
Eurographics Symposium on Rendering 2022
A. Ghosh and L.-Y. Wei
(Guest Editors)

Volume 41 (2022), Number 4

Point-Pattern Synthesis using Gabor and Random Filters

Xingchang Huang1 , Pooran Memari2, Hans-Peter Seidel1, Gurprit Singh1

1Max-Planck-Institut für Informatik, Saarbrücken, Germany
2CNRS, LIX, Ecole Polytechnique, Paris, France

a)output of a) output of b)

b)

Figure 1: Our method takes simply a point set (with positions, classes, attributes) as input and applies continuous Gabor transform to extract
features. We then use these Gabor features to synthesize a larger scale output. We show synthesis results of a 2-class point pattern in (a), and a
4-class point pattern with depth and scale as attributes in (b).

Abstract
Point pattern synthesis requires capturing both local and non-local correlations from a given exemplar. Recent works employ
deep hierarchical representations from VGG-19 [SZ15] convolutional network to capture the features for both point-pattern and
texture synthesis. In this work, we develop a simplified optimization pipeline that uses more traditional Gabor transform-based
features. These features when convolved with simple random filters gives highly expressive feature maps. The resulting framework
requires significantly less feature maps compared to VGG-19-based methods [TLH19; RGF*20], better captures both the
local and non-local structures, does not require any specific data set training and can easily extend to handle multi-class and
multi-attribute point patterns, e.g., disk and other element distributions. To validate our pipeline, we perform qualitative and
quantitative analysis on a large variety of point patterns to demonstrate the effectiveness of our approach. Finally, to better
understand the impact of random filters, we include a spectral analysis using filters with different frequency bandwidths.

CCS Concepts
• Computing methodologies → Point pattern synthesis; Point-based texture synthesis;

1. Introduction

Synthesizing point patterns from small exemplars has various appli-
cations from object placement, discrete texture synthesis to creative
pattern generation. Synthesizing such patterns has been an active
area of research in computer graphics [Lew89; DHL*98; ÖG12;

RÖM*15; TLH19] and involves two major steps. First step requires
robustly characterizing the underlying correlations from an exemplar.
The second step involves point-pattern expansion while preserving
the underlying local and non-local correlations.

Characterizing different point patterns are traditionally performed

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14596

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2769-8408
https://orcid.org/0000-0003-0970-5835
https://doi.org/10.1111/cgf.14596


X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

using Fourier and spatial (pair correlation function) tools. Among
different point-patterns, blue noise point patterns [Uli88] have re-
ceived special attention in computer graphics due to their minimum
distance preservation [Yel83; YGW*15]. Blue-noise patterns are
named blue noise based on their power spectrum characteristics. But
not all patterns are easily characterised by traditional Fourier or spa-
tial (pair correlation function) tools. Many recent works [ZHWW12;
LSM*19; HSD13; RÖG17] have devoted significant effort in char-
acterising such patterns by matching the low level statistics.

Synthesizing a large canvas output from an exemplar requires
faithful extraction of both local and non-local features. To tackle this,
various example-based approaches have been proposed [MWT11;
MWLT13; RÖM*15; TLH19; EMGC19a; LGH13] that take as input
a small-scale point set, extract both local and non-local features from
the exemplars and use these features to synthesize point patterns on
a larger scale.

Recently, Tu et al. [TLH19] use a pre-trained VGG-19 net-
work [SZ15] to extract point pattern correlations. VGG-19 features
are used as local and non-local features of an exemplar point set.
These features are then used as a target during an optimization pro-
cess to synthesize large canvas point patterns. Their method shows
that hierarchical image-space features and losses are powerful for
point pattern synthesis. However, the patterns synthesized by this
method struggles to preserve accurate local structures and requires
multiple steps of optimization or manual intervention for refinement.
Moreover, since the VGG-19 network is limited by 2D images as
input, it limits the scope of their approach to at most 3-class and
limited per-point attribute characterization.

In this paper, we propose a simple Gabor transform-based pipeline
that extract local and non-local features. Our method applies the
Gabor transform to an exemplar point pattern and extract multi-
resolution image-space features with a subsequent convolutional
filtering step. The filtering step is performed using random filters
which have shown success in reducing the feature space in neu-
ral networks [UBGB16; UVL18]. We then optimize a stochastic
point set by using these features as target for by-example point
pattern synthesis. We conduct qualitative and quantitative exper-
iments on a large variety of patterns to demonstrate the applica-
bility of our method for pattern creation and object placement.
We further perform a spectral analysis for our filtering pipeline
to interpret why random filters work. Our code is available at
https://github.com/xchhuang/pps_gabor_random.

2. Related Work

By-example pattern synthesis are well-studied in the past
decade, including image-based [GEB15b; GEB15a; UBGB16], dis-
crete [MWT11; ÖG12; MWLT13; RÖM*15; RÖG17; TLH19] and
continuous [TWY*20] texture synthesis. In general, these methods
are designed for synthesizing a larger pattern given a small exemplar
as input. Our approach is inspired from recent developments in point
pattern [TLH19] and texture [UBGB16; GAD*20] synthesis. In this
section, we cover the most relevant works and direct interested
readers to a recent survey [GAM*21] for an extensive study.

Image-based texture synthesis. Image-based texture synthesis
considers synthesizing image texture from an exemplar in the pixel

space. Heeger et al. [HB95] propose to use image pyramid whereas
Portilla et al. [PS00] use wavelet-based descriptors for texture syn-
thesis. We instead use Gabor filter bank to extract exemplar features.
More recently, Guehl et al. [GAD*20] present Point Process Texture
Basis Functions (PPTBF), together with stringed Gabor functions to
synthesize a large variety of binary textures. Our work, on the other
hand, is designed for by-example point-pattern synthesis.

By-example point pattern synthesis. Point pattern synthesis is
usually defined as by-example synthesis as well: given a small point
set as input, algorithms are designed to synthesize a larger one pre-
serving both global and local structure. Ma et al. [MWT11] propose
a sample- or multi-sample based representation for point pattern syn-
thesis, or in general, element synthesis that allows example-based
synthesis. Roveri et al. [RÖM*15] propose meshless representa-
tion where structures in the example and output are converted into a
functional representation. However, both methods are neighborhood-
based, meaning that they can easily fail to synthesize patterns pre-
serving global structure well. A more recent work on point pattern
synthesis is from Tu et al. [TLH19], which use the VGG-19 network
for point pattern synthesis. Though they achieve improved results in
terms of preserving global structure, they struggle with synthesizing
local structures faithfully.

Other than point patterns, there are works on extending points to
shapes. Ecormier et al. [EMGC19a] extend the pair correlation func-
tion (PCF) framework to disk distributions. Landes et al. [LGH13]
propose a shape-aware model that brings out the elements as poly-
lines which better preserves element distances. Similarly, Barla et
al. [BBT*06] develop a specific method for stroke pattern synthe-
sis and Hurtut et al. [HLT*09] consider the appearance of vector
elements during synthesis.

Neural networks for pattern synthesis. Resurgence of neural net-
works through image classification [KSH12] has changed the dynam-
ics of computer graphics research over the past decade. Recent archi-
tectures work on both images and unstructured point clouds domains.
Point-based neural networks [QSMG17; QYSG17][WSL*19] ex-
tend the deep learning approach over irregular point clouds. How-
ever, these methods does not take into account point correlations
and are not designed for point pattern synthesis. Leimkuhler et
al. [LSM*19] propose a convolutional architecture that directly op-
timizes point samples for prescribed Fourier (power spectra) or
spatial (pair correlation function) statistics allowing blue-, green-.
or pink-noise sample distributions. However, this mainly captures
global correlations. In texture synthesis, neural networks have been
recently employed to synthesize large canvas textures from small ex-
emplars using pre-trained network features [GEB15a; SC17] or com-
pletely random filters [UBGB16][HWH16]. Similarly, Ulyanov et
al. [UVL18] propose deep image prior using a randomly initialized
neural network for image restoration. Aberman et al. [ALS*18]
use pre-trained CNN features to find image correspondence and
Bojanowski et al. [BJLS17] present a latent space optimization tech-
nique for generative image synthesis. Our method, on the other hand,
optimize and synthesize points instead of images.

Compared to these, using neural networks for point pattern syn-
thesis is a relatively unexplored area. Tu et al. [TLH19] propose
the first neural network-based idea for point pattern synthesis. They

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

170

https://github.com/xchhuang/pps_gabor_random


X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

propose an optimization approach that uses a pre-trained VGG-19
network [SZ15] to guide random point samples to follow structured-
patterns from an exemplar. Reddy et al. [RGF*20] develop a dif-
ferentiable compositing pipeline that allows current deep learning
based image methods to effectively handle patterns. Compared to
their work, we propose to use Gabor features and a convolutional
filtering step that better captures the statistics of point patterns. This
enables higher-quality by-example point pattern synthesis and can
be extended to multi-class and multi-attribute patterns with minor
changes. No training or pre-trained features are required in our
framework. It is also worth mentioning that Tu et al. [TLH19] pro-
pose an additional soft optimization scheme to heuristically remove
outliers from optimized patterns. However, this may still result in
missing points in the output patterns. In this work, we do not apply
any heuristic approach during optimization.

3. Overview

Given an exemplar pattern with M points {pi}M
i=1 within domain

[0,1], our goal is to perform pattern expansion to a larger point
set {Pi}N

i=1 in the same domain. First step in this process requires
extracting local and non-local correlations from the exemplar. In
the second step, these correlations are reproduced on a large-canvas
with N points using an optimization. Normally, N = S×M, where S
is an up-scaling factor. For simplicity, we focus on a square domain
with S = 4.

3.1. Preliminaries

In image-based texture synthesis, Gatys et al. [GEB15b] propose to
use the pre-trained VGG-19 feature maps to extract local and non-
local correlations. These extracted feature maps are then optimized
for pattern expansion during synthesis using the following losses:

Gram loss. Gram matrix [GEB15b] is defined as the following:

Gl
t1,t2 =

1
nlW lH l f l

t1 ⋅ f
l
t2 (1)

where nl ,W l ,H l are the number, width and height of 2D feature
maps at layer l, respectively. Gl

t1,t2 is the gram matrix computed
between tth

1 and tth
2 feature maps at layer l and f l

t1 , f l
t2 are tth

1 and
tth
2 feature maps at layer l. Gram loss Lgram can be defined as the

square error between output and input Gram matrices:

Ll
gram =∑

t1,t2
(G̃l

t1,t2 −Gl
t1,t2)

2 (2)

where G̃, G represent gram matrices of output and input patterns,
respectively.

Correlation loss. To better capture the correlations, Sendik et
al. [SC17] compute a correlation matrix from the feature maps:

Ct,l
a,b =

f t,l
i j f t,l

i−a, j−b

[(W l − ∣a∣)(H l − ∣b∣)]
(3)

where a ∈ [−W l ,W l],b ∈ [−H l ,H l]. We use zero-padding when i−
a, j−b are outside the boundary. t denotes the index of feature maps,
meaning that deep correlation matrix is computed at each channel

of feature maps independently. Based on this, deep correlation loss
Lcorr is defined as:

Ll
corr = ∑

a,b,t
(C̃t,l

a,b−Ct,l
a,b)

2 (4)

where C̃,C represent correlation matrices of output and input pat-
terns, respectively.

Tu et al. [TLH19] use both the Gram and Correlation loss to
perform point-pattern expansion. Reddy et al. [RGF*20], on the
other hand, use only the Gram matrix to perform pattern expansion.
Unlike Tu et al., the input for Reddy et al. is an image with cor-
responding elements. In our approach, we use Gabor transform to
extract local and non-local correlations from an input point pattern.

4. Our Approach

Our pipeline is shown in Fig. 2. First step of our approach is to
transform continuous points into a pixelized feature map representa-
tion (blue block). Each point can be assigned a class or/and some
attributes. Our feature maps encode the associated attributes as well.
We apply the following continuous Gabor function to get feature
maps from points:

h(g j,p,ν,σ,γ) =∑
i

wi ⋅e−
∣∣pi−g j ∣∣

2
2

2σ2 cos(ν ⋅(pi−g j))γ (5)

where pi are continuous point positions of a pattern and g j the
grid positions of the underlying Gabor feature maps (normalized
to [0,1]). wi is a vector for each point representing additional at-
tributes such as scale, depth, radii. Points with no attributes and
only positions makes wi = 1 a scalar. When each point has an addi-
tional attribute(s) such as radii, wi vector represent these attribute
values which are normalized to [0,1]. ν represents the frequency.
The γ = {0,1} parameter can be either 0 or 1 in Eq. 5 and it helps
capture both the spatial and spectral features simultaneously. For
γ = 0, the Gabor kernel only captures the spatial statistics of the
point pattern. This dials down our model to irregular convolution
proposed by Tu et al. [TLH19]. When γ = 1, it also captures the
spectral characteristics of the pattern. By modeling both the spatial
and spectral statistics, our method synthesize patterns with better
local structure preservation. We create a Gabor filter bank by varying
the values of ν, σ and γ. These filters help capture both spatial and
spectral features of a point set.

4.1. Multi-resolution Convolutional Filtering

In the second step, we extract multi-scale, hierarchical features
from the Gabor feature maps using multi-resolution convolutional
filtering(orange blocks in Fig. 2). All convolutional filters are 7×7
pixels wide. For the first layer, we use a stride 1 convolution. For the
remaining layers we use stride 2 which down samples the feature
maps by 2×. This makes the filtering process multi-resolution. All
convolutional filters are drawn from a uniform distribution following
Glorot and Bengio [GB10]. More specifically, our model consists
of 4 filtering layers. Each layer uses a combination of convolution,
instance normalization [UVL16][YTO*18] and ReLU activation

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

171



X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

��������������������� ��������� ���������
���
���
��	 ���
���
��	

ConvLayer(inFeatures, outFeatures, stride)

������������Conv(7x7, stride) ����

����� ������ �������	�����	 �������	�����	

�
��������������

���
�������� 

��

������������������������������

������������������� �������

 
�������

 
������� �����������

�������

��������

���������
��
���
�	

���������
���
���
�	

������

Figure 2: Overview of our pipeline. We propose to use continuous Gabor transform combined with a multi-resolution convolutional filtering
step to compute Correlation and Gram statistics. Since all components are differentiable, we perform end-to-end optimization to update output
pattern by minimizing the Correlation and Gram losses.

function. For the instance normalization layer, we use the following
equation without any trainable parameter:

q̃ = q−E[q]√
Var[q]+ε

(6)

where q is the feature map values after convolution and q̃ is the
output after normalization, ε = 1e−5. The mean (E[q]) and standard
deviation (

√
Var[q]) is calculated per-dimension of the feature map.

Note that our proposed model is data-independent, meaning that our
random filters do not need to be trained on a specific data set. The
randomly initialized filters are used directly as network weights for
feature extraction. In Sec. 5.3, we perform an additional spectral
analysis to understand why these convolutional filters work.

4.2. Loss Function

After the convolutional layers, we compute the correlation matrix
(Eq. 3) and the Gram matrix (Eq. 1) from the resulting features. The
corresponding matrices are used to compute our final objective/loss
function that we use for synthesis using optimization. The final loss
function is a weighted combination of both losses (Sec. 3.1):

Ltotal =∑
l=4
Ll

corr +α ∑
l=2,3,4

Lgram (7)

where α = 0.08. We use the 4th layer of the network output for
computing Lcorr and layers 2 to 4 for Lgram. It is worth mentioning
that computing Lcorr is more expensive than computing Lgram. The
computational cost depends on nl ,H l ,W l at the same time. We
experimentally find that using nl = 120 and the 4-th layer’s output
(4× down-sampling of input resolution) for computing Lcorr works
best wrt both the optimization time and quality.

4.3. Synthesis via Optimization

The final step of our pipeline is the optimization. With our proposed
differentiable pipeline, we use a gradient descent-based optimization
to update output point locations by minimizing the loss functions.
Output point pattern is initialized as Poisson disk distribution the
same as Tu et al. [TLH19] within [0,1] domain. Note that our model
also works for random initialization (see supplemental document

Fig. 3). During optimization, we update point positions by mini-
mizing the proposed loss functions. Since the Gabor transform and
convolutional filters are fully differentiable, our optimization pro-
cess runs end-to-end. Unlike previous methods [RÖM*15; TLH19],
we do not apply any heuristics such as removing or re-adding points
that might produce distorted local structures. More specifically, we
apply the multi-scale optimization procedure [RÖM*15; TLH19]
from high σ values to small. Our pipeline naturally extends to handle
multi-class and multi-attribute point patterns.

5. Experiments

We implement our full pipeline using PyTorch [PGC*17] and run
experiments on an NVIDIA Quadro RTX 8000 graphics card. Ad-
ditional comparisons and ablation studies can also be found in our
supplemental document.

Gabor features. We compute Gabor features in a multi-scale man-
ner by evenly sampling four σ values in the range [σ1,σ2]. The
value of σ is analogous to a receptive field, higher σ value capture
non-local structure while low σ focuses more on local structures.
σ1 = d/c1 and σ2 = d/c2, where c1,c2 are user-defined and d is the
mean minimum distance between any two points within a pattern.
We set c1 to be 0.8±0.2 while c2 is 2.8±0.2 for all results shown
in the paper (more details in the supplemental Table 1).

For each scale σs, we create 1 spatial map (γ = 0) and additional
9 frequency feature maps (γ = 1) from a pattern. The impact of dif-
ferent σ and ν is shown in Fig. 3. We consider 3×3 grid frequencies
ν in the range {−1.5,−1.5}→ {1.5,1.5}. For each frequency ν, we
compute the Gabor function from Eq. 5. For each pattern, we set the
resolution of Gabor feature maps based on underlying mean average
distance d. The resolution of each axis is set to be round(9/d) which
is then clamped between [128,256]. The resolution of the output
Gabor feature maps is scaled by

√
S, which is the pattern expansion

scaling factor (S = 2). In practice, we use k nearest neighbors of each
point p to compute Gabor features for a given grid position, with
k = min(M,40).

We use the Adam [KB14] optimizer for gradient descent with
learning rates lr = 0.005,0.002,0.002,0.002 for different 4 scales.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

172



X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

(a) Input (b) ν = [0,1.5] (c) ν = [−1.5,−1.5] (d) ν = [−1.5,0]

(e) σ = 0.078 (f) σ = 0.062 (g) σ = 0.046 (h) σ = 0.03
Figure 3: Examples of generated Gabor features from a point pat-
tern (a). (b)-(d) show Gabor features with varying frequencies, the
same σ = 0.078 and γ = 1. (e)-(h) show Gabor features with varying
σ values and γ = 0 (without considering frequencies).

Lo
ss

Iteration

σ=0.071
lr=0.005

σ=0.055
lr=0.002

σ=0.038
lr=0.002

σ=0.022
lr=0.002

Poisson disk 
initialization

Figure 4: Initial and intermediate results after being optimized at
each scale during the multi-scale optimization process.

Note that using other optimizers such as L-BFGS can yield similar
results with other components in our pipeline fixed. Fig. 4 shows
that the optimization starts from a Poisson disk distribution. At
each scale, we optimize point locations within domain [0,1] until
convergence. The convergence criterion is that the decrease of loss
during the most recent 100 iterations is smaller than 1%. The whole
optimization at all 4 scales takes around 400 ∼ 800 iterations.

5.1. Qualitative Comparisons

We compare our point pattern synthesis approach with Ma et
al. [MWT11], Roveri et al. [RÖM*15] Tu et al. [TLH19] and
Reddy et al. [RGF*20]. We set the input and output domain to
be the same for all comparisons. Ma et al. [MWT11] use random
patch copy for pattern initialization. They use Hungarian matching
algorithm to update the sample locations in a patch-based manner.
For a fair comparison, we set the neighborhood size in Ma et al. to
ensure the output points are S = 4 times the input points. Rover et
al. [RÖM*15] also use random-patch copy initialization for output

(a) (b) (c)

In
pu

t
M

a
et

al
.[

M
W

T
11

]
R

ov
er

ie
ta

l.
[R

Ö
M

*1
5]

PP
S

[T
L

H
19

]
O

ur
s

Figure 5: Single-class point-pattern expansion comparison between
ours and previous methods. Our approach preserves the local and
non-local structures better than previous methods.

pattern. Sample locations are then updated using multi-scale opti-
mization with sampling control by removing and re-adding samples
for better convergence. Tu et al. [TLH19] (PPS) use an irregular
convolution layer, a pre-trained VGG-19 [SZ14] network and a hi-
erarchical optimization scheme to synthesize point patterns from
Poisson disk initialization. We use the same hyper-parameters c1, c2
and also initialize the output point patterns with Poisson disk for a
fair comparison.

Single-class point patterns. Fig. 5 shows comparisons on regular
and irregular structures. Neighborhood-based methods [MWT11;
RÖM*15] fail to synthesize the global structure accurately.
PPS [TLH19] works well compared to other prior meth-
ods [MWT11; RÖM*15] but suffers from visible artifacts like holes
or missing points (column b). PPS also does not capture well the
regular structures in column (a) and (c). This may happen due to the
fact that VGG-based filters are redundantly learned from the images’
dataset and is not expressive enough to deal with point patterns. Our

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

173



X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

(a) 2-class (b) 2-class (c) 4-class

In
pu

t
PP

S
[T

L
H

19
]

PP
S+

+
O

ur
s

O
ur

s
(r

en
de

re
d)

Figure 6: Multi-class point-pattern expansion. Our method per-
forms better in terms of global structure and local distances between
point samples. PPS [TLH19] does not handle well point patterns
with multiple classes. We enhance PPS with our sequential multi-
class synthesis approach but it still shows artifacts. The bottom row
shows rendered results with object placement at point locations.

method handles well the regular structures and avoid any artifacts
in stochastic distributions (Fig. 5b). Please see the supplemental
document for more comparisons with different point patterns.

Multi-class point patterns. Our method naturally extends for
multi-class point pattern synthesis. We sequentially optimize for
each class similar to Ecormier et al. [EMGC19a]. While synthesiz-
ing points of k-th class, we freeze the positions of previous k−1
synthesized classes and compute the Gabor and convolutional fea-
ture maps from all these k-class points. Unlike PPS [TLH19], which
use one-hot representation for class IDs, our approach does not re-
quire additional dimensionality for class IDs. In Fig. 6, we compare
our multi-class synthesis approach with PPS. For a fair comparison,
we incorporate our sequential multi-class approach within PPS to
better handle multi-class patterns. This is shown as PPS++ in Fig. 6.

(a) (b) (c)

In
pu

t
PP

S
[T

L
H

19
]

D
iff

C
om

p
[R

G
F*

20
]

O
ur

s

Figure 7: Discrete element-pattern expansion. Our method natu-
rally supports point-based element patterns. We treat each color as
a separate class. Each column here is a 4-class pattern with two
attributes (scale and depth) per element.

This allows PPS to work with more than 3 classes. The bottom row
shows object placement with different objects assigned to different
classes. Fig. 6a shows an example that is also presented in Fig. 1.

Multi-attribute point patterns. Our approach can easily incorpo-
rate multiple attributes to the pipeline. We assign values (normalized
to [0, 1]) to attributes wi in Eq. 5 for each point while computing
the Gabor features. As a result, for ∣w∣ attributes, we will have ∣w∣
Gabor feature maps concatenated together. Similarly, the number of
filters in the convolutional layers would increase by a factor of ∣w∣,
resulting in ∣w∣-channel images going as input to the convolutional
filters (see Fig. 2).

In Fig. 7, we show comparison on 4-class patterns with attributes
(depth and scale) assigned to each point. DiffComp [RGF*20] work
well for patterns with stochastic structures (column a, c), but it
fails to capture the vertical structure in column (b). DiffComp also
suffers during pattern expansion with more empty spacing as shown
in column (c). PPS [TLH19], on the other hand, works slightly better
for structured input, like column (b). However, it still shows some
holes in all three output patterns. Although we do not explicitly
encode element shapes as attributes, our synthesize patterns are
visually closer to the exemplars.

As DiffComp [RGF*20] only uses Gram loss for pattern expan-
sion, we study two more variants of their method using Lcorr and

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

174



X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

Input PPS [TLH19] PPS++ Ecormier et al. [EMGC19a] Ours Ours (rendered)

Figure 8: Comparison of our method with PPS [TLH19], PPS++ (our enhanced variant of PPS) and Ecormier et al. [EMGC19a] on disk and
multi-class disk distributions. Our method better preserves the overall structure for both regular and irregular structures. Meanwhile, we
achieve comparable results with Ecormier et al. [EMGC19a] on the second row, in terms of preserving non-overlapping disks.

Table 1: Quantitative comparison of relative radius [LD08] on a
CCVT [BSD09] blue noise pattern as shown in Fig. 5 (b). The closer
to the exemplar, the better.

Exemplar [MWT11] [RÖM*15] [TLH19] Ours

ρ 0.7341 0.6619 0.6507 0.6655 0.7064

the weighted combination of Lgram and Lcorr as shown in supple-
mental Fig. 7. We also compare the same methods on 2- and 3-class
element patterns in supplemental Fig. 6 and show more results for
our method on 2- and 6-class, 2- and 5-attribute element patterns in
supplemental Fig. 11.

In Fig. 8, we show disk distributions where points are assigned a
radius as an attribute. We compare our method against PPS [TLH19]
and Ecormier et al. [EMGC19a] (a method based on pair correlation
function) on a single- and two-class disk distribution. Our method
handles better the regular structures in the first row and achieve
comparable results in the second row.

5.2. Quantitative Evaluation

To the best of our knowledge, there is no established metric to
quantitatively evaluate structured point patterns. Therefore, we per-
form several experiments including a user study, providing users
side-by-side comparisons between our method and prior methods.

Quantitative metrics. A quantitative measure called relative ra-
dius [LD08] is well-defined for blue noise patterns. We choose
the CCVT [BSD09] profile as the exemplar and apply 4 methods
in Fig. 5 (b) for synthesis. Relative radius is defined as ρ = rmax/rmin.
As shown in Table 1, the relative radius with our approach is the
closest to the exemplar. This means we better preserve the equi-
distribution property compared to other methods. Visual inspection
consistently supports this behavior as shown in Fig. 5(b).

MWT11 ROM15 TLH19 Ours

0 1 2 3 4 5 543210
User Scores User Scores

Figure 9: We perform user study and compute an average score
across 28 users. We show different point patterns and ask users to
score between 1 (worst) and 5 (best). Ours (in blue) gets better score
for all but one pattern. All patterns and their comparisons can be
found in the supplemental document.

We also include Wasserstein distance, Chamfer distance and the
pair correlation function (PCF) as additional metrics for quantitative
comparison. Pair Correlation Function (PCF) is also widely used for
characterizing stationary point patterns. As our goal is to synthesize
output pattern on a larger canvas, direct comparison of these three
metrics is not reasonable. We, therefore, split the output pattern into
4 non-overlapping patches. We then compute PCF of each patch and
compare it against the PCF of the exemplar. For PCF, we compute
the mean-square error (MSE) between the output patch PCF and the
exemplar’s PCF. The error is averaged across the 4 patches. Similar

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

175



X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

Table 2: Quantitative comparisons for single-class point pattern synthesis results of previous methods and ours. More quantitative results can
be found in supplemental document Table 3.

Scene
MSE of PCFs (↓) Wasserstein Distance (↓) Chamfer Distance (↓)

[MWT11][RÖM*15][TLH19] Ours [MWT11][RÖM*15][TLH19] Ours [MWT11][RÖM*15][TLH19] Ours

Fig. 5, (a) 0.2678 0.2836 0.2609 0.2459 1.4483 1.1148 1.0222 0.6896 0.0571 0.0440 0.0517 0.0353
Fig. 5, (b) 0.3296 0.3286 0.3103 0.3072 0.4858 0.5166 0.4885 0.3352 0.0962 0.0869 0.0920 0.0429
Fig. 5, (c) 0.6346 0.4913 0.5436 0.3911 2.1869 2.2596 2.2570 0.5287 0.0662 0.0685 0.0719 0.0184

Input Low-pass Filter Band-pass Filter High-pass Filters Mixed Ours

Figure 10: Analysis on using different filters in our filtering pipeline. Using Low-pass (Gaussian), band-pass filters (Sobel) and high-pass
filters (derivative) fail to preserve complicated structures on the output pattern. While a simple combination of low-, band- and high-pass
filters start giving correct orientation and overall structures.

operation is performed for the Wasserstein and Chamfer distance
metrics. Table 2 shows the values for all these metrics for point
patterns in Fig. 5. Additional quantitative analysis for more patterns
can be found in the supplemental Table 3.

User study. We perform a user study to analyze the visual differ-
ences between our and previous methods. In total, 28 users partici-
pated in this experiment. Users were shown the input exemplars and
the shuffled outputs from four methods: Ours, Ma et al. [MWT11],
Roveri et al. [RÖM*15] and Tu et al. [TLH19]. We use 14 different
point patterns for the study. Three of the patterns are shown in Fig. 5.
The other patterns can be found in the supplemental Figs. 8, 9 and
10. Users are asked to give a score from 1 (worst) to 5 (best) for each
of the output pattern based on their visual preferences over the local
and global structure preservation. Fig. 9 shows the final averaged
score across all users for each pattern. Our method achieves the
highest scores on average for all scenes except one. Detailed results
and numbers about the user study can be found in our supplemental
document Table 2.

5.3. Analyzing Random Filters

Random filters have shown impressive improvements [UVL18;
UBGB16] for feature extraction. We perform spectral analysis
(in Fig. 10) to understand the impact of random filters with dif-
ferent frequency spans on the synthesis. For this experiment, we use
a simplified filter bank during optimization: 4 gaussian filters (low-
pass) with evenly sampled sigma, 4 sobel operators as band-pass
and 4 derivative filters as high-pass.

As demonstrated in Fig. 10, when using only low-pass, high-pass
or band-pass filters during optimization, we found the resulting
synthesis quality to be bad. However, using all filters together starts
bringing the quality of synthesis a bit closer to ours (with random
filters). This demonstrates that a combined filter bank works better

as it contains filters spanning a larger range of frequencies (from low
to high). In theory, random filters span all frequencies based on their
Fourier power spectrum. This explains why using random filters can
generate even better results, from the perspective of Fourier analysis.
VGG-based filters trained on large-scale image data, however, are
not guaranteed to span all frequencies. This is consistent with our
point pattern sythesis results where random filters outperforms VGG-
based filters.

5.4. Ablation Study

We first evaluate the design choices of our pipeline using Gabor
and random filters. As shown in Fig. 11, using only spatial features
by irregular convolution [TLH19] results in degraded local and
global features with overlaps and outliers. Using Gabor features
better preserves local and global structures compared with the input.
Further, as illustrated in Fig. 12, using only Gabor filters without
random filters does not capture the details (column (b)). Using only
random filters means we remove the Gabor filters by pixelating the
input points. This results in incorrect and broken shapes (column
(c)). Our combination of both filters better preserves local and global

Input PPS with our filters PPS with VGG19 Ours

Figure 11: Ablation study on our proposed Gabor features and fil-
ters, compared with the irregular convolutional features and VGG19
network in PPS [TLH19]. Our filters better capture overall structure
and Gabor features better preserve local structure.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

176



X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

Input Gabor filters Random filters Ours

(a) (b) (c) (d)
Figure 12: Ablation study on our proposed Gabor and random
filters. Our combination of Gabor and random filters better capture
overall structure than using only Gabor or random filters.

Input w/o normalization w/o ReLU Ours

Figure 13: Ablation study on component choices in our convolu-
tional filtering pipeline. We compare our final design with the one
without instance normalization or ReLU activation. This shows both
normalization and ReLU are important for high-quality synthesis.

structures compared with the input. Also, we study the impact of
normalization layers and non-linear activation functions. Fig. 13
demonstrates that our method would completely fail without using
normalization. Without non-linear activation function such as ReLU,
the synthesized pattern such as V-structure, are much more noisy
and the global structure is not preserved well.

Loss functions. We study how different losses affect the synthesis
quality. As shown in Fig. 14, deep correlation loss captures better
the globally regular structure, while gram loss captures local struc-
tures. Without Lcorr, the overall regularity is not preserved. Without
Lgram, the disks starts to have overlaps. More recently, Heitz et
al. [HVCB21] present a Sliced Wasserstein loss for image-based
texture synthesis, achieving better results than using Gram loss. We
have experimented with Sliced Wasserstein loss noted as Lsw, as a
replacement of Gram loss. Fig. 14 illustrates that combining Lsw
with Lcorr introduces more distortion of the local structure than ours
(Lgram + Lcorr). More ablation studies about the number of random
filters, the chosen layer for Lcorr computation and loss functions
can be found in supplemental Section 3.1.

Input Lgram Lcorr Lsw +Lcorr Ours

(a) (b) (c) (d) (e)
Figure 14: Ablation study on losses. With only Lgram, the output
patterns do not preserve the global structure. Though using only
Lcorr preserves the globally regular structure, the output patterns
fail to preserve local details such as the distances between points
and disks. Lsw combined with Lcorr introduces more distortion than
ours (column (d) bottom region).

Table 3: We summarize statistics of different exemplars and runtime
of our method and PPS [TLH19]. Note that for the results of multi-
class patterns in Fig. 6, Fig. 7, and Fig. 8, we compare against
the runtime of PPS++ variant for fair comparisons. R refers row
number of the corresponding figure.

Scene #Classes
#Output
Samples

#Attributes
Runtime (m)
PPS Ours

Fig. 5, (a) 1 1124 - 23.9 5.7
Fig. 5, (b) 1 256 - 11.0 3.8
Fig. 5, (c) 1 992 - 22.7 5.6
Fig. 6, (a) 2 208 - 18.1 4.4
Fig. 6, (b) 2 512 - 58.1 7.4
Fig. 6, (c) 4 216 - 44.7 9.7
Fig. 7, (a) 4 112 2 23.8 9.3
Fig. 7, (b) 4 124 2 26.7 11
Fig. 7, (c) 4 160 2 31.7 14.5
Fig. 8, R1 1 64 1 5.6 2.3
Fig. 8, R2 2 512 1 58.1 7.4

5.5. Performance

With our implementation, synthesizing a point pattern from an exem-
plar takes from 2 to 15 minutes, where the number of output samples
varies from 64 to 1124. We show the run-time of PPS [TLH19] and
our method using an NVIDIA Quadro RTX 8000 on various exem-
plars in Table 3. Our method is up to 8 times faster than theirs. Also,
the total number of parameters of our filters is about 2.4M, while
the number of parameters of VGG-19 feature extractor they used is
about 10.6M, about 5 times more than ours.

6. Conclusions

We present a Gabor transform-based framework for point pattern
synthesis. This allows capturing both spatial and spectral features
simultaneously. Unlike previous point pattern synthesis approaches,
our method naturally extends to multi-class and multi-attribute point
pattern synthesis. We simplify the feature space to Gabor feature
maps and random filters’ features. We also analyze why random
filters work better than well-trained VGG-19 based features. Our
analysis hints that since random filters span all frequencies, it helps
better capture the details previously missed by VGG-19 based fea-
tures.

Limitations. Feature map representation [RÖM*15; TLH19] al-
lows us to extract positional and structural information from points,

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

177



X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

Input Ecormier et al. [EMGC19b] Ours

Figure 15: A failure case for highly constrained disk distribution.
Since we do not explicitly handle the distance between disks of
varying radii, it is hard for our method to synthesize this distribution
without overlaps, although the distributions seem still relevant.

which makes it possible for our method to handle patterns with
anisotropic, regular and irregular structure. However, similar to pre-
vious methods [MWT11; RÖM*15; TLH19], we share the same
issue that it requires user to input the window size or kernel size
(e.g., σ in Eq. 5) for optimization. These hyper-parameters can affect
the quality of the synthesis as shown in [TLH19]. In the multi-class
setting, we need to fully run the optimization for each class. Con-
sequently, the time complexity of our optimization grows linearly
with the number of classes. This can be problematic for applications
where interactive feedback is critical.

Future work. Currently, our feature maps are pixelized. It would
be interesting to encode the features in a continuous space. This
could potentially avoid artifacts due to the pixelized nature of the
feature maps. Though our characterization and synthesis pipeline is
end-to-end, with no human intervention, the results are still not per-
fect according to the user evaluation. Average score for each pattern
using our method is from around 4 to 4.5, while 5 is the maximum.
One direction for further improvements on local structure can be us-
ing an interactive authoring system as shown in Tu et al. [TWY*20].
This would allow users to fix remaining synthesis issues in local
regions interactively. Currently, we focus on a unified pipeline for
point pattern synthesis. However, as shown in Fig. 15, our method
might fail to capture disk distributions where disk can have vary-
ing radii and are strictly non-overlapping. Next step should be to
consider extending our method to explicitly control the distance
between disks or even to handle shape-aware elements. Besides,
we are interested in extending our point-based framework to re-
lated applications such as continuous curve synthesis [TWY*20],
distribution infilling and clustering [NEMC20].

Acknowledgement

We would like to thank the anonymous reviewers for their valuable
comments and Pierre Ecormier-Nocca for helping with object place-
ment in Blender [Com18]. Renderings shown in the results use free
models from Turbosquid [Tur21] under the "Editorial Use" license.

References
[ALS*18] ABERMAN, KFIR, LIAO, JING, SHI, MINGYI, et al. “Neural

best-buddies: Sparse cross-domain correspondence”. ACM Transactions
on Graphics (TOG) 37.4 (2018), 1–14 2.

[BBT*06] BARLA, PASCAL, BRESLAV, SIMON, THOLLOT, JOËLLE, et al.
“Stroke Pattern Analysis and Synthesis”. Computer Graphics Forum 25.3
(2006), 663–671. DOI: https://doi.org/10.1111/j.1467-
8659.2006.00986.x 2.

[BJLS17] BOJANOWSKI, PIOTR, JOULIN, ARMAND, LOPEZ-PAZ, DAVID,
and SZLAM, ARTHUR. “Optimizing the latent space of generative net-
works”. arXiv preprint arXiv:1707.05776 (2017) 2.

[BSD09] BALZER, MICHAEL, SCHLÖMER, THOMAS, and DEUSSEN,
OLIVER. “Capacity-constrained point distributions: A variant of Lloyd’s
method”. ACM Transactions on Graphics (TOG) 28.3 (2009), 1–8 7.

[Com18] COMMUNITY, BLENDER ONLINE. Blender - a 3D modelling and
rendering package. Blender Foundation. Stichting Blender Foundation,
Amsterdam, 2018. URL: http://www.blender.org 10.

[DHL*98] DEUSSEN, OLIVER, HANRAHAN, PAT, LINTERMANN, BERND,
et al. “Realistic Modeling and Rendering of Plant Ecosystems”. Pro-
ceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’98. New York, NY, USA: Asso-
ciation for Computing Machinery, 1998, 275–286. ISBN: 0897919998.
DOI: 10.1145/280814.280898. URL: https://doi.org/10.
1145/280814.280898 1.

[EMGC19a] ECORMIER-NOCCA, PIERRE, MEMARI, POORAN, GAIN,
JAMES, and CANI, MARIE-PAULE. “Accurate Synthesis of Multi-Class
Disk Distributions”. Computer Graphics Forum. Vol. 38. 2. Wiley Online
Library. 2019, 157–168 2, 6, 7.

[EMGC19b] ECORMIER-NOCCA, PIERRE, MEMARI, POORAN, GAIN,
JAMES, and CANI, MARIE-PAULE. “Accurate Synthesis of Multi-Class
Disk Distributions”. Computer Graphics Forum 38.2 (2019), 157–168.
DOI: https://doi.org/10.1111/cgf.13627 10.

[GAD*20] GUEHL, PASCAL, ALLEGRE, RÉMI, DISCHLER, J-M, et al.
“Semi-Procedural Textures Using Point Process Texture Basis Functions”.
Computer Graphics Forum. Vol. 39. 4. Wiley Online Library. 2020, 159–
171 2.

[GAM*21] GIESEKE, LENA, ASENTE, PAUL, MĚCH, RADOMIR, et al. “A
Survey of Control Mechanisms for Creative Pattern Generation”. Com-
puter Graphics Forum. Vol. 40. 2. Wiley Online Library. 2021, 585–
609 2.

[GB10] GLOROT, XAVIER and BENGIO, YOSHUA. “Understanding the
difficulty of training deep feedforward neural networks”. Proceedings
of the thirteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings. 2010, 249–
256 3.

[GEB15a] GATYS, LEON, ECKER, ALEXANDER S, and BETHGE,
MATTHIAS. “Texture Synthesis Using Convolutional Neural Networks”.
Advances in Neural Information Processing Systems. Ed. by CORTES,
C., LAWRENCE, N., LEE, D., et al. Vol. 28. Curran Associates, Inc.,
2015, 262–270 2.

[GEB15b] GATYS, LEON A, ECKER, ALEXANDER S, and BETHGE,
MATTHIAS. “A neural algorithm of artistic style”. arXiv preprint
arXiv:1508.06576 (2015) 2, 3.

[HB95] HEEGER, DAVID J and BERGEN, JAMES R. “Pyramid-based tex-
ture analysis/synthesis”. Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques. 1995, 229–238 2.

[HLT*09] HURTUT, T., LANDES, P.-E., THOLLOT, J., et al. “Appearance-
Guided Synthesis of Element Arrangements by Example”. Proceedings
of the 7th International Symposium on Non-Photorealistic Animation
and Rendering. NPAR ’09. New Orleans, Louisiana: Association for
Computing Machinery, 2009, 51–60. ISBN: 9781605586045. DOI: 10.
1145/1572614.1572623 2.

[HSD13] HECK, DANIEL, SCHLÖMER, THOMAS, and DEUSSEN, OLIVER.
“Blue Noise Sampling with Controlled Aliasing”. ACM Trans. Graph. 32.3
(July 2013). ISSN: 0730-0301. DOI: 10.1145/2487228.2487233.
URL: https://doi.org/10.1145/2487228.2487233 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

178

https://doi.org/https://doi.org/10.1111/j.1467-8659.2006.00986.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2006.00986.x
http://www.blender.org
https://doi.org/10.1145/280814.280898
https://doi.org/10.1145/280814.280898
https://doi.org/10.1145/280814.280898
https://doi.org/https://doi.org/10.1111/cgf.13627
https://doi.org/10.1145/1572614.1572623
https://doi.org/10.1145/1572614.1572623
https://doi.org/10.1145/2487228.2487233
https://doi.org/10.1145/2487228.2487233


X. Huang, P. Memari, H.P. Seidel, G. Singh / Point-Pattern Synthesis using Gabor and Random Filters

[HVCB21] HEITZ, ERIC, VANHOEY, KENNETH, CHAMBON, THOMAS,
and BELCOUR, LAURENT. “A Sliced Wasserstein Loss for Neural Texture
Synthesis”. Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, 9412–9420 9.

[HWH16] HE, KUN, WANG, YAN, and HOPCROFT, JOHN. “A powerful
generative model using random weights for the deep image representa-
tion”. Advances in Neural Information Processing Systems 29 (2016) 2.

[KB14] KINGMA, DIEDERIK P and BA, JIMMY. “Adam: A method for
stochastic optimization”. arXiv preprint arXiv:1412.6980 (2014) 4.

[KSH12] KRIZHEVSKY, ALEX, SUTSKEVER, ILYA, and HINTON, GE-
OFFREY E. “ImageNet Classification with Deep Convolutional Neural
Networks”. Advances in Neural Information Processing Systems. Ed. by
PEREIRA, F., BURGES, C. J. C., BOTTOU, L., and WEINBERGER, K. Q.
Vol. 25. Curran Associates, Inc., 2012, 1097–1105 2.

[LD08] LAGAE, ARES and DUTRÉ, PHILIP. “A comparison of methods
for generating Poisson disk distributions”. Computer Graphics Forum.
Vol. 27. 1. Wiley Online Library. 2008, 114–129 7.

[Lew89] LEWIS, J. P. “Algorithms for Solid Noise Synthesis”. SIGGRAPH
Comput. Graph. 23.3 (July 1989), 263–270. ISSN: 0097-8930. DOI: 10.
1145/74334.74360. URL: https://doi.org/10.1145/
74334.74360 1.

[LGH13] LANDES, PIERRE-EDOUARD, GALERNE, BRUNO, and HUR-
TUT, THOMAS. “A Shape-Aware Model for Discrete Texture Synthe-
sis”. Proceedings of the Eurographics Symposium on Rendering. EGSR
’13. Zaragoza, Spain: Eurographics Association, 2013, 67–76. DOI: 10.
1111/cgf.12152 2.

[LSM*19] LEIMKÜHLER, THOMAS, SINGH, GURPRIT, MYSZKOWSKI,
KAROL, et al. “Deep Point Correlation Design”. ACM Trans. Graph. 38.6
(Nov. 2019). ISSN: 0730-0301. DOI: 10.1145/3355089.3356562 2.

[MWLT13] MA, CHONGYANG, WEI, LI-YI, LEFEBVRE, SYLVAIN, and
TONG, XIN. “Dynamic element textures”. ACM Transactions on Graphics
(TOG) 32.4 (2013), 1–10 2.

[MWT11] MA, CHONGYANG, WEI, LI-YI, and TONG, XIN. “Discrete
Element Textures”. ACM Trans. Graph. 30.4 (July 2011). ISSN: 0730-
0301. DOI: 10.1145/2010324.1964957 2, 5, 7, 8, 10.

[NEMC20] NICOLET, BAPTISTE, ECORMIER-NOCCA, PIERRE, MEMARI,
POORAN, and CANI, MARIE-PAULE. “Pair Correlation Functions with
Free-Form Boundaries for Distribution Inpainting and Decomposition”.
Eurographics 2020 short paper proceedings. 2020 10.

[ÖG12] ÖZTIRELI, A CENGIZ and GROSS, MARKUS. “Analysis and syn-
thesis of point distributions based on pair correlation”. ACM Trans. Graph.
31.6 (2012) 1, 2.

[PGC*17] PASZKE, ADAM, GROSS, SAM, CHINTALA, SOUMITH, et al.
“Automatic differentiation in pytorch”. (2017) 4.

[PS00] PORTILLA, JAVIER and SIMONCELLI, EERO P. “A parametric tex-
ture model based on joint statistics of complex wavelet coefficients”.
International journal of computer vision 40.1 (2000), 49–70 2.

[QSMG17] QI, CHARLES R, SU, HAO, MO, KAICHUN, and GUIBAS,
LEONIDAS J. “Pointnet: Deep learning on point sets for 3d classification
and segmentation”. Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, 652–660 2.

[QYSG17] QI, CHARLES RUIZHONGTAI, YI, LI, SU, HAO, and GUIBAS,
LEONIDAS J. “PointNet++: Deep Hierarchical Feature Learning on Point
Sets in a Metric Space”. Advances in Neural Information Processing
Systems. Ed. by GUYON, I., LUXBURG, U. V., BENGIO, S., et al. Vol. 30.
Curran Associates, Inc., 2017, 5099–5108 2.

[RGF*20] REDDY, PRADYUMNA, GUERRERO, PAUL, FISHER, MATT, et
al. “Discovering Pattern Structure Using Differentiable Compositing”.
ACM Trans. Graph. 39.6 (Nov. 2020). ISSN: 0730-0301. DOI: 10.1145/
3414685.3417830 1, 3, 5, 6.

[RÖG17] ROVERI, RICCARDO, ÖZTIRELI, A. CENGIZ, and GROSS,
MARKUS. “General Point Sampling with Adaptive Density and Correla-
tions”. Computer Graphics Forum 36.2 (2017), 107–117. DOI: https:
//doi.org/10.1111/cgf.13111 2.

[RÖM*15] ROVERI, RICCARDO, ÖZTIRELI, A. CENGIZ, MARTIN, SE-
BASTIAN, et al. “Example Based Repetitive Structure Synthesis”. Pro-
ceedings of the Eurographics Symposium on Geometry Processing. SGP
’15. Graz, Austria: Eurographics Association, 2015, 39–52. DOI: 10.
1111/cgf.12695 1, 2, 4, 5, 7–10.

[SC17] SENDIK, OMRY and COHEN-OR, DANIEL. “Deep Correlations for
Texture Synthesis”. ACM Trans. Graph. 36.5 (July 2017). ISSN: 0730-
0301. DOI: 10.1145/3015461 2, 3.

[SZ14] SIMONYAN, KAREN and ZISSERMAN, ANDREW. “Very deep con-
volutional networks for large-scale image recognition”. arXiv preprint
arXiv:1409.1556 (2014) 5.

[SZ15] SIMONYAN, KAREN and ZISSERMAN, ANDREW. “Very Deep Con-
volutional Networks for Large-Scale Image Recognition”. 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by BENGIO,
YOSHUA and LECUN, YANN. 2015. URL: http://arxiv.org/
abs/1409.1556 1–3.

[TLH19] TU, PEIHAN, LISCHINSKI, DANI, and HUANG, HUI. “Point Pat-
tern Synthesis via Irregular Convolution”. Computer Graphics Forum
38.5 (2019), 109–122. DOI: https://doi.org/10.1111/cgf.
13793 1–10.

[Tur21] TURBOSQUID. Turbosquid. https://www.turbosquid.com/. 2021 10.

[TWY*20] TU, PEIHAN, WEI, LI-YI, YATANI, KOJI, et al. “Continuous
Curve Textures”. ACM Trans. Graph. 39.6 (Nov. 2020). ISSN: 0730-0301.
DOI: 10.1145/3414685.3417780 2, 10.

[UBGB16] USTYUZHANINOV, IVAN, BRENDEL, WIELAND, GATYS,
LEON, and BETHGE, MATTHIAS. “What does it take to generate nat-
ural textures?”: (2016) 2, 8.

[Uli88] ULICHNEY, ROBERT A. “Dithering with blue noise”. Proc. IEEE
76.1 (1988) 2.

[UVL16] ULYANOV, DMITRY, VEDALDI, ANDREA, and LEMPITSKY,
VICTOR. “Instance normalization: The missing ingredient for fast styliza-
tion”. arXiv preprint arXiv:1607.08022 (2016) 3.

[UVL18] ULYANOV, DMITRY, VEDALDI, ANDREA, and LEMPITSKY,
VICTOR. “Deep image prior”. Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, 9446–9454 2, 8.

[WSL*19] WANG, YUE, SUN, YONGBIN, LIU, ZIWEI, et al. “Dynamic
Graph CNN for Learning on Point Clouds”. ACM Trans. Graph. 38.5
(Oct. 2019). ISSN: 0730-0301. DOI: 10.1145/3326362 2.

[Yel83] YELLOTT, JOHN I. “Spectral consequences of photoreceptor sam-
pling in the rhesus retina”. Science 221.4608 (1983) 2.

[YGW*15] YAN, DONGMING, GUO, JIAN-WEI, WANG, BIN, et al. “A
Survey of Blue-Noise Sampling and Its Applications”. English (US).
Journal of Computer Science and Technology 30.3 (May 2015), 439–452.
ISSN: 1000-9000. DOI: 10.1007/s11390-015-1535-0 2.

[YTO*18] YI, KWANG MOO, TRULLS, EDUARD, ONO, YUKI, et al.
“Learning to find good correspondences”. Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2018, 2666–2674 3.

[ZHWW12] ZHOU, YAHAN, HUANG, HAIBIN, WEI, LI-YI, and WANG,
RUI. “Point Sampling with General Noise Spectrum”. ACM Trans.
Graph. 31.4 (July 2012). ISSN: 0730-0301. DOI: 10.1145/2185520.
2185572. URL: https : / / doi . org / 10 . 1145 / 2185520 .
2185572 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

179

https://doi.org/10.1145/74334.74360
https://doi.org/10.1145/74334.74360
https://doi.org/10.1145/74334.74360
https://doi.org/10.1145/74334.74360
https://doi.org/10.1111/cgf.12152
https://doi.org/10.1111/cgf.12152
https://doi.org/10.1145/3355089.3356562
https://doi.org/10.1145/2010324.1964957
https://doi.org/10.1145/3414685.3417830
https://doi.org/10.1145/3414685.3417830
https://doi.org/https://doi.org/10.1111/cgf.13111
https://doi.org/https://doi.org/10.1111/cgf.13111
https://doi.org/10.1111/cgf.12695
https://doi.org/10.1111/cgf.12695
https://doi.org/10.1145/3015461
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/https://doi.org/10.1111/cgf.13793
https://doi.org/https://doi.org/10.1111/cgf.13793
https://doi.org/10.1145/3414685.3417780
https://doi.org/10.1145/3326362
https://doi.org/10.1007/s11390-015-1535-0
https://doi.org/10.1145/2185520.2185572
https://doi.org/10.1145/2185520.2185572
https://doi.org/10.1145/2185520.2185572
https://doi.org/10.1145/2185520.2185572



