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Abstract
As mentioned in the main manuscript, we report further details on our experiments and additional results in this document.
We organize the supplementary material as follows: in Section 1 we report details about the data used in our experiments and
architectures; in Section 2 we show further results of our analysis on the reconstruction quality with different combinations of
operators, spectrum sizes and localizations; in Section 4 we perform further experiments on the semantic control by local and
global switching and interpolations; in Section 2.8 we show a static Figure of the interactive application shown in the attached
video; in Section 5 we report more results on unorganized point clouds training.

CCS Concepts
• Computing methodologies → Shape analysis; Shape representations;

1. Experimental Setup

1.1. Dataset

Here we report additional details about the datasets involved in our
experiments.

CUBE. In the CUBE dataset, the local variations are extrusions
of simple geometric patterns (circle, ellipsis, square, and rectangle)
applied on a selected face same for all cuboids. We vary dimensions
and rotations of these patterns avoiding isometric shapes (that are
indistinguishable by their eigenvalues). For the global variations,
we scaled the cube along the dimension orthogonal to the face with
local variation by a factor in the range [0.6,2], obtaining cuboids
with different depths.

SURREAL. The shapes in SURREAL are generated by
SMPL [LMR∗15], a standard generative template with 6890 ver-
tices and two sets of parameters: one for the subject identity
and one for its pose. Since pose changes generate near-isometric
shapes, we set all the individuals in the same T-pose. The shape
parameters are sampled from the ones available from SURREAL
dataset [VRM∗17].

AIRPLANES. In the AIRPLANES dataset we chose the segment

† Equal contribution

of the tail as the local region because we think that the tail is a
semantically significant region of the airplane: it is related to the
airplane type (e.g., Boeing, Jet, Fighter) and its size.

1.2. Architecture and training details

Our architecture is a simple decoder composed of 4 fully connected
layers. All the hidden layers use batch normalization followed by
a selu activation, while the last layer has a linear activation. We
report the number of nodes for each layer in Tab. 1. For the SUR-
REAL dataset we add a dropout layer with a 0.1 drop rate to all
hidden layers. We trained our network on 90% of the dataset and
used the remaining 10% for testing. During training we used Adam
optimizer with a learning rate of 2∗10−3 for the first 1000 epochs
and then we reduce it to 1.8 ∗ 10−3 for the rest of the training.
We fixed the maximum number of epoch in each dataset making
sure each method reached convergence. The output of Π is a ma-
trix X ∈ Rn×3 encoding the vertex coordinates. In the second part
of Table 1 we show the training parameters.

1.3. Computation time

We trained all the models on a NVIDIA GeForce GTX 1050 Ti.
On the CUBE, SURREAL and SMAL dataset, the training time
is about 2.2 hours; while on the AIRPLANES dataset is about 12
hours.
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CUBE SURREAL SMAL AIRPLANES

Number of Nodes
Layer 1 258 258 258 258
Layer 2 1024 512 512 1024
Layer 3 2048 1536 1536 2048
Layer 4 22050 20670 20670 1500

Output size 7350 x 3 6890 x 3 3889 x 3 500 x 3
Number of epochs 2000 1000 1000 4500

Batch size 64 32 32 8

Table 1: Networks parameters for the different datasets involved in
our experiments.

Our

[MRC∗20]

Figure 1: Training loss comparison: our method in blue; in red the
method proposed by [MRC∗20].

1.4. Comparison to the autoencoder of [MRC∗20]

One of the main advantage of our method is the simplicity of the
model: a single decoder composed of fully connected layers. This
allows us to perform a more direct analysis of the linkage between
spectral geometry processing and semantic modeling. On the con-
trary the model proposed by [MRC∗20] is composed of an autoen-
coder enhanced with an invertible module blurring a similar analy-
sis. In fact, the correspondence between the spectrum and the object
geometry established by [MRC∗20] passes through a latent space
impacted by other components. Moreover, our specialized architec-
ture performs better than the architecture proposed in [MRC∗20] in
synthesizing shapes from the spectrum. An other advantage of our
model choice is the training. Fig. 1 shows the training loss curves
of our model (in blue) and of [MRC∗20] (in red). It emerges that
our model not only reaches lower errors but has also a more stable
training.
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2. Shape from spectrum

This section provides further results on our analysis of the recon-
struction of a 3D shape from its spectrum. If not differently stated,
the shapes we adopt in all our experiments and figures have never
been seen during the training and belong to the test set or a com-
pletely different dataset.

2.1. Different evaluation metrics and Nearest-Neighbor
comparison

Evaluation metrics. In the main manuscript, we considered two
extrinsic measures (global and localized MSE) and an intrinsic
measure (Area error). Here we report a more complete analysis,
including additional metrics.

As extrinsic measures, we report the same error optimized by
the loss, referred to as MSE. With MSE-R and MSE-RC we de-
note the same measure computed inside or outside R. As intrinsic
measures, we consider:

Area: as in the main manuscript, it is the average difference of
the area elements of each vertex, which relates to surface stretch.

Metric: the vertex-wise metric distortion, computed as the dif-
ference in the geodesic distances from a fixed set of 100 uniformly
sampled points to all the points in the mesh.

Align: the MSE reconstruction error of the local region after the
best rigid alignment, obtained by solving the Procrustes problem
between the local patches.

The Area-R and Metric-R are the same as above, computed for
the local region.

Nearest-Neighbor comparison. We directly compare each method
against the nearest-neighbor baseline; as done in [MRC∗20], given
the spectrum of a new test shape, we look in the training set for the
spectrum which is the nearest in the L2 sense. Then, we consider
as baseline output the training shape associated with this spectrum.
To compare with this baseline we include ENN which measures
the MSE of the baseline, and EM < ENN, which indicates the
percentage in which the method outperforms the baseline. Every
method uses a different dataset, so each one has its baseline; this is
why we considered it a column rather than multiple rows.

2.2. Further Results

All the results are summarized in Tables 2, 3 and 4. The columns
represent the evaluation metrics presented in the previous Section,
while the rows are the different combinations of local and global
spectrum.

2.3. CUBE

With the CUBE dataset, we want to test how our model associates
the orthogonal set of global and local variations with respect to the
spectra.

The first three rows of Table 2 shows the results of the global
spectrum with a different number of eigenvalues: LBO k. All the
methods have a similar MSE with LBO 50 slightly better. The

Figure 2: Qualitative results on the CUBE. In the top left we dis-
play the ground truth shape. In the first row there are the recon-
structions of different methods. In the following rows we plot on
the reconstruction the extrinsic (MSE) and intrinsic (Area,Metric)
measures. Errors are color-coded, growing from white to dark red.

slightly higher error of LBO 80 may be due to the increasing un-
certainty that is generated when we compute a higher frequency. In
fact, in the computation of the LBO, the higher is the eigenvalue
and the higher is the error that can be added to the computation.
This factor encourages us to keep a lower number of global eigen-
values, while adding eigenvalues from a local spectrum.

In Figure 2, we can see a qualitative example. In each row, we
plot a different error on 4 different methods reported in Table 2:
LBO 50, PAT 25+25, HAM 25+25, LMH 25+25. Overall the error
accumulates on the border of the extrusion. This is due to the dif-
ficulty of the decoder to generate steeper details. LBO50 produces
the smoothest result: we believe that this is linked to the absence
of high frequency on the input spectrum. The MSE metric mildly
highlights the back face of the cuboids, while the Area metric only
concentrates on the pattern face. Even if, in Table 2, the MSE and
Area mean error correlates, these qualitative differences allow us to
distinguish the cause of the errors. In fact, we believe that the error
on the back face is an accumulation error due to the difficulty of
our model to stretch the triangles of the mesh.

This example supports our ideas on the limits of MSE. It rep-
resents a global measure that mixes up the structure and position
of the shape. Therefore it is a good measure to validate the global
accuracy of the reconstruction, but it hides where locally the recon-
struction is better.

In Figure 5, we show the complete experiments of Figure 7 in
the main paper. We trained our model with the same parameters
on a second version of the CUBE dataset, where all the cube’s
faces manifest the same pattern. With this modification, a correla-
tion between the selected region and the rest of the cube exists. Our
method (second row) can effectively learn this correlation by modi-
fying at the same time the shape of the local pattern on all the faces
and the depth of the cube. The global interpolation (third row) only
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Method
MSE

(∗10−6)
MSE-R
(∗10−6)

MSE-RC

(∗10−6)
ENN

(∗10−6)
EM <ENN

Area
(∗10−2)

Area-R
(∗10−2)

Metric
(∗10−3)

Metric-R
(∗10−3)

LBO 30 11 62.5 0.65 15 60% 1.96 6.80 6.63 33.8
LBO 50 10.7 62 0.45 15 65% 1.80 6.76 6.41 3.33
LBO 80 11.1 63.5 0.63 14 61% 1.73 6.59 6.54 33.7

PAT 20+10 6.65 37.8 0.42 309 88% 1.78 6.25 4.81 24.2
PAT 15+15 5.66 27.1 1.36 1090 95% 2.31 6.01 3.96 17.5
PAT 10+20 4.91 26.3 0.63 1720 100% 1.43 5.37 3.59 17.9

PAT 40+10 6.76 38.5 0.42 79 86% 1.59 6.13 4.89 24.9
PAT 25+25 3.59 19.1 0.5 2060 100% 1.33 4.52 2.76 13.9
PAT 10+40 6.70 23.4 3.36 1860 100% 1.51 4.62 3.63 13.2

PAT 40+40 3.77 18.3 0.85 2310 100% 1.35 4.44 2.84 12.8

HAM 25+25 4.07 20.1 0.86 2050 99% 1.33 4.56 3.05 14.1

LMH 25+25 14.7 69.2 3.81 137 65% 1.96 6.85 6.08 27.7

Table 2: Reconstruction error on the CUBE test set. For each column, we highlighted the top three results in red with decreasing intensity.

Method
MSE

(∗10−6)
MSE-R
(∗10−6)

MSE-RC

(∗10−6)
ENN

(∗10−6)
EM <ENN

Area
(∗10−3)

Area-R
(∗10−3)

Metric
(∗10−3)

Metric-R
(∗10−3)

LBO 30 1.7 2.12 1.61 15.4 99.57% 8.19 10.1 2.62 5.23

PAT 25+5 1.1 1.42 1.03 19.6 100% 15 23.9 2.21 3.32
PAT 20+10 0.77 0.75 0.77 28.8 100% 5.24 5.09 1.87 2.25
PAT 15+15 0.71 0.5 0.76 39.1 100% 4.58 4.94 1.81 2.27

HAM 25+5 0.98 1.13 0.95 19 100% 5.33 5.65 1.93 2.47
HAM 20+10 0.73 0.67 0.75 27.4 100% 5.11 5.09 1.86 2.29
HAM 15+15 0.86 0.57 0.92 38.9 100% 5.10 5.21 2.11 2.37

LMH 25+5 2.7 2.49 2.75 29.9 100% 10.6 11.7 3.37 5.71
LMH 20+10 2.4 2.06 2.47 32.5 100% 9.64 8.62 3.26 3.97
LMH 15+15 1.5 0.98 1.61 31.2 100% 7.15 6.16 2.62 2.67

[MRC∗20]big
LBO 30

2.51 2.26 2.56 15.09 99.96% 15.74 22.87 4.35 7.24

[MRC∗20]big
PAT 15+15

2.51 1.8 2.67 51.3 100% 16.9 22.25 4.52 9.28

[MRC∗20]
PAT 15+15

3.1 3.89 2.92 51.3 100% 19.81 32.93 4.46 8.44

Table 3: Reconstruction error on SURREAL test set. For each column, we highlighted the top three results in red with decreasing intensity.

changes the cube’s length and leaves the pattern on the faces un-
changed. Viceversa, the local interpolation (fourth row) changes as
aspected the pattern in the selected region and the ones in the other
faces but preserves the same cube’s depth. These results confirm
that our encoding can control the factors of variation both when

they are correlated and when they are not, generating a shape that
maintain a global stylistic coherence.
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Figure 3: Qualitative result on the SURREAL. The errors are
shown on the reconstructed surfaces of a female with encoded color
growing from white to dark red.

Figure 4: Qualitative result on the SURREAL. The errors are
shown on the reconstructed surfaces of a male with encoded color
growing from white to dark red.

2.4. SURREAL

The SURREAL dataset is our first case of realistic data. We per-
form an analysis similar to before. Firstly, we test our model with
a global spectrum only, first row in Table 3. Then we consider dif-
ferent combinations of global and local spectra computed from dif-
ferent localized operators. In this analysis, we concentrate more on
the performance of different localized operators.

As in the CUBE dataset, the local addition improves both the
MSE and the intrinsic metrics. In particular, the head region reaches
an error lower than the rest of the body. PAT 15+15 is the best
combination, just followed by HAM 20+10. These results confirm
once again the Laplace-Beltrami operator computed on a patch and
the hamiltonian operator as the best-localized operators. Moreover,
a combination of global and local representations in which they
have similar proportions seems to hold the best results.

In this case, the ENN errors don’t change drastically between
global and localized operators, but it is still significantly higher
than the MSE. The EM < ENN accuracy is 100% in all tests, ex-
cept in LBO30. The similar values of ENN in this dataset allows us
to make a clearer interpretation with respect to the one done with

the CUBE dataset. In fact, while in the CUBE dataset the shapes
are simple cuboids with details only on one face, the shapes in this
dataset are more complex and have details that can vary all over
the surface. Then, since in SURREAL the LBO can encode more
variations at a global level than in the CUBE dataset, the ENN er-
ror is already higher in the global case and slightly increase in the
local ones. This observation highlights the quantity of information
encoded in a spectrum when the shape has greater or lesser details
spread across the surface.

Qualitative examples of the results in Table 3 can be found in
Figure 3 and in Figure 4. The former is a more robust woman,
while the latter is a thin male. All the combinations are able to
create shapes qualitatively similar to the ground truth. The addition
of a local spectrum computed on the head greatly improves the re-
construction not only of the head, but also on the torso. We believe
that our model learns to associate the information encoded on the
head spectrum with other important features of a subject such as
his robustness. Similar to the example in Figure 2, the Area errors
accumulate in different parts than the MSE, allowing us to separate
reconstruction errors due to the position in the space from the ones
due to the "topology" of the shape. For instance, the errors in the
hands are high in the MSE metric but low in Area one. This sug-
gests that locally the hands are well reconstructed but globally, they
are not in the right position because of an accumulation error on the
vertices of the arm.

In the last three rows of Table 3 we report the errors obtained
both with the best spectra combinations (PAT 15+15) and the global
spectrum only. Results show not only that our decoder approach
is better than the full architecture even in the LBO setting, but
that [MRC∗20] is not equally capable of combining local infor-
mation with its latent space.

2.5. SMAL

Since animals have several regions which may encode some shape
semantic (e.g., tail, head, paws, ...), we used SMAL to focus our
analysis on the contribution of different local regions. In particu-
lar, we localize the operators on both the head and tail to see their
impact on the generation capacity. For this reason, we modify the
taxonomy of the Table 4: we consider two distinct regions error H
and T that correspond respectively to the head and tail of the shape;
we differentiate our model trained on a different region with the
subscript H for the head region and T for the tail. We also change
the columns of the errors computed on a portion of the surface. The
MSE-R column is replaced with MSE-H that represents the error
computed on the head region; while the MSE-RC column is re-
placed with MSE-T that represents the error computed on the tail
region. The same applies to the Area and Metric columns.

A difference with respect to the previous results is the ENN.
Its values are higher than MSE, but with a lower gap. Moreover,
the EM<ENN accuracy does not reach the 100% in any test. The
lower gap could suggest that the spectra combination produces less
distinctive encoding in this dataset. Therefore our model has more
difficulty generating a more accurate shape. We also remember that
SMAL is composed of different animal species and therefore has a
higher variation. This characteristic allows the decoder to give more

© 2022 The Author(s)
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Figure 5: Interpolation results for a pair of cubes with same patterns applied to the all the faces. First row: Two input cubes. Second row:
Interpolation of the entire encoding. Third row: Interpolation of the global part only; observe how the patterns on the faces do not change,
while the volume of the entire cube is correctly interpolated. Last row: Interpolation of the local part of the encoding (red in the bar plots),
inducing a change in the patterns only.

Method
MSE

(∗10−6)
MSE-H
(∗10−6)

MSE-T
(∗10−6)

ENN
(∗10−6)

EM <ENN
Area

(∗10−2)
Area-H
(∗10−2)

Area-T
(∗10−2)

Metric
(∗10−3)

Metric-H
(∗10−3)

Metric-T
(∗10−3)

LBO 30 1.39 1.48 4.30 3.84 80.2% 1.90 2.58 4.25 3.58 7.40 23.6

PATH 15+15 1.08 1.07 3.07 5.47 86.6% 1.63 2.12 3.83 3.05 5.96 20.3
PATT 15+15 3.93 4.20 11.5 11 64.6% 3.05 4.03 6.26 6.13 14.1 36.9

HAMH
15+15

1.11 1.13 3.50 5.22 86.6% 1.54 2.01 3.59 3.01 5.77 19.6

HAMT
15+15

3.13 3.35 8.81 8.17 68.2% 2.77 3.68 5.75 7.5 13 32.9

LMHH
15+15

1.78 1.9 5.11 4.47 82% 1.93 2.52 4.47 3.62 7.6 24.5

LMHT
15+15

3.57 3.8 9.76 13 67.4% 2.94 3.93 5.9 5.89 12.6 35.8

Table 4: Reconstruction error on the SMAL test set. For each column, we highlighted the top three results in red with decreasing intensity.

importance to the data encoded in the global spectrum since there
are shapes that differ also in their global structure, i.e. an hippo
compared to a tiger is shorter and bigger. This deduction is also en-
forced by the short gap between LBO 30 and PATH 15+15 where

the addition of the local spectrum brings less information with re-
spect to the humans of SURREAL.

Figure 6 shows the different errors plotted on a tiger. Overall,
all the methods generate shapes that are qualitative very similar to

© 2022 The Author(s)
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Figure 6: Qualitative results on the SMAL with extrinsic and intrin-
sic measures plotted on the reconstructed surface of a tiger with a
white to dark red colormap.

the ground truth. PAT H 15+ 15 has lower results not only on the
head, but also on the tail. This suggests a correlation between the
two regions. On the contrary PATT 15+ 15 has worse results. In
particular, even though the local spectrum is computed on the tail,
the error on that region is higher. This may be due to the inability
of the tail spectrum to encode enough information relevant to the
whole shape like the head does. As a consequence, the decoder has
fewer informative features to generate the whole shape causing a
sparse error that in the MSE highly accumulates on the tails.

Other qualitative examples from the SMAL dataset are reported
in Figure 7. We show the MSE and Area measures of LBO 30,
PATH 15+15 and PATT 15+15 on all the remaining classes. The
error accumulates mainly on the characteristic region of the differ-
ent animals: the tail and ears in the wolf, the ears and crest in the
zebra, the ears in the cow and the snout in the hippo.

2.6. Main Insights of our analysis

We summarize the main insights of our analysis:

Global versus Local. The standard eigenvalue representation
of [MRC∗20] is outperformed by mixed PAT encoding, regardless
of different k+ h values. Nevertheless, even in the presence of or-
thogonal transformations, introducing a local representation helps
the global reconstruction as well. We believe this is possible only
if the network can relate each operator spectrum with a shape vari-
ation.

Different localized operators. We see that maximizing the local-
ity of the considered representation is beneficial. PAT emerges as
the best representation, tightly followed by HAM which is almost
equivalent. LMH performs the worst. The discussion on this point
is further detailed in Section 5.4.

Locality proportion. Our experiments suggest that a balanced mix
of global and local information provides the best representation for
the inverse spectral problem. Also, increasing the number of eigen-
values is more beneficial in a mixed setup than in the standard LBO

(a) Wolf

(b) Zebra

(c) Cow

(d) Hippo

Figure 7: Qualitative results on the SMAL with extrinsic and in-
trinsic measures plotted on the reconstructed surface of different
classes with a white to dark red colormap.

© 2022 The Author(s)
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Figure 8: Qualitative comparisons between different regions on the
SURREAL. On the top left we display the ground truth with the dif-
ferent regions highlighted: in red the head H; in green the forearm
F; in blue the torso T . The rows are different methods, while the
columns different measures. Errors are color-coded, growing from
white to dark red.

setup. We think the information rapidly faints in subsequent eigen-
values, while new operators provide a clearer pattern for the net-
work to harvest.

Autoencoder vs decoder-only. Results show not only that our de-
coder approach is better than the full architecture even in the LBO
setting, but that [MRC∗20] is not equally capable of combining lo-
cal information with its latent space.

Evaluation metrics.We emphasize that extrinsic metrics are not al-
ways reflected in the intrinsic ones. While the extrinsic measures
directly test the network on the purpose of its training, our mea-
sures also reflect the model’s intrinsic properties. We find them
complementary, and encourage follow-up works to rely on similar
measurements both for training and test.

Figure 9: Qualitative results of different regions on the SMAL. We
plot on the reconstructed shape extrinsic (first row) and instrinsic
(second row) measures with a colormap from white to dark red.

Figure 10: An example of reconstruction comparing head or hand
selection.

2.7. Region selection results

In this section, we want to investigate more deeply the importance
of R

In Fig. 8, we show the mean squared and the area error for an ex-
ample of shape reconstruction comparing PATF 15+15 and PATT
15+ 15 with LBO 30 and PAT 15+ 15. Concerning LBO 30, we
see that PATF 15+ 15 and PATT 15+ 15 presents a similar intrin-
sic error on the head. PATF 15+ 15 has a low Area error on the
arms but high on the torso which produces a higher MSE also on
the arm. On the contrary, PATT 15+15 is able to improve the torso
eliminating the LBO error on the chest. In all cases, PAT 15+ 15
performs significantly better.

2.8. Multi-region

Figure 9 shows a qualitative comparison of multi-region selection
over SMAL. PATH+T 15+ 10+ 5 has a lower error than PATH+T
10+ 10+ 10 especially on the back of the shape. Since PATH+T
15+ 10+ 5 has a slightly lower MSE than PATH+T 10+ 10+ 10,
we think that the performance may be correlated to the number

Figure 11: An experiment of different representation for the input:
on the right, it considers 12 eigenvalue from the global spectrum, 6
from the head, 6 from the torso, and 6 from the hand.

© 2022 The Author(s)
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of eigenvalues assign to each spectrum. In fact, the combination
15+10+5 has fewer eigenvalues from the tail which is the region
with the higher errors. As consequence, the decoder has a more
informative encoding from which generates the correct shape.

The PATH+T 15 + 15 + 15 combination seems to add enough
information from all the spectra to improve the performance. In the
last two columns of Figure 8 can be seen a significant improvement
on the lower part of the body.

This last series of experiments highlight the importance of R.
Not all portions of X are good candidates as local regions since
they don’t have enough high-frequency information. This suggests
the necessity of research of meaningful area on which to compute
the local spectra. Moreover, the proportion of eigenvalues assigned
to the different spectra affect just as much the overall performance.

Multiple-Local areas. Splitting between regions and global rep-
resentation requires a careful design. From a general perspective,
our experiments show that substituting part of the global informa-
tion with some local one also provides better reconstruction in the
global areas for many different scenarios. This is strengthened by
the correlation between the local and global parts. However, push-
ing further the number of the local regions maybe not be trivial. As
a complement of already seen results, we consider here (Figures 10
and 11) the hand region: in the first row as the only local region, in
the second one in conjunction of head and torso. These experiments
convey all the same message: each part should be represented with
enough information. A study on the perfect balance between re-
gions would be domain-dependent and exciting for future works.

© 2022 The Author(s)
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3. Interactive manipulation

Our method can be efficiently used in real-time to synthetize shapes
and control their deformations by acting on the different parts of
our representation. An example can be seen in the video attached
to this document. In that short sequence, we have two sliders that
modify the different components of the proposed spectral encoding.
On the left side of the video, we show the spectrum that we input
to the network, highlighting with brighter color the part subject to
the current modification. In gray, we kept the original spectrum as
a reference. On the right side of the video, we visualize the shape
produced by our model. The color depicted on the surface encodes
the difference between two subsequent modification frames; this
visualization helps to identify where the modification represented
by the sliders is acting on the 3D geometry. Moreover, in Fig. 12
we report an illustrative image of free manipulation provided by
our model. We chose a reference shape and modified its global and
local encoding separately. Similarly to the video, for each shape,
we highlight on the surface the area variations encoded by the col-
ors. In the first row, we decrease the global part of the encoding
generating alterations scattered on the body, but with minimal in-
teraction with the head. In the second row, we increase the values
of the local part of our encoding obtaining a more feminine phys-
iognomy and variations localized on the head and thorax, while the
legs are almost left unchanged.

4. Different representations from training time

In Fig. 13 we report an additional result on semantic control with
different representations. We start from a sparse point cloud (3445
vertices), depicted on the left, from which we compute the global
spectrum with the robust Laplacian [SC20] and combine it with the
local spectrum from a mesh representing a different subject in a
different pose, visualized in the middle. On the right we show the
resulting shape, which maintains the identity of the second one, but
with a thinner body like the first shape. We remark that the network
is trained only on meshes; thus we appreciate the robustness of our
model also to unseen and noisy data.

5. Unorganized pointclouds

Here we present other examples of our airplane experiments (Fig. 8
in the main paper).

In Fig. 14 we perform a spectrum switch. The two input planes
have a similar tail but a different structure. Even in this subtle case,
when we change only the local encoding, our method interpolates
the two tails without modifying the airplane length, the presence of
the turbines, and keeping the wings loyal to the starting plane. On
the contrary, the global switch affects the whole plane like in the
others interpolations experiments.

In Fig. 16 we test our model by looking at the shape generated
from the spectra obtained by interpolating the input spectral en-
coding of two shapes (depicted on the left). In the first row, we
report the results from the interpolation of the whole spectral en-
coding. We can see that the deformation is smooth both in size
(i.e., length of the structure) and features (i.e., turbines appearing,
tail morphing). In the second row, we fix the local part of the en-
coding, and interpolate the global. Coherently, changing the whole

structure also requires changing the tail structure (different kinds
of airplanes have different tails). Finally, in the third row, we only
manipulate the local part maintaining the global one. The local in-
terpolation mainly impacts the tail region (a close-up is depicted
in Fig. 15), which follows the interpolation pattern of other rows.
Remarkably, other global aspects of the airplanes are only slightly
modified (i.e., the turbines and the shapes of the wings are almost
left unchanged). We consider this result significant, since the spec-
trum of the tail seems representative enough to relate with different
airplanes. Moreover, our global plus local spectral encoding pro-
vides nice interpolation results. In Fig. 17 we report the same ex-
ample of Fig. 16, but using a 20+10 network instead of a 15+15
one. The results are consistent, showing a certain resilience to dif-
ferent settings.
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Figure 12: Free manipulation of a SURREAL shape. Given a shape (on the left), we decrease the global values (ΛX -first row) and increase
the local values (ΛR-second row) separately. For each shape, we plot the area variations for each vertex and show the correspondent
encoding as barplot (blue:global, red:local). We highlight in green the values that changes and in red the values that we keep constant.
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Figure 13: Combination of global spectrum (in blue) of a point
cloud (left) with a local spectrum (in red) from a mesh (center)
with different discretization and pose.
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Figure 14: A spectrum switch, similar to the interpolation shown in
the main manuscript. On the left: the starting airplane and the cor-
responding output generated by our network. On the right, the sec-
ond airplane. In the middle, from the top there are the reconstruc-
tion generated: using the whole second spectral enconding (dλ);
concatenating the global spectral encoding of the second with the
local one of the first(ΛX ); concatenating the global spectral encod-
ing of the first with the local spectral encoding of the second(ΛR).
Notice how the first two impact the whole plane, while the third
changes the tail and preserves the global structure (e.g., wings and
turbines). Both the starting and final airplanes are taken from the
test set.

Figure 15: The first (left) and the last (right) steps for the dΛR
interpolation depicted in Figure 17, with a close-up on the tails.
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Figure 16: Casting different kinds of spectra interpolation into our network gives us different degrees of control. On the left, the models used
as initial and final steps; on the right, we interpolated the entire spectral encoding (dΛ-first row), only the global frequencies (dΛX -second
row), and only the local ones (dΛR-third row).
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Figure 17: Casting different kinds of spectra interpolation into our 20+10 network. On the left, the models used as initial and final steps; on
the right, we interpolated the entire spectral encoding (dΛ-first row), only the global frequencies (dΛX -second row), and only the local ones
(dΛR-third row).
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