with more than average feature im-
portance are kept. Note that this case is just to show the potential
of the tool, since a direct comparison to full-feature maps is unfair.
We base our analysis on the general map desiderata R/-R3 in Sec-
tion 3.2.

Our map is explicitly defined to convey linear distances based
on likelihood of change as discussed in Section 3.3 and therefore
fulfils R/. On the other hand, Rodrigues et al. [REHT19] confirms
that the distortion problems of non-linear embeddings translate to
non-linear decision maps.

As a measure to favour likely alterations (R2), we assume that a
likely alteration is a close one. We compute the closest shown coun-
terfactual per sample, as if a user clicked on the closest differently
coloured pixel in each of the approaches. In our approach, the aver-
age L1-distance in feature space, which is the common measure for
counterfactual distances [WMR17], is lower than with iLAMP and
iNN in all our experiments (Table 1 djjpun)-

Table 1: Comparison of decision boundary maps iLAMP [AVBD*12], iNN
[ERH*19], CoFFi and filtered CoFFi. Shown are the average LI-distances
to closest shown counterfactual in normalized feature space dgpoy, and Pear-
son correlation between shown and optimized counterfactual from alibi p.
The best results of the all-feature approaches are marked in bold.

iLAMP iNN  CoFFi fil. CoFFi
Breast [DG17] down 1241 1230 1192  5.58
0 0.14 0.14 047 029
Diabetes [RA15] dyown 156 7.18 507 384
0 —0.07  —005 037 048
Robot24 [FBVV09]  dywwn 2260 2233 1497 561
0 0.03 004 017 021
Shuttle [DG17] dyown 996 990 757  3.46
0 0.16 019 010 0.6

To confirm R3, we test how well the shown decision boundary
is actually matching with the closest decision boundary. As find-
ing the closest decision boundary is NP-hard, we rely on the closest
counterfactual found through optimization as a baseline, which we
compute with alibi [KLVC21]. In a perfect embedding, the shown
counterfactuals should coincide with the optimized ones. Therefore,
we compute the Pearson correlation coefficient between the coun-
terfactual distances found through optimization and the embeddings
(Table 1 p).

In the experiments, our approach found closer counterfactuals on
average and in most scenarios, it also showed higher correlation with
the ‘optimal’ counterfactuals than previous non-linear approaches.
At the same time, our approach relies on a simpler concept with
lower computation time. Detailed plots of the benchmark results can
be found in Figure 1 of the supplementary material.

7. Discussion and Conclusion

Previous work has shown that decision boundaries provide ex-
pressive explanations of individual black-box classifier decisions.
Until now, decision boundaries are described by either few counter-
examples, discriminating projections of a sparse test dataset, or
annotated maps of univariate or non-linear manifolds. We combine
the three approaches and present a visual analytics framework
for exploring high-dimensional decision boundaries on local and
linear maps. Our case study demonstrates that simple, complex and
malformed decision boundaries can be conveyed, while explicit
probing reveals personalized multi-dimensional counterfactuals
with context. Thus, we overcome previous trade-offs between
generalizability, explicitness, dimensionality and interpretability.
As our method does not require a specific model architecture,
it is now possible to gain dense multi-dimensional insight into
any classification decision function without extrapolation from
examples or accounting for hidden distortion.

Our approach remains with limitations regarding scalability, in-
teractivity and accessibility that are planned directions for future
work. As in previous work, visualizing too many sample points
in a scatterplots leads to overplotting. While the full dataset can
be used for computation and instance-selection, only a sub-set of
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points should be scatter-plotted. Though we successfully experi-
mented with up to 30 input dimensions in our list, we suggest to
move the feature selection process to a plot representation [RFT18]
or a recommender system. Due to the limited number of perceived
colours [War12], only about eight output-classes can be inspected
at once and more classes would need to be grouped. While the pro-
posed projection is significantly faster to compute than previous
maps, creating a dense map still depends on the excessive probing
of the decision function (O(resolution)). Hence, the interactivity of
any map depends on a rapid model evaluation. Finally, the orien-
tation of our hyperplane is fixed via dataset correlation. The cus-
tomization of explanations can be extended with adherence to the
model by class discrimination [AZBZ18, FKM20, SGH15] or the
user by movable axes with drag-and-drop [LT13]. Further evalua-
tion of the accessibility also requires a user study with novices and
experts, indicating the usefulness of an integration into an ML en-
gineering pipeline in practice.
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