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Abstract
We present a method for removing unwanted topological features (e.g., islands, handles, cavities) from a sequence of shapes
where each shape is nested in the next. Such sequences can be found in nature, such as a multi-layered material or a growing
plant root. Existing topology simplification methods are designed for single shapes, and applying them independently to shapes
in a sequence may lose the nesting property. We formulate the nesting-constrained simplification task as an optimal labelling
problem on a set of candidate shape deletions (“cuts”) and additions (“fills”). We explored several optimization strategies,
including a greedy heuristic that sequentially propagates labels, a state-space search algorithm that is provably optimal, and
a beam-search variant with controllable complexity. Evaluation on synthetic and real-world data shows that our method is as
effective as single-shape simplification methods in reducing topological complexity and minimizing geometric changes, and it
additionally ensures nesting. Also, the beam-search strategy is found to strike the best balance between optimality and efficiency.

CCS Concepts
• Computing methodologies → Shape analysis; Volumetric models;

1. Introduction

Topological simplification is the problem of reducing unwanted
topological features from 3D shapes. These features include islands
(i.e., connected components), cavities (i.e., voids inside the shape),
and handles (i.e., “loops”). These artifacts are typically resulted
from reconstructing the shape from noisy or incomplete raw inputs,
such as images or point clouds. Without simplification, spurious
topological features may present significant challenges for many
geometry processing tasks such as mesh simplification, surface pa-
rameterization, shape matching, and physical simulations.

Many methods have been proposed to simplify the topology of
a single 3D solid shape (see review in Section 2.1). However, for
shapes that exist in a collection, the processing of individual shapes
may be subject to additional constraints among the shapes. In this
work, we consider a sequence of nested solid shapes, such that each
shape is a subset of the next shape in the sequence. One example
of nested shapes is the time-series of an expanding structure, such
as the growing roots of a plant, where the shape at each time-point
is strictly a subset of the shape at the next time-point. Another ex-
ample is a multi-layered material, such as a geological model con-
sisting of multiple strata, a mechanical part with several coatings,
or a biological structure with several tissues. Given a material com-
posed of n layers, taking the union of the k inner-most layers, as k
increases from 1 to n, creates a sequence of nested solid shapes. For
such shape sequences, maintaining the nesting relations between
successive shapes is important for downstream analysis, whether it

Figure 1: Two examples (left and right) of a pair of nested shapes
containing topological features (top), and after topological simpli-
fication that violates (middle) or preserves (bottom) nesting. The
outline of the first shape in each pair is overlayed on the second.

is physical simulation on a layered material or computing the time
function of an expanding structure.

Performing topological simplification independently on each
shape in a nesting sequence could result in shapes that are no longer
nested. For example, a handle may be cut in different locations in
two consecutive shapes (Figure 1 (b)), whereas two islands may
be bridged in one shape but one of them is removed in the next
shape (Figure 1 (e)). Such violations of nesting are often found on
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real-world data, as shown in Figure 2 (middle row) which applies a
recent single-shape topology simplification method [ZCLJ20] to a
time-series of growing pennycress roots.

An alternative approach that guarantees nesting is to employ
methods that analyze and simplify the topological features of scalar
fields (see review in Section 2.2). Specifically, one may create a
scalar field whose level sets are the input shape sequence, simplify
the topology of the scalar field, and extract the level sets afterwards.
However, existing field-based simplification methods are limited to
removing extrema (maxima and minima), which correspond to is-
lands and cavities in the level sets, and thus are not able to effec-
tively remove topological handles in 3D (see Figure 13).

In this paper, we propose a novel topological simplification
method designed for nested shapes. Our method simplifies all three
types of topological features (islands, handles, cavities) on each
shape while maintaining their nesting relation. Our method builds
upon an existing single-shape simplification method [ZCLJ20],
which adopts a global optimization approach to maximally sim-
plify topology while minimizing geometric changes. We make two
main technical contributions:

• We formulate nested simplification as a graph labelling problem
(Section 4). Similar to [ZCLJ20], our formulation makes use of
a set of pre-computed, candidate modifications to each shape,
known as cuts (deletions from the shape) and fills (additions to
the shape). Our formulation extends the one in [ZCLJ20], which
concerns a single shape, by considering multiple shapes while
imposing nesting constraints between shapes. Additionally, we
propose to compute nesting-aware cuts and fills that locally re-
spect the nesting constraints.

• We propose several strategies for solving the graph labelling
problem for a given set of nesting-aware cuts and fills (Section
5). These include a greedy heuristic that propagates solutions
from one shape to the next, a state-space search algorithm that
is provably optimal, and a beam-search variant that trades off
optimality for efficiency.

We tested our method on both synthetic and real-world shape
sequences (Figure 2 and more in Section 6). We found that all opti-
mization strategies are effective in reducing topological complexity
of individual shapes while maintaining nesting. On complex data,
we found that, among the three optimization strategies, the beam-
search algorithm strikes the best balance between solution quality
and performance.

2. Related Work

2.1. Topological simplification of shapes

Topological simplification of 3D shapes has been extensively stud-
ied in the past. While the general problem of maximal simplifi-
cation within an error bound is known to be NP-hard [ABD∗15],
many practical heuristics have been proposed. Some methods only
remove topological handles, for which a common approach is com-
puting the Minimum Spanning Tree on a graph [SL01, CW06,
HXBNP02, ZJH07]. Methods to remove all three types of topolog-
ical features (islands, handles, and cavities) include morphological

Figure 2: Simplifying the topology of a growing sequence of pen-
nycress root (top row, showing two time points) by applying the
simplification method [ZCLJ20] to each shape independently (mid-
dle row) and by our proposed method (bottom row). While both
methods fully simplify the topology of each shape, the results of
[ZCLJ20] are no longer nested (e.g., regions highlighted in blue
circles) but ours are.

opening and closing [NT03], inflation or deflation from a topologi-
cally simple seed [KG01,BK02,SV03], or tools from persistent ho-
mology [CJL∗18]. However, these above methods either only add
to, or only delete from, the shape to remove its topological features.
This may lead to excessive geometric changes, since some topolog-
ical features are either to be cut (e.g., a thin loop) whereas others
are easier to be filled (e.g., a narrow tunnel).

Methods that allow both addition and deletion often apply some
local heuristics to decide where to add or delete [KG01, WHDS04,
SPF07, JZH07]. However, these heuristics do not consider the
global optimality of the changes. The recent work of Zeng et al.
[ZCLJ20] tackles topological simplification as a global optimiza-
tion problem. After computing a set of candidate cuts and fills, this
method formulates a graph labelling problem on these candidates
that aims at maximally simplifying the topology while minimizing
the amount of geometric changes. The problem is then solved by a
transformation to the Node-Weighted Steiner Tree (NWST) prob-
lem.

While these methods can simplify individual shapes in a col-
lection, they do not respect any notion of consistency (e.g., nest-
ing) among the shapes. In this regard, our method makes a first
step towards consistency-constrained topological simplification of
a shape collection. Our method is an extension of [ZCLJ20] in two
ways: (1) we extend its candidate-based formulation to multiple
shapes under the nesting constraint, and (2) we use its label opti-
mization algorithm as a building-block in our own optimization.
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2.2. Topological simplification of scalar fields

Topological abstractions, such as the Morse-Smale complex and
persistence diagram, are useful for analyzing scalar fields in Topo-
logical Data Analysis (TDA) [HLH∗16]. Since practical data is of-
ten noise-ridden, such noise needs to be removed from a scalar field
prior to analysis. Numerical methods [BHEP04, WGS10, PF09,
GJR∗14] simplify a scalar field by maximally removing its local ex-
trema (minima and maxima) except for those in a given constraint
set. Combinatorial methods [EMP06, BLW12, TP12, LGMT20] re-
move those extrema whose importance, given by some measure
such as persistence [ELZ02], is below a threshold while maintain-
ing an error bound.

A major limitation of scalar field simplification methods is that
they are generally not effective in removing saddle points in a 3D
scalar field. Since saddles are responsible for topological handles
on the level sets, these methods have limited utility in solving
our nesting-constrained simplification problem by representing the
shape sequence as level sets (see Figure 13).

3. Background

Our algorithm represents and analyzes shapes represented by cells
within a cell complex. We briefly review key concepts in cell com-
plex topology relevant to the discussion of our method. Readers are
referred to standard literature such as [Hat02] for in-depth discus-
sions on the subject.

A k-dimensional cell, or k-cell, is an open set homeomorphic
to an open k-dimensional ball. A set of disjoint cells is called a
cell complex if, for each cell in the complex, its boundary is com-
pletely covered by other lower-dimensional cells in the complex.
For example, a cell complex may consist of a cube (a 3-cell), its six
bounding squares (2-cells), twelve edges (1-cells), and eight ver-
tices (0-cells). A cell x is said to be a face of another cell y if x lies
in the boundary of y.

Given a cell complex C covering a d-dimensional space, we
denote the set of all d-cells of C as Cd and call them the top-
dimensional cells. For example, if C is a cubical or tetrahedral de-
composition of space, Cd are the cubes or tetrahedra (excluding
their low-dimensional faces). Our algorithm represents a shape as a
subset of Cd . Strictly speaking, the top-dimensional cells are open
sets and disjoint from each other. For the purpose of analyzing
topology, we need to define a connected shape from them. Given
a set of top-dimensional cells O ⊆ Cd , we can define the shape as
either their closure Ω(O) or as the complement of the closure of the
remaining top-dimensional cells C \Ω(Cd \O). See a 2D illustra-
tion in Figure 3. In the case that C is a quadrilateral decomposition
in 2D, these two ways of shape definition are equivalent respec-
tively to the 8- and 4-connectivity in digital topology [KR04].

The topology of a shape can be characterized by its Betti
numbers. Given a d-dimensional shape S, the k-th Betti number
βk(S), for k ≥ 0, is the rank of the k-th homology group on S.
In 2-dimensions, β0(S) and β1(S) respectively measure the num-
ber of connected components and cavities of S. In 3-dimensions,
β0(S),β1(S),β2(S) measure the number of connected components,
handles, and cavities of S, respectively.

Figure 3: Two ways of defining a shape (shaded cells) from three
2-cells O in a 2D cell complex C. C2 is the set of all 2-cells in C.

A topological feature (e.g., connected component, handle or cav-
ity) can be created or removed using one of the two types of topo-
logical surgeries, namely cutting (i.e., removing contents from the
shape) and filling (i.e., adding contents to the shape). For example,
a component can be removed by either deleting the entire compo-
nent (i.e., cutting) or connecting it with another component via a
bridge (i.e., filling). A handle can be removed by either breaking
the handle ring (i.e. cutting) or filling the handle hole. A cavity can
be removed by either connecting it with the exterior by a tunnel (i.e.
cutting) or filling the entire cavity. These surgeries are illustrated in
3D in Figure 4.

Figure 4: Removing islands (top), handles (middle), and cavities
(bottom) by cutting or filling. Adapted from Figure 2 of [ZCLJ20]
and courtesy of the authors.

4. Problem formulation

Given a nesting sequence of 2D or 3D shapes, our goal is to mod-
ify each shape in the sequence such that (1) the modified shape’s
topology is as simple as possible, (2) the modified shape differs
from the original shape as little as possible, and (3) the modified
shape sequence remains nesting.

We first present a general formulation of the problem, including a
formal specification of the input and output (Section 4.1). To make
the optimization task more trackable, we introduce a simplified
formulation that considers only a pre-computed set of candidate
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cuts and fills (Section 4.2). Next, we characterize candidates that
are compatible with the nesting constraint (which we call nesting-
aware candidates) and develop an algorithm for finding such can-
didates (Section 4.3). Finally, we tailor the problem formulation to
nesting-aware candidates (Section 4.4).

4.1. General formulation

The main input to our method is a shape sequence {T1, . . . ,Tn}
defined on a common cell complex C in d-dimensional space for
d = 2,3. Each Ti is a subset of the top-dimensional cells (d-cells)
of C, that is, Ti ⊆ Cd . The sequence is nesting in the sense that
Ti ⊆ Ti+1 for all i = 1, . . . ,n− 1. For simplicity, henceforward we
shall use Ti to denote both the composing d-cells and the connected
shape represented by them (using either definition in Figure 3).

To suit different application scenarios, our method can take in
two additional and optional inputs from the user. First, the user may
define a per-cell geometric cost gi(c) for each d-cell c ∈ Cd and
each i = 1, . . . ,n. This cost measures the geometric change when c
is added to or deleted from Ti. By default, gi(c) is set to be the area
(in 2D) or volume (in 3D) of c, but it can be customized. For exam-
ple, it can be weighted by an additional scalar field (e.g., confidence
map or SDF) that may come with each shape. For notational sim-
plicity, we write the sum of costs over a set of d-cells C as gi(C).

Secondly, the user may provide two additional sets of d-cells, a
kernel K and a neighborhood N, such that K ⊆ T1 and Tn ⊆ N.
These two sets define an “envelope” within which the modified
shape sequence will be constrained. Note that, if both K,N have
non-trivial topology, the modified shapes will preserve those topo-
logical features that persist from K to N. If not provided by the
user, K is set to be a single d-cell inside T1 and N = Cd . Since K
has a simple topology (a single connected component without han-
dles or cavities), our method will attempt to remove all topological
features in the shape sequence.

Given the shape sequence {T1, . . . ,Tn}, the geometric cost func-
tions gi, the kernel K and neighborhood N, we seek a modified
sequence of shapes {T ′1 , . . . ,T ′n} that minimizes, lexicographically,
the following vector energy that measures (firstly) the total number
of topological features and (secondly) the total geometric change,

E({T ′1 , . . . ,T ′n}) = {
n

∑
i=1

d

∑
k=0

βk(T
′

i ),
n

∑
i=1

gi(T
′

i 	Ti)}, (1)

where βk is the k-th Betti number and 	 is the symmetric differ-
ence operator, subject to the constraint that the modified sequence
is nesting and sandwiched within K,N:

K ⊆ T ′i ⊆ . . .⊆ T ′n ⊆ N (2)

4.2. Candidate-based formulation

The problem formulated above is NP-hard even when n = 1 and
without considering the geometric cost [ABD∗15]. In the case of
n = 1, an alternative and more computationally friendly formula-
tion was proposed in [ZCLJ20], which restricts the shape modifi-
cations to a pre-computed set of candidate cuts and fills. A candi-
date cut (resp. fill) is a group of d-cells in the original shape (resp.

its complement) whose simultaneous deletion (resp. addition) re-
moves one or more topological features of the shape. For example,
a cut could be all cells that make up a connected component of the
shape, whereas a fill could be a group of cells that form a bridge
connecting two components. The energy E (Equation 1) can then
be expressed as a function of a binary labelling on these candidates,
where a label of 0 (resp. 1) means a candidate is included in (resp.
excluded from) the shape.

We extend the candidate-based formulation of [ZCLJ20] to n> 1
with the nesting constraint. We assume that there exists a set of
candidate cuts and fills for each shape Ti, denoted as Xi (their com-
putation will be discussed shortly). Given a 0/1 labelling L of the
candidates, the modified shape, denoted by T L

i , can be written as:

T L
i = (Ti \XL,0

i )∪XL,1
i (3)

where XL,0
i and XL,1

i are the unions of candidates of Xi that are
labelled by L respectively as 0 and 1. If we replace the modified
shapes T ′i in the general formulation (Equations 1,2) by T L

i , the
problem becomes seeking a labelling L that minimizes the energy

E(L) = E({T L
1 , . . . ,T L

n }), (4)

where the righthand side is defined in Equation 1, while satisfying
the constraint that

K ⊆ T L
i ⊆ . . .⊆ T L

n ⊆ N. (5)

4.3. Nesting-aware candidates

The formulation above simplifies the problem by limiting the
shape modifications to the use of the pre-computed candidates. The
choice of the candidate cuts and fills therefore plays an important
role in how well the solution of the simplified problem minimizes
the original energy (Equation 1).

Naturally, we would like to have candidates that can maximally
simplify each shape while having low geometric costs. Such can-
didates can be obtained, for each shape in the sequence, using the
inflation/deflation approach in [ZCLJ20]. To compute the candidate
cuts on a shape T (restricted to the envelop within a kernel K and
a neighborhood N), their method expands K towards T by itera-
tively adding cells of T while preserving the topology of K. When
no more cells can be added without incurring a topological change,
each connected component of the difference between T and the ex-
panded kernel becomes a cut†. The candidate fills are constructed
in a symmetric fashion by maximally shrinking the neighborhood
N towards T while preserving the topology of N and taking the con-
nected components of the difference between the shrunken neigh-
borhood and T . By construction, such cuts and fills are sufficient
to fully simplify the topology of T (except for those topological
features shared by both K and N). Furthermore, the order of cells
being added or deleted is chosen so that the cuts and fills tend to
consist of cells with low per-cell geometric costs.

However, candidates constructed independently for each shape

† The connected components are based on the so-called R-connectivity de-
fined in [ZCLJ20] to ensure consistency with their graph formulation.
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may not be useful towards satisfying the nesting constraint (Equa-
tion 5). Let Xi be the union of all candidates in Xi, and define the
per-shape kernel as Ki = Ti \Xi and the per-shape neighborhood as
Ni = Ti ∪Xi. Observe that, regardless of the labelling L, the mod-
ified shape T L

i is sandwiched between Ki and Ni. Now, consider a
candidate cut in the next shape Ti+1 which shares some common
cells with Ki (e.g., the cut c3 in Figure 5 (a)). Deleting that cut from
Ti+1 will result in a shape that does not completely contain Ki and
hence fails to contain T L

i for any L. Symmetrically, if a candidate
fill in the previous shape Ti−1 contains some cells that are not in
Ni (e.g., the fill f1 in Figure 5 (b)), then adding the fill to Ti−1 will
result in a shape that is not completely contained within Ni and in
turn fails to nest inside T L

i for any L. In both cases, the cut or fill
is “useless” in the sense that it cannot be applied without violating
the nesting constraint.

Figure 5: Two examples (a,b) of pairs of consecutive shapes with
candidate cuts (red) and fills (blue). In (a), the cut c2 is nesting-
aware because it is disjoint from the previous per-shape kernel Ki
(shown in outline), but c3 is not. In (b), the fill f2 is nesting-aware
because it is contained within the next per-shape neighborhood Ni
(shown in outline), but f1 is not.

The discussion above shows that a candidate x ∈ Xi is useful
towards satisfying nesting only if it is disjoint from the previous
per-shape kernel (i.e., x∩ Ki−1 = ∅) and nested within the next
per-shape neighborhood (i.e., x ⊆ Ni+1)‡. We call such candidates
nesting-aware. For example, in Figure 5, the cut c2 and fill f2 are
both nesting-aware, whereas the cut c3 and fill f1 are not.

To compute nesting-aware candidates, we first given an alterna-
tive characterization using per-shape kernels Ki and neighborhoods
Ni:

Proposition 4.1 All candidates in {X1, . . . ,Xn} are nesting-aware if
and only if

K ⊆ K1 ⊆ . . .⊆ Kn (6)

and

N1 ⊆ . . .⊆ Nn ⊆ N (7)

where Ki = Ti \Xi and Ni = Ti∪Xi.

Proof We first show sufficiency. Let K0 = K and Nn+1 = N. Since
Ki−1 ⊆ Ki and Xi ∩Ki = ∅ for i = 1, . . . ,n, x∩Ki−1 = ∅ for any
x ∈ Xi. Similarly, Since Ni ⊆ Ni+1 and Xi ⊆ Ni for i = 1, . . . ,n,
x⊆Ni+1 for any x∈ Xi. To show necessity, suppose on the contrary
that all candidates are nesting-aware but Ki−1 * Ki for some i ∈

‡ We assume K0 = K and Nn+1 = N

[1,n]. Hence there exists some d-cell c ∈ Ki−1 but c /∈ Ki. Since
Ki−1 ⊆ Ti−1 ⊆ Ti, c ∈ Ti, and hence c must belong to some cut
x ∈ Xi. However, x overlaps with Ki−1 at c, which contradicts that
x is nesting-aware. A similar contradiction can be reached if all
candidates are nesting-aware but Ni * Ni+1 for some i∈ [1,n].

The characterization leads to a variation of the inflation/deflation
approach of [ZCLJ20] to compute nesting-aware candidates that
are also sufficient for simplifying topology and low in geometric
costs. To compute the candidate cuts, instead of expanding the same
kernel K to every shape Ti, we expand the previous per-shape kernel
Ki−1 towards Ti while preserving the topology of Ki−1 and guided
by the geometric cost gi. The result of maximal expansion becomes
the current per-shape kernel Ki, and the connected components of
Ti\Ki become the candidate cuts in Xi. Our algorithm starts from T1
and iteratively creates a expanding sequence of per-shape kernels
{K1, . . . ,Kn} satisfying Equation 6. The candidate fills are created
in a symmetric fashion, this time working backwards from Tn. For
each shape Ti, we shrink the next per-shape neighborhood Ni+1 to-
wards Ti to produce the current per-shape neighborhood Ni, and the
connected components of Ni \ Ti become the candidate fills in Xi.
The process results in a sequence of shrinking per-shape neighbor-
hoods {Nn, . . . ,N1} satisfying Equation 7. The inflation and defla-
tion processes are illustrated in 2D in Figure 6.

Figure 6: Computing nesting-aware candidates. Middle row: An
input sequence consisting of two shapes T1,T2, the kernel K, and
neighborhood N. Top: Inflating K0 = K towards successive shapes
in the sequence, while preserving topology, results in per-shape
kernels K1,K2. Bottom row: Deflating N3 = N towards successive
shapes in the reverse order, while preserving topology, results in
per-shape neighborhoods N2,N1. Components of Ti \Ki and Ni \Ti
become the candidate cuts (red) and fills (blue) in the middle row.

4.4. Formulation based on nesting-aware candidates

The use of nesting-aware candidates further simplifies the problem
formulation. The key observation, formally stated below, is that the
inclusion constraint of Equation 5 can be replaced by labelling con-
straints on pairs of overlapping nesting-aware candidates:
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Proposition 4.2 If all candidates {X1, . . . ,Xn} are nesting-aware,
then Equation 5 holds if and only if the following holds: for any
i = 1, . . . ,n− 1 and any two candidates x ∈ Xi and y ∈ Xi+1 such
that x∩ y 6= ∅, either L(x) = 0 or L(y) = 1.

Proof We first note that

T L
i = Ki∪XL,1

i = Ni \XL,0
i .

Hence T L
i ⊆ T L

i+1 is equivalent to

Ki∪XL,1
i ⊆ Ni+1 \XL,0

i+1.

Since all candidates are nesting-aware, and by Proposition 4.1, Ki⊆
Ni ⊆ Ni+1. Hence the inequality above holds if and only if XL,1

i ∩
XL,0

i+1 = ∅. The latter, in turn, is equivalent to asking that, for any
two candidates x∈ Xi and y∈ Xi+1 such that x∩y 6= ∅, {L(x),L(y)}
cannot be {1,0}.

We call the simultaneous assignment of label 1 to x and 0 to y
for a pair of overlapping candidates x ∈ Xi and y ∈ Xi+1 a conflict.
Note that a conflict can happen between two cuts (e.g., c1 and c2 in
Figure 5 (a)), two fills (e.g., f2 and f3 in Figure 5 (b)), or a fill on
an inner shape and a cut on an outer shape (e.g., f1 and c2 in Figure
6 middle row).

Assuming that all candidates are nesting-aware, our optimiza-
tion problem can now be stated simply as the following: we seek a
0/1 labelling L of the candidates {X1, . . . ,Xn} that minimizes E(L)
defined in Equation 4 and is free of conflicts; that is, for any over-
lapping pair x ∈ Xi and y ∈ Xi+1 and any i = 1, . . . ,n− 1, either
L(x) 6= 1 or L(y) 6= 0.

5. Optimization

We explore several strategies to solve the conflict-free labelling
problem formulated above, for a given set of nesting-aware candi-
dates. We start with a heuristic approach that sequentially optimizes
the labels in successive shapes while avoiding conflicts with previ-
ous shapes (Section 5.1). We then introduce a state-space search
algorithm and prove that it always returns the optimal labelling,
although with possibly exponential complexity (Section 5.2). Fi-
nally, we discuss a beam-search variant of the optimal algorithm
that trades off optimality for efficiency (Section 5.3).

In all these strategies, we use the method of [ZCLJ20] as a
black-box solver to optimize labels on individual shapes without
considering conflicts. For convenience of discussion, we introduce
two notations. Given two subsets F0,F1 of candidates Xi, we use
Li(F0,F1) to denote the labels of Xi computed by [ZCLJ20] to min-
imize E({T L

i }) (Equation 1) under the constraints that F0 are all
labelled 0 and F1 are all labelled 1. Given subsets F0,F1 of all can-
didates on all shapes, we denote by L(F0,F1) the labelling of the
entire sequence made up of per-shape labels Li(F0∩Xi,F1∩Xi) for
i = 1, . . . ,n.

5.1. Propagation

One idea is to “propagate” the labels from one shape to the remain-
ing shapes in a sequential manner. During propagation, the labels
of candidates Xi, denoted as Li, are obtained by minimizing the

labelling energy of Li while constraining some labels to avoid con-
flicts with previously propagated labels in either Li−1 or Li+1.

Specifically, starting from some j ∈ [1,n], we first obtain the la-
bels L j of X j as L j(∅,∅) (i.e., without constraining any labels).
The labels are then propagated forward and backward to adjacent
shapes. In the forward direction, for each i = j+1, . . . ,n, we define
the constraint set Fi,1 as all candidates of Xi that overlap with some
1-labelled candidates in Xi−1:

Fi,1 = {x ∈ Xi|x∩ y 6= ∅,∃y ∈ Xi−1,Li−1(y) = 1}

Candidates in this set must be labelled 1 to avoid conflicts with
Li−1. Hence we obtain Li = Li(∅,Fi,1). Similarly, in the backward
direction, for each i = j−1, . . . ,1, we define the constraint set Fi,0
as all candidates of Xi that overlap with some 0-labelled candidates
in Xi+1:

Fi,0 = {x ∈ Xi|x∩ y 6= ∅,∃y ∈ Xi+1,Li+1(y) = 0}

Since candidates in this set must be labelled 0 to avoid conflicts
with Li+1, we obtain Li = Li(Fi,0,∅). The forward and backward
processes are illustrated in Figure 7 top and bottom.

Figure 7: Forward (top) and backward (bottom) propagation of la-
bels. Candidates are shown as circles with their labels (gray circles
have unknown labels) and overlapping candidates are connected
by edges. Top: to get labels of candidates Xi from Xi−1, the subset
Fi,1 ⊆ Xi that overlaps with 1-labelled candidates of Xi−1 (thick
outlines) is labelled 1, and the remaining labels are computed by
energy minimization. Bottom: to get labels of candidates Xi from
Xi+1, the subset Fi,0 ⊆ Xi that overlaps with 0-labelled candidates
of Xi+1 (thick outlines) is labelled 0, and the remaining labels are
computed by energy minimization.

Let L j be the labelling over the entire sequence composed of
the per-shape labels {L1, . . . ,Ln} propagated from L j. We perform
propagation once from each starting index j = 1, . . . ,n, which re-
sults in n labellings {L1, . . . ,Ln}, and output the one with the least
energy.

5.2. Optimal search

While the propagation method creates a conflict-free labelling, it
is not guaranteed to be optimal in terms of its energy. We next
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describe an optimal labelling algorithm (for the given set of can-
didates) based on state-space exploration. Here, a state is a triple
{F0,F1,L} where F0 are candidates constrained to have label 0, F1
are candidates constrained to have label 1, and L = L(F0,F1) is the
energy-minimizing labelling subject to these constraints. The al-
gorithm starts with a single state {∅,∅,L(∅,∅)}, whose labelling
minimizes the energy on each shape without enforcing nesting.
At each iteration, the algorithm removes the state whose labelling
achieves the least energy among all existing states. Let this state be
{F0,F1,L}. If L is free of conflicts, the algorithm terminates and
L is returned as the output. Otherwise, a conflict of L is chosen,
and new states are created to resolve that conflict by adding more
constraints to either F0 or F1.

The key step in the algorithm is the creation of new states. Con-
sider a labelling L and a pair of overlapping candidates x ∈ Xi and
y∈ Xi+1 with conflicting labels in L, that is, L(x) = 1 and L(y) = 0.
A simple way to resolve the conflict is to constrain either x to have
label 0 or y to have label 1. However, such constraints alone may
lead to new conflicts with other shapes. For example, labelling x
as 0 may conflict with 1-labelled candidates in Xi−1 that overlap
with x, and labelling y as 1 may conflict with 0-labelled candidates
in Xi+2 that overlap with y. To avoid such potential conflicts, our
algorithm constrains not one, but possibly a set of candidates when
resolving each conflict.

Specifically, we call two candidates u∈Xi and v∈X j where i< j
path-connected if there is a sequence of candidates {wi, . . . ,w j}
such that wi = u, w j = v, wk ∈ Xk for k = i, . . . , j, and each
pair of consecutive candidates overlap (i.e., wk ∩ wk+1 6= ∅ for
k = i, . . . , j− 1). For each candidate x ∈ Xi, we define its 0-set,
0(x), as the union of x and all candidates in X j for j < i that are
path-connected with x, and its 1-set, 1(x), as the union of x and all
candidates in X j for j > i that are path-connected with x. To re-
solve the conflict involving a pair of candidates {x ∈ Xi,y ∈ Xi+1},
we constrain either all candidates in 0(x) to have label 0 or all can-
didates in 1(y) to have label 1. The constraints are appended to
existing constraints in either F0 or F1, and the remaining labels are
updated using energy minimization. For efficiency, we only update
the labels of Xk, for k = 1, . . . ,n, if it has some constrained candi-
date z whose constraint label is different from its current label L(z).
This process is illustrated in Figure 8.

The search algorithm is summarized as pseudo-code in Algo-
rithm 1. The algorithm maintains current states in a queue Q sorted
by increasing labelling energy. Each iteration of the algorithm re-
moves the state in Q with the least labelling energy and either re-
turns the labelling, if it is conflict-free, or adds two new states to Q.
We prove in Appendix A that the algorithm always terminates, and
that the result is optimal when the solver L is optimal:

Proposition 5.1 Algorithm 1 terminates and produces a conflict-
free labelling L in finite number of iterations. Furthermore, if
E(L(F0,F1)) is minimal among all labellings that label F0 as 0 and
F1 as 1 for any two disjoint sets of candidates F0,F1, then E(L) is
minimal among all conflict-free labellings.

We make a final comment on the choice of the conflict candidate
pair {x,y} (Line 8 in Algorithm 1). Although the choice does not
affect the optimality of the algorithm, it has an impact on the order
of states being explored and therefore the overall running time. We

Figure 8: State expansion. Given a state (a) consisting of candidate
labels, constrained candidates (black circles), candidate pairs with
conflicting labels (red edges), and a chosen pair {x,y}, two new
states are created by expanding the constraints to include either
the 0-set of x (b) or the 1-set of y (d) and updating the remaining
labels on the affected shapes using energy minimization (c,e).

Algorithm 1: State-space search algorithm

1 Initialize empty queue Q
2 Q.push({∅,∅,L(∅,∅)})
3 while Q is not empty do
4 {F0,F1,L} ←− Q.pop()
5 if L has no conflict then
6 return L
7 else
8 {x,y} ←− a conflict pair of candidates in L
9 F ′0 ←− 0(x)∪F0

10 F ′1 ←− 1(y)∪F1
11 Q.push({F ′0 ,F1,L(F ′0 ,F1)})
12 Q.push({F0,F

′
1 ,L(F0,F

′
1)})

13 end
14 end

adopt the following choice in our implementation. For each conflict
{x,y} of L, we count the number of 1-labelled candidates in 0(x)
and the number of 0-labelled candidates in 1(x). We choose the
conflict where the absolute difference between those two numbers
is the smallest (ties are broken arbitrarily). This strategy prioritizes
conflicts where one of the two ways of resolving it (either con-
straining 0(x) to 0 or 1(y) to 1) has a clearer benefit over the other
in terms of minimizing the number of label-flippings in L.

5.3. Beam search

While being optimal, the search algorithm described above may
have a prohibitive running time. As shown in Appendix A, the
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states explored by the algorithm form a binary tree whose depth can
be as large as the total number of candidates in all shapes. Denot-
ing this number by m, the algorithm therefore may require O(2m)
number of iterations. This can be impractical for inputs with many
candidates, either due to a high level of topological noise or a large
number of shapes in the sequence.

To make the algorithm more practical, at the cost of losing op-
timality, we can replace the full search by a beam search with a
limited (and controllable) size of memory. Specifically, the maxi-
mum number of states that can be held in the queue Q is restricted
to be a user-provided constant B, also known as the beam width.
When Q is full and a new state needs to be pushed, the state whose
labelling has the highest energy among the B+ 1 states is dropped
from Q.

In contrast to the full search, the beam search requires only
O(Bm) number of iterations. In practice, we found that even a small
beam width (e.g., 1) can produce near-optimal results but with sig-
nificantly improved efficiency over the full search. In the extreme
case that B = 1, Q holds only a single state at any time, and the
algorithm simply replaces the current state at each iteration by one
of the two newly created states that has a smaller labelling energy.

We illustrate the beam search with beam width B = 1 in a syn-
thetic 2D example in Figure 9. This input consists of 3 shapes
{T1,T2,T3}, where T1,T2 each has multiple connected components
and T3 has a cavity. The labelling of the initial state (where no can-
didates are constrained) contains several conflicts. The algorithm
picks one of the conflicting pairs of candidates, { f1, f2}, where the
fill f1 ∈X1 is labelled as 1 but the overlapping fill f2 ∈X2 is labelled
as 0. Among the two ways of resolving this conflict, the algorithm
chooses to constrain the 0-set, 0( f1) = { f1}, to have label 0, and a
new labelling is computed (iteration 1). The algorithm then picks
another conflict, { f3,c4}, where the fill f3 ∈ X2 is labelled as 1 but
the overlapping cut c4 ∈ X3 is labelled as 0. The conflict is resolved
by constraining the 1-set, 1(c4) = {c4}, to have label 1, and a new
labelling is computed (iteration 2). Since no conflict exists in the
labelling, the algorithm terminates.

6. Results

We present experimental results that evaluate the effectiveness of
our method, compare the different optimization strategies, and
compare with alternative simplification methods.

While our method can be applied to any type of cell complexes
and either way of shape definition from top-dimensional cells (see
Figure 3), our current implementation is specialized to the common
scenario of quadrilateral (in 2D) or cubical (in 3D) cell complexes,
and it uses the shape definition of C \Ω(Cd \Ti) (Figure 3 (b)). This
is equivalent to using 4-connectivity (in 2D) and 8-connectivity (in
3D) in digital topology [KR04]. In this case, preventing topological
changes during deflation or inflation for computing nesting-aware
candidates can be achieved by simply restricting the removal or
addition operations to simple pixels and voxels [KR04].

Our code is implemented in C++, without parallelization, and
uses the implementation provided by the authors of [ZCLJ20]
for computing energy-minimizing candidate labels on individual

Figure 9: Illustration of beam search on a 3-shape sequence with
beam width B = 1. The columns (from left to right) show the in-
put shapes, nesting-aware candidates, initial labelling of the can-
didates, and the labelling after 1st and 2nd iterations. The con-
strained candidate sets F0,F1 and the selected conflict to be re-
solved are noted at the bottom of each labelling.

shapes (we set their pruning parameter k to be 1). Our experiments
are performed on a PC with an Intel(R) Core(TM) i9-10900X CPU
(3.70GHz) and 64GB RAM.

6.1. Level sets

To compare different optimization options, we use the level sets
of a grayscale 2D or 3D image at decreasing (or increasing) levels.
Such “synthetic” sequences are always nested, and their complexity
can be easily adjusted by changing the number of levels. Assum-
ing the sequence consists of level sets with decreasing levels, we
set the kernel K to be one of the pixels or voxels with the highest
intensity (and hence is contained in the first shape) and the neigh-
borhood N to be the entire image. Following [ZCLJ20], we set the
geometric cost function gi(v) to be the magnitude of the intensity
gradient of the image at a pixel or voxel v, which penalizes strong
intensity edges, and prioritize pixels or voxels with higher (resp.
lower) intensities during inflation (resp. deflation) to compute the
nesting-aware candidates.

2D level sets (Figure 10): We first test on level sets extracted from
a 2D retinal vessel image shown in (a). We took 6 expanding level
sets from the image, as shown in Figure (b) with colors ranging
from red to blue. Observe that these level sets have a large amount
of topological noise including islands and cavities. We set up 5 ex-
periments with increasingly longer input sequences, so that the i-th
experiment uses the last i + 1 level sets as the input. As seen in
(e), the topological complexity of the input sequence, measured by
the total Betti numbers (β0 + β1) for all shapes in the sequence,
increases as the experiment uses longer sequences.

In all five experiments, each of the three optimization ap-
proaches, namely propagation, optimal search, and beam search
(with different beam width B = 1,2,3), is able to fully simplify
the topology of the input sequence, meaning that each simplified
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Figure 10: Left: a grayscale retinal vessel image (a), 6 level sets used as input shapes (b), shapes simplified using the initial labelling
(c) and conflict-free final labelling produced by our beam search (B = 1) (d). Right: plotting total Betti number of the input sequence
(e), geometric costs of various optimization approaches (f), number of conflicts of the initial labelling (g), and running time of various
optimization approaches (h) over experiments that use increasingly long input sequences.

shape has a single component without cavities. We visually com-
pare the initial labelling in the search algorithm, which is obtained
by [ZCLJ20] without considering nesting, and the labelling re-
turned by beam search with B = 1 in the last experiment (using
all 6 level sets) in (c,d). While the initial labelling also results in
topologically simple shapes, the simplified shapes could intersect
(e.g., red, cyan and yellow curves in the close-ups of (c)), whereas
the final labelling restores the nesting relation while maintaining
topological simplicity. Beyond topology, different optimization ap-
proaches result in similar geometric costs, as plotted in (f), although
propagation produces slightly higher costs. These costs become in-
creasingly higher than the costs of the initial labelling, which cor-
relates with the increase in the number of conflicts in the initial
labelling as shown in (g).

In terms of performance, (h) shows that both optimal search and
beam search have similar running time, while beam search with
a smaller beam width is slightly faster. The propagation approach
is generally faster than both search algorithms, although the ad-
vantage decreases with the length of the input sequence. This is
because the propagation approach requires computing the energy-
minimizing labels on all shapes for each starting shape, making
its complexity quadratic to the number of shapes. In contrast, the
beam search’s complexity depends on a variety of factors such as
the number of conflicts and the particular search path in the state
space. Note that the time for computing the nesting-aware candi-
dates is not included here, because they are common for all opti-
mization approaches.

3D level sets (Figure 11): Our next test uses 7 level sets from a
3D CT image of a human foot bone, one of which is shown in (a).
Observe that the bone shape has numerous handles, cavities, and is-

lands in its interior. Similar as above, we set up 6 experiments using
increasingly longer sequences of these level sets. The increase in
topological complexity (as the total Betti number β0+β1+β2 over
all shapes) in these experiments is plotted in (e). To make the prob-
lem more challenging, we further removed some candidate cuts and
fills so that the shapes cannot be fully simplified. Specifically, for
each level set Ti, we removed all candidates from Xi that contain
some voxel whose intensity is more than 40 away from the level of
Ti (assuming the entire intensity range is 255).

Observe from (f) that both optimal search and beam search pro-
duce shapes with significantly fewer topological features than la-
bel propagation. Also, beam search (even with B = 1) produces
only slightly more complex topology than optimal search. We vi-
sually compare in (b,c,d) the results of the propagation approach,
initial labelling and final labelling of beam search for the input
shape in (a). Observe that beam search results in fewer handles
than propagation and better retains the appearance of the initial,
energy-minimizing labelling. Performance-wise (h), propagation is
notably faster than beam search, which is in turn significantly faster
than optimal search, sometimes by two orders of magnitude. As a
result, beam search (with B = 1) appears to offer the best com-
promise - it produces simplifications much closer to optimum than
propagation but at a fraction of cost of the optimal search.

6.2. Real-world data

We applied our method to several real-world data sets including
tissue layers in a brain scan and time series of growing plant roots.
In each input sequence, all shapes are given as binary masks on
a common voxel grid. We set the kernel K as one of the voxels
inside the first shape that are furthest from the shape’s boundary,
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Figure 11: Left: one of the seven level sets of a 3D CT image of a human foot bone that are used as input shapes (a), the shape simplified
by label propagation (b), the initial labelling (c) and final conflict-free labelling of beam search (B = 1) (d). Betti numbers of each shape
(β0/β1/β2) are shown. Right: plotting total Betti numbers of the input sequence (e), total Betti numbers of the simplified sequence using
various optimization approaches (f), number of conflicts of the initial labelling (g), and running time of various optimization approaches (h)
over experiments that use increasingly long input sequences.

and the neighborhood N as the entire grid. The geometric cost gi(v)
is set to be constant for each voxel v, and the inflation and deflation
prioritize voxels that are further away from the boundary of the
shape being inflated or deflated towards.

We visually compare our method using the beam search strategy
(B = 1) with the single-shape simplification method of [ZCLJ20]
and the scalar-field simplification method of [TP12] implemented
in the Topology Toolkit (TTK) [TFL∗17]. For the latter, we first
constructed a real-valued grayscale volume that interpolates the in-
put shape sequence at integers equal to the indices of the shapes,
then maximally simplified the extrema of the volume using TTK,
and finally extracted the level sets of the simplified volume at the
original integer values.

Brain layers (Figure 12): The input sequence (a) is constructed
from 3 layers of a segmented human brain scan, namely (from in-
ner to outer) the cerebrospinal fluid, white matter, and grey matter.
The sequence consists of the inner most layer, the union of the in-
ner and middle layers, and the union of all three layers. We refer
to them as the inner, middle and outer shape, respectively. Numer-
ous topological errors exist in this input, particularly on the inner
and middle shapes (as seen in the close-ups), due to the complex
anatomical structure. Both our method and [ZCLJ20] can remove
all topological features on all three shapes, but the nesting relation
between the shapes is only preserved in our method. In the result
of [ZCLJ20] (b), the inner shape (red) can be seen outside the mid-
dle shape (gray) indicating a violation of nesting, while in our result
(c) the inner shape is completely hidden inside the middle shape.

Growing roots (Figures 2,13): As roots grow in the soil or other
media, and due to resistance of their surroundings, their shape be-
come nested over time. Generally, roots are connected and free of
handles or cavities, but the reconstruction of root shapes is prone to
topological errors due to the presence of thin and nearby branches.
Figure 2 compares our method with that of [ZCLJ20] on a sequence

Figure 12: (a) Three layers of a brain scan and a close-up on a
region with complex topology in the two inner layers. (b) Two inner
layers after applying the method of [ZCLJ20]; note the innermost
layer extrudes outside the middle layer. (c) Our method keeps the
innermost layer nested inside the middle layer.

of 4 time points of a growing pennycress root system (showing only
the last two time points). Again, while both methods fully simplify
the topology, only our method preserves the nesting between the
time points. Figure 13 shows another sequence of 3 time points of
a growing rice root system and compares our method with TTK. As
mentioned in Section 2.2, scalar-field simplification methods such
as TTK guarantee the nesting relationship between the simplified
level sets. However, these methods tend to have difficulties in re-
moving topological handles on the level sets, which are caused by
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Figure 13: Simplifying a sequence of 3 time points of a growing
rice root system (top row) using TTK (middle row), which fails to
remove most of the handles, and our method (bottom row) which
fully simplifies the topology of each shape while maintaining nest-
ing.

saddle points in the scaler field.. Observe from the close-ups in Fig-
ure 13 (middle row) that TTK fails to remove several handles on the
input root shapes. In contrast, our method removes all topological
features (handles included) and keeps the shapes nested.

Quality and performance: Table 1 reports, for each real-world data
set, the topological complexity of the input, running time for com-
puting the nesting-aware candidates, and the cost (topology and ge-
ometry) and running time of the three optimization strategies (B= 1
for beam search). We additionally include a sequence of 41 time
points of a growing maize root system (four time points are shown
in Figure 14), which is our most complex data set. Observe that
the optimal search is by far the most expensive of the three opti-
mization approaches, and it failed to finish within ten hours for the
maize data. Propagation is faster than beam search for the shorter
sequences, but it takes significantly longer on the maize data due
to the much longer sequence. Upon completion, all three strate-
gies fully simplify the topology of these sequences, while optimal
search and beam search have similar geometric costs that are lower
than propagation. Once again, beam search seems to strike a better
balance between optimality and speed.

7. Conclusions

We present, to the best of our knowledge, the first method for simul-
taneous topological simplification of a sequence of nested shapes
while preserving nesting. Our method extends a recent global opti-
mization method [ZCLJ20] to nested shapes by defining and com-
puting nesting-aware candidate cuts and fills, formulating a con-

Time 30 Time 40

Time 1 Time 10

Figure 14: Four time points of a growing maize root system from a
sequence of 41 time points.

strained labelling problem using these candidates, and exploring
several solution strategies that offer different trade-offs between op-
timality and efficiency. The method is shown to be effective on both
synthetic and real-world shape sequences.

While our method produces topologically simple and nested
shapes, the topological changes made by the algorithm may not
be geometrically pleasing (e.g. the long “scar” on the surface of
the white matter in Figure 12 (c)) and may destroy the semantics
of the shape (e.g., the branching structure of the roots). The key
to improving the quality of the results is obtaining candidate cuts
and fills that better respect the geometry and semantics of the input
shapes. We would also like to improve the efficiency of the current
inflation/deflation procedure for computing the candidates, which
currently accounts for a significant portion of the overall runtime.
Furthermore, we will explore the extension of our current imple-
mentation to inputs represented on non-cubical grids (e.g., tetrahe-
dral mesh or octrees). The primary change lies in the implementa-
tion of the inflation/deflation process, and in particular the decision
on whether a cell can be removed or added without altering the
topology of the shape. To make this process efficient, we will ex-
plore means to make such decisions using local information around
a cell, similar to detecting simple voxels on cubical grids.

We see our work as the first step towards the general problem
of consistent topological simplification of a collection of shapes.
While our work considered a rather narrow interpretation of con-
sistency (maintaining nesting in a shape sequence), we would like
to explore other, and more general notions of consistency. A can-
didate notion is asking the surfaces of the topologically simpli-
fied shapes to have one-to-one correspondences with low geomet-
ric distortions. Such consistency would be useful in the context
of simplifying shapes undergoing deformations (e.g., motion cap-
ture sequences) or similar shapes sharing a common topology (e.g.,
quadrupeds).
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Brain (3 layers) Rice root (3 times) Pennycress root (4 times) Maize root (41 times)
β0/β1/β2 Geom.

cost
Time
(sec)

β0/β1/β2 Geom.
cost

Time
(sec)

β0/β1/β2 Geom.
cost

Time
(sec)

β0/β1/β2 Geom.
cost

Time
(sec)

Input 1247/863/80 - - 352/133/4 - - 408/254/0 - - 12290/6780/201 - -
Candidates - - 71.2 - - 19.1 - - 64.3 - - 549.0

Propagation 3/0/0 897437.7 30.9 3/0/0 9931.2 1.3 4/0/0 3981.4 7.1 41/0/0 989392.5 26106.8
Opt. search 3/0/0 760882.1 248.6 3/0/0 9844.6 2.8 4/0/0 2765.3 43.1 N/A N/A N/A

Beam search 3/0/0 760882.1 71.4 3/0/0 9844.6 2.8 4/0/0 2773.3 9.1 41/0/0 709947.5 2664.1

Table 1: Statistics for the four real-world data sets used in this paper (Figures 12, 13, 2, 14), showing the Betti numbers of the input
sequence, time for computing the candidate cuts and fills, and the resulting topological complexity, geometric cost, and running time of the
three optimization strategies.
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Appendix A: Proof of Proposition 5.1

We start with a few observations on the 0-sets and 1-sets. Recall
that, for each candidate x ∈ Xi, its 0-set 0(x) (resp. 1-set 1(x)) is the
union of x and all candidates in X j for j < i (resp. j > i) that are
path-connected with x.

We introduce two more definitions. Given a set of candidates S
(possibly across multiple shapes), we say it is 0-inclusive (resp. 1-
inclusive) if 0(x) ⊆ S (resp. 1(x) ⊆ S) for any candidate x ∈ S. We
show that:

Lemma A.1 The following statements hold for any candidates x,y
and candidate sets S1,S2:

1. x ∈ 0(y) if and only if y ∈ 1(x).
2. 0(x) is 0-inclusive and 1(x) is 1-inclusive.
3. If S1,S2 are both 0-inclusive (resp. 1-inclusive), than S1 ∪ S2 is

also 0-inclusive (resp. 1-inclusive).

Proof We prove each statement in turn. We denote by π(x) the in-
dex of the shape to which the candidate x belongs (i.e., x ∈ Xπ(x)).

1. By definition of the 0-set, x∈ 0(y) if and only if x and y are path-
connected and π(x)< π(y). These are exactly the conditions for
y ∈ 1(x).

2. To show 0(x) is 0-inclusive, we need to show that 0(y) ⊆ 0(x)
for any y ∈ 0(x). Consider such a y and any z ∈ 0(y). Since z
is path-connected with y, which is in turn path-connected with
x, z must be path-connected with x. Furthermore, π(z)< π(y)<
π(x). We conclude that z ∈ 0(x), and hence 0(y)⊆ 0(x). A sym-
metric argument shows that 1(x) is 1-inclusive.

3. We only need to show the 0-inclusive case; the 1-inclusive case
is symmetric. For any x ∈ S1 ∪ S2, x must either lie in S1 or
S2. Suppose the former (the latter case is identical). Since S1 is
0-inclusive, 0(x) ⊆ S1 and hence 0(x) ⊆ S1 ∪ S2, and therefore
S1∪S2 is 0-inclusive as well.

Using these observations, we can show that each state created by
the algorithm has two disjoint constraint sets that are respectively
0-inclusive and 1-inclusive:

Lemma A.2 The following statements hold for any state {F0,F1,L}
pushed into the queue Q in Algorithm 1:

1. F0∩F1 = ∅
2. F0 is 0-inclusive and F1 is 1-inclusive.

Proof We will prove by induction. Both (1,2) trivially hold for the
initial state, where F0 = F1 = ∅. Consider a state {F0,F1,L} popped
by the algorithm. Assuming that (1,2) hold for F0,F1, we will show
that F ′0 obtained in Line 9 is (i) 0-inclusive and (ii) satisfying F ′0 ∩
F1 = ∅. A symmetric argument would then show that F ′1 obtained
in Line 10 is 1-inclusive and satisfies F ′1 ∩F0 = ∅.

• (i): Since F0 is 0-inclusive and so is 0(x) (be Lemma A.2 (2)),
their union F ′0 is also inclusive (be Lemma A.2 (3)).

• (ii): Since F0∩F1 = ∅, we only need to show that 0(x)∩F1 = ∅.
We first show that x /∈ F1. Suppose, on the contrary, that x ∈ F1.
Since y ∈ 1(x) (because x,y overlap), and F1 is 1-inclusive, we
have y ∈ F1, which contradicts with L(y) = 0. We next show

that 0(x)∩ F1 = ∅. Suppose on the contrary that there exists
some y ∈ 0(x) such that y ∈ F1. By Lemma A.2 (1), x ∈ 1(y),
and hence x ∈ F1, which contradicts to the earlier statement.

We are finally ready to prove Proposition 5.1:

Proof We first show termination. By Lemma A.1, the two con-
straint sets in each state are always disjoint, and hence a labelling
under these constraints can always be found. Therefore the algo-
rithm can always proceed. The states explored by the algorithm can
be organized into a binary tree, where the popped state at each iter-
ation becomes the parent of the two pushed states. Note that, since
F0 ⊂ F ′0 and F1 ⊂ F ′1 , the union of each child state’s sets of con-
strained candidates is strictly larger than that of its parent. Since the
total number of candidates is finite, the depth of the binary tree is fi-
nite, and so is the size of the tree. On the other hand, it is easy to see
that the labelling associated with a state at the very bottom level of
the tree, where all candidates are constrained, must be conflict-free
(due inclusiveness of the constraints). Therefore the algorithm must
terminate and return a conflict-free labelling (on Line 6) within fi-
nite number of iterations.
Next we show optimality. We call a state {F0,F1,L} compatible
with a labelling L′ if L′ labels all candidates in F0 as 0 and all can-
didates in F1 as 1. Note that, assuming optimality of L, we always
have E(L) ≤ E(L′), because L = L(F0,F1) has the least energy
among all labellings that satisfy the constraint sets F0,F1, and L′ is
one of such labellings.
Let L∗ be a conflict-free labelling with minimal energy. We make
a key observation that, at any time during the algorithm, there is
at least one state in the queue Q that is compatible with L∗. We
prove by induction. At the beginning of the algorithm, Q holds a
single state where F0 = F1 = ∅, which is compatible with any la-
belling. As the algorithm proceeds, we need to show that, after a
state {F0,F1,L} compatible with L∗ is popped from Q, at least one
of the two pushed states remains compatible with L∗. To do so, note
that since L∗ is conflict-free, either L∗(x) = 0 or L∗(y) = 1 (both
could hold). We first consider the case that L∗(x) = 0. By definition
of the 0-set, L∗ must assign label 0 to all candidates in 0(x) to avoid
conflicts. Since L∗ already labels all of F0 as 0 (due to compatibil-
ity), L∗ therefore labels all of F ′0 = 0(x)∪F0 as 0. This makes one
of the pushed states, {F ′0 ,F1,L(F ′0 ,F1)}, compatible with L∗. Sim-
ilarly, if L∗(y) = 1, the other pushed state, {F0,F

′
1 ,L(F0,F

′
1)}, is

compatible with L∗.
To complete the proof, let L′ be the labelling of the state in Q com-
patible with L∗ when the algorithm terminates. Note that L′ could
be the same as the labelling L being returned. We have the follow-
ing relation:

E(L)≤ E(L′)≤ E(L∗)

The first inequality is due to the fact that L is the least-energy la-
belling in Q, and the second inequality is due to compatibility. By
minimality of E(L∗) and since L is also conflict-free, the equality
must hold in this relation, which implies that L also has the minimal
energy among all conflict-free labellings.
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