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Figure 1: We stylize a volumetric radiance field (left) with a posterized look (middle). After the palette-based decomposition of the radiance
field, we convert the decomposed layers into the ones that are uniformly colored with one of the palette colors. We also introduce intuitive
recoloring via palette color modification into the stylized rendering of the volumetric radiance field (right).

Abstract

Volumetric radiance fields have recently gained significant attention as promising representations of photorealistic scene re-
construction. However, the non-photorealistic rendering of such a representation has barely been explored. In this study, we
investigate the artistic posterization of the volumetric radiance fields. We extend the recent palette-based image-editing frame-
work, which naturally introduces intuitive color manipulation of the posterized results, into the radiance field. Our major
challenge is applying stylization effects coherently across different views. Based on the observation that computing a palette
frame-by-frame can produce flickering, we propose pre-computing a single palette from the volumetric radiance field covering
its entire visible color. We present a method based on volumetric visibility to sample visible colors from the radiance field while
avoiding occluded and noisy regions. We demonstrate our workflow by applying it to pre-trained volumetric radiance fields
with various stylization effects. We also show that our approach can produce more coherent and robust stylization effects than
baseline methods that compute a palette on each rendered view.

CCS Concepts
» Computing methodologies — Non-photorealistic rendering; Image processing;

1. Introduction tions. For example, neural radiance fields (NeRFs) [MST*20] and
their variants can effectively reproduce complex view-dependent
Volumetric radiance fields have recently gained significant popular- effects (e.g., occlusions and highlights) and allow for highly pho-

ity as promising scene representations for neural-network applica-
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torealistic free-view synthesis [MST*20, PSB*21, PSH*21]. More
recently, the volumetric radiance field has been applied to more
challenging tasks other than view interpolation, such as generative
modeling of human faces [CMK*20] and surface appearance in-
terpolation [BGP*21]. While previous approaches have focused on
reproducing the photorealistic appearance of objects, the visualiza-
tion of the radiance field with non-photorealistic styles remains un-
explored. Computationally simulating the non-photorealistic styles
and illustration techniques, such as perceptual abstraction and fea-
ture line drawing, helps digital artists pursue their expression and
facilitates visual communication for illustrative purposes [DS02,
ST90, GGSCI8].

Posterization, also known as cartoon rendering, is a popular non-
photorealistic rendering (NPR) technique that transforms a con-
tinuous image into regions of constant color, as is often seen in
paintings, comic books, and cel animations. To achieve such ef-
fects, the classic approach for 3D models [LMHBOO] relies on the
lighting direction and surface geometry. However, such informa-
tion is not readily available for the volumetric radiance fields, typi-
cally trained via visual supervision. Other previous approaches ad-
dressed the stylization of photographs [DS02] or videos [WOGO06].
More recently, Chao et al. [CSG21] have presented palette-based
posterization of images, in which a palette of the input image is
used for intuitive color manipulation of the result. Although such a
palette is useful for generating user-intended effects, automatic ex-
traction of the palette is not straightforward for the volumetric ra-
diance fields, which represent multiple views using a radiance (i.e.,
view-dependent color) and a scalar density field. On the other hand,
extracting the palette for each rendered view results in a stylization
effect that is incoherent across different views.

In this study, we investigate posterized rendering of volumetric
radiance fields. We extend the palette-based approach to the volu-
metric radiance fields. To achieve temporally coherent stylization
results, we precompute a single palette that covers the entire vis-
ible color of the field. Our algorithm extracts the palette by gen-
erating discrete color samples from the continuous radiance field
and analyzing the RGB space geometry using the method based on
convex hull simplification [TLG16]. However, due to several key
challenges, we cannot directly apply the existing method based on
a convex hull. According to the volume transmittance, a consider-
able portion of the radiance field is occluded and thus not visible
from outside. Such invisible regions can contain significant noise
even after the training converges. Moreover, the volume-rendering
formulation allows the radiances emitted at different positions and
directions to have different degrees of contribution to the rendered
image. Hence, directly using the exhaustive radiance samples re-
sults in a low-quality palette severely affected by the noise that ob-
scures the visible colors.

To address these challenges, we leverage the volume-rendering
equation and compute the volumetric visibility of each radiance
sample to adjust its effects on the palette extraction. We present a
novel filtering method based on the volumetric visibility for gen-
erating fewer representative points from the raw radiance samples.
Specifically, by introducing visibility weights, we extend the out-
lier filtering method based on k-means clustering [CSG21] to radi-
ance samples. Since the radiance field is a function that takes five-

dimensional inputs (three for spatial location and two for view di-
rection), the radiance sampling typically yields a prohibitively large
number of samples for the k-means algorithm. We overcome this
problem by performing histogram-based sample reduction, which
conserves the visibility weight.

At runtime, the extracted palette is used to posterize the rendered
frames. As the previous work [CSG21] focused on image posteri-
zation with high-quality region boundaries, their method typically
requires minutes for a single image, which is too costly to be ap-
plied directly to animation frame-by-frame. We present a simpler
method based on the RGB space geometry suitable for temporally
coherent posterization of real-time free-viewpoint rendering.

We implement our palette extraction using the PlenOctree data
structure [YLT*21] to efficiently sample from the radiance field
and compute the volumetric visibility with a sparse hierarchical
representation. We also use the PlenOctree to render the results in-
teractively and demonstrate the effectiveness of our posterization
algorithm by showing various visual effects and color adjustment
results. We quantitatively and qualitatively evaluate our posteriza-
tion workflow and show that our method can produce more tem-
porally coherent stylization effects than baseline methods. We also
compare our visibility-weighted palette extraction to other state-of-
the-art approaches based on a convex hull and show that our method
can produce a palette that better explains the visible colors in the
entire radiance field, leading to higher-quality posterization results
than those generated by other methods.

In summary, our contributions are as follows:

e We propose the approach to the NPR of static volumetric radi-
ance fields. We develop palette-based posterization and recolor-
ing system tailored to the free-view synthesis using the volumet-
ric radiance fields.

e We present a method for palette extraction from the pre-trained
volumetric radiance field. We weight the radiance samples ac-
cording to the volumetric visibility for improved robustness to
noise in occluded regions.

e We develop a real-time temporally coherent posterization system
and demonstrate the visual effects achieved using our method.
We also show that our weighted palette extraction method leads
to better posterization results.

2. Related Work
2.1. Neural Radiance Fields

Neural networks have expanded the vocabulary of scene rep-
resentations by replacing traditional graphic primitives [TZN19,
PFS*19] or introducing a new interpretation of arbitrary 3D scenes
[MST*20]. Mildenhall et al. [MST*20] viewed the scene as fields
of volume density and view-dependent emitted radiance converted
into a pixel color using volume rendering along a camera ray. Ex-
ploiting the differentiability of the volume rendering, they fitted a
neural network to the field and achieved the state-of-the-art novel
view synthesis.

This neural radiance field (NeRF) has caused an explosion of
follow-up research [DL21]. Most related to ours, researchers have
tackled a variety of appearance edits, such as relighting [SDZ*21],
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material editing [ZSD*21], texture editing [XXH*21], and style
transfer [CTT*22] to name a few. These approaches train the ra-
diance and density (and often some other) neural networks through
a custom procedure, which typically takes a long time and is subject
to hyperparameter settings. In contrast, we consider the volumetric
radiance field to be static data. Our method does not require neural
network training and can use any pre-trained NeRF with the density
and radiance fields.

One notable limitation of the original NeRF was the slow ren-
dering time owing to the hundreds of neural network evaluations
required for rendering a single pixel. This limitation has been ad-
dressed by more recent studies using either traditional graphics
techniques such as empty space skipping [LGL*20] and spatial
caching [YLT*21, GKJ*21], or replacing the network with a col-
lection of smaller ones [RPLG21]. We share a similar challenge
with these works. To efficiently skip unimportant regions and com-
pute the volumetric visibility of radiance samples, we employ the
PlenOctree data structure of Yu et al. [YLT*21]. We also use the
PlenOctree to render our results interactively.

2.2. Non-photorealistic Rendering

NPR techniques automatically simulate artistic styles found in
human-made artworks by salient geometric or chromatic features
of the data. Previous research has tackled a variety of styles such
as painterly [Mei96], cartoonish [LMHBOO], and feature lines
[ST90, DFRSO03] not only for artistic purposes, but also to facili-
tate visual communication among people [DS02, GGSC98]. Exist-
ing works have produced stylized results from various input data
types such as meshes [LMHBOO], photographs [DS02], and videos
[WOGO06]. In this work, we address the non-photorealistic styliza-
tion of the volumetric radiance field, a data type recently introduced
with the rise of neural data processing. Specifically, we extend the
recent palette-based approach [CSG21] to the volumetric radiance
field. Palette-based color manipulation is especially effective when
users do not have free access to other intuitive handles such as sur-
face albedo.

The non-photorealistic visualization of volume data (more
specifically, 3D scalar fields) was investigated. Traditional non-
photorealistic rendering (NPR) approaches for volume data such
as CT or MRI scans [BKR*05, CMH*01] rely on geometric fea-
tures (e.g., high surface curvature and silhouettes) of the 3D scalar
field for the comprehensible visualization. Previous studies visu-
alize such geometric features using various techniques such as di-
rected particles [Sai94], silhouette lines [BKR*05, CMH*01], and
stippling points [LME*02]. In contrast to the traditional volume
data, the scalar density of the volumetric radiance field is typically
noisy, ill-defined, and sensitive to training conditions, as it is trained
jointly with the radiance via visual supervision. This makes it chal-
lenging to apply the traditional density-based NPR techniques di-
rectly. In this study, we rely on rich radiance information to achieve
the stylization effect.

2.3. Palette Extraction
Palette-based color manipulation methods [CFL*15, TLG16,
TEG18,WLX19,ZXST17, MVH"* 17] automatically extract a color
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palette of an input image and use it as a handle for intuitive color
adjustment. To extract the palette, one line of work computes the
convex hull of the color samples and simplifies it to find prominent
colors as the vertices of the simplified convex hull [TLG16]. Com-
pared to alternative approaches, such as those extract palettes using
k-means [CFL*15] or color models [AASP17], the methods based
on RGB-space convex hulls [TLG16, TEG18, WLX19,CSG21] can
extract more vibrant colors and often allow for simpler color adjust-
ment operations. Wang et al. [WLX19] improved the RGB space
convex hull method by defining energy to encourage the convex
hull vertices to fit tighter to the color samples, making the palette
extraction more robust to outliers. In particular for the palette-based
posterization, Chang et al. [CFL* 15] presented a simpler outlier fil-
tering method based on k-means. We tailor the palette extraction via
RGB space convex hulls to volumetric radiance fields by weight-
ing color samples according to visibility. This balances the effect
of radiance samples and prevents noisy but invisible colors from
affecting the palette quality.

Several studies have applied the RGB-space convex hulls to ex-
tract a palette [DLX*21] or color scheme [KC20] for videos. How-
ever, such methods assume that all the frames in the video are avail-
able in advance and are thus not applicable to free-view synthesis.
Although rendering sample views to use these methods is one pos-
sibility, it is unclear how to choose a camera sequence effectively
covering the possible colors in the presence of complex occlusion.
Instead, we extract the palette by direct sampling from the radiance
field to obtain a single palette that covers the entire field.

Researchers have also investigated ways to organize palettes
for effective color manipulation. Mellado et al. [MVH*17] used a
graph-based representation of palettes suitable for palette modifica-
tions such as color harmonization and palette interpolation. Kim et
al. [KC21] applied color sorting to find a correspondence between
palettes for high-quality color transfer. Our approach is orthogo-
nal to these studies, and the palette extracted using our method can
work as a basis for these more sophisticated applications.

3. Background

To make our paper self-contained, this section briefly overviews the
existing volumetric radiance field representations and palette-based
color manipulation framework on which our non-photorealistic
rendering technique is constructed.

3.1. Volumetric Radiance Fields

Volumetric radiance fields typically consist of density and radiance.
The density field 6 maps the spatial position x € R? to the opac-
ity o(x) € R at that point. The radiance field L defines the RGB
color L(x,d) € [0,1]® emitted at point x in view direction d € R>.
These fields are represented using a multilayer perceptron (MLP)
[MST*20] in the NeRF. Traditional sparse spatial data structures
inside an associated bounding box, such as octrees [YLT*21], have
also been explored.

For an arbitrary camera ray r(z) = x +d the NeRF [MST*20]
allows us to compute the color ¢(r) € [0,1]> using the volume-
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Figure 2: Workflow of our approach. For coherent stylization, we pre-compute a palette of the input volumetric radiance field by sampling
the color outputs. Since occluded and noisy colors can affect the palette extraction, we utilize the density field to generate visible color
samples. Specifically, we adaptively generate spatial sampling points and filter output colors based on volumetric visibility. At runtime, the
extracted palette is used for the non-photorealistic posterization of the synthesized views, which naturally integrates interactive recoloring

into the stylized volume rendering.

rendering equation as

er) = [ T r)o(r(n)Lr().ddr, M
where T'(#; r) € R denotes the transmittance function
T(5;1) = exp (— / tc(r(s))ds) . @)
0

Note that the transmittance is reciprocal, that is, T'(t; ) = T (t; ')
for the inverted ray r’(s) = r(t) — sd.

The integral in (1) is numerically computed using the quadrature
rule for volume rendering [Max95]. Specifically, a finite number
of points tp =0 < #; < --- <ty € R are first sampled along the ray
and the approximated color &(r) € [0, 1]3 is computed as a Riemann
sum

é(r) = ) T (1 —exp(—0;8;))L;, 3)

=

1

where

i—1
T; = exp (—ch8j>, C))
=0

o; = o(r(s;)) and L; = L(r(s;)) for some s; € [f;,#i11], where
8; =t;11 — t; are the lengths of the corresponding intervals. The ac-
cumulated transmittance 7 is used to composite ¢(r) and the back-
ground, that is, the final color is obtained as (1 — Ty )é(r) + Tyco,
where ¢y is the background color typically given as a hyperparam-
eter.

PlenOctrees In our experiments, we use the PlenOctree [YLT*21]
to efficiently generate spatial sampling points, evaluate the density

and radiance functions, and compute volumetric quantities. The
PlenOctrees drastically reduced the computational cost of evalu-
ating the sum in (3) by replacing the deep MLP with a hierarchi-
cal data structure called PlenOctree to efficiently query the den-
sity and radiance at a given spatial point. They specifically use
a sparse octree whose leaf node stores the voxel’s average den-
sity and spherical harmonic (SH) coefficients that parameterize
color in the directional domain, making the radiance evaluation ex-
tremely lightweight compared to that of large MLPs. As a result,
the PlenOctree allows us to efficiently compute (3) by generating
the sampling points as ray-voxel intersections and using the infor-
mation cached at the voxels.

The leaf voxels are chosen from a regular grid by first sampling
the density field on the grid and then filtering transparent voxels by
thresholding the density values. To further encourage the sparsity,
voxels not visible from any training view are eliminated by tracking
the alpha values. The final octree structure is then constructed with
the remaining leaf voxels each of which stores the averaged density
and SH coefficients inside it. For more details on PlenOctree, please
refer to the original work [YLT*21].

3.2. Palette-based Color Manipulation

Our posterization workflow adopts a palette-based approach
[TLG16, TEG18] that enables intuitive recoloring of images, and
has more recently been applied to artistic image posterization
[CSG21]. We briefly introduce the relevant terms and notations.

A color palette is a finite set of RGB colors P = {p;}, where
pi € [0,1]>. It is used to decompose a given pixel color ¢ € [0,1]?
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as an additive blending of the palette colors as
c=Y Bipi, (5)
i

where 3; € R are non-negative blending weights that add up to one.
Given such decomposition weights, users can recolor the image by
modifying the palette color. Specifically, previous studies [TEG18,
WLX19, CSG21] allow users to specify a modified palette P’ =
{p/} and recolor the pixel colors as

Crecolored = ZBIPZ (6)
i

Palette Extraction Tan et al. [TLG16,TEG18] rely on the geomet-
ric structure formed by image pixels in the RGB space and auto-
matically extract a plausible palette by simplifying the convex hull
of the image pixels. For more details about the palette extraction
algorithm, please refer to their original work [TLG16,TEG18]. We
adopt their method based on a convex hull to extract a palette from
volumetric radiance fields. However, generate high-quality discrete
color samples must be generated from a continuous radiance field
to analyze the RGB space geometry. In the method section, we ex-
plain how to perform the sampling.

Palette-based Artistic Posterization We follow the palette-based
approach by Chao et al. [CSG21] to define discrete color labels
used for the posterization. They first extract a palette from the in-
put image as the corner of the convex hull in the RGB space. They
then define a set of color labels £ as a linear blending of all combi-
nations of two colors in the palette colors. In other words, the color
label is defined as

L={wpi+(1—-v)pjlk=12,....d=1landi< j}, (7)

where p;,p; € P and v, = k/d is a discrete blending weight, and
d € N* is a user-specified blending step. Finally, the image is pos-
terized by assigning one of the labels in £ to each pixel, and the
result can be intuitively recolored via the palette-based manipula-
tion. Although this workflow is effective for images, when applied
frame-by-frame, extracting a palette individually for each frame re-
sults in flickering. We present a method to overcome this challenge
in interactive free view-synthesis using volumetric radiance fields.

4. Method

Our workflow uses a pre-trained volumetric radiance field as the
input and artistically posterizes the synthesized views. We employ
the palette-based approach based on Chao et al. [CSG21]. However,
their method mainly addresses image posterization, and it is diffi-
cult to achieve temporal coherency when applied frame-by-frame
to the video. Directly applying their method to each frame results
in flickering artifacts owing to the incoherence of the palette colors
between adjacent frames.

To address this challenge, we precompute a single palette that
foresees all visible colors in the volumetric radiance field. At run-
time, the extracted palette is used for temporally coherent poster-
ization and recoloring of the rendered images in the screen space.
In the remainder of this section, we present our palette extraction
from volumetric radiance fields and the details of the run-time pos-
terization. Figure 2 shows the overview of our workflow.
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4.1. Palette Precomputation

For the palette extraction, we employ the approach of Tan et al.
[TLG16], which based on the RGB-space geometry. However, the
previous palette extraction technique is not directly applicable be-
cause of several key challenges. First, unlike images or videos, the
radiance field is a continuous function, so we need to generate dis-
crete color samples corresponding to the image pixels in order to
analyze it through the RGB-space geometry. Second, as the ra-
diance field has view-dependent spatial information, the sampled
data are typically several orders of magnitude larger than the im-
age pixel data. This makes the color analysis significantly more ex-
pensive if computation is done without reducing the sample count
via adaptive sampling or sample filtering. Furthermore, each color
sample has a different contribution to the camera ray owing to the
occlusion in the volume (1). In other words, not all colors are visi-
ble from outside the volume and such regions in the radiance field
are typically not optimized well via visual supervision. We need to
carefully avoid such unsupervised noisy colors.

Our approach is tailored to overcome these challenges. We intro-
duce the volumetric visibility of each five-dimensional input point
in the field to effectively weigh important color samples in the anal-
ysis. We also adaptively determine the spatial sampling points to ef-
ficiently avoid sampling from irrelevant regions. We further reduce
the number of samples using a color histogram to make the compu-
tation time of the subsequent stages independent of the number of
color samples.

Volumetric Visibility If we evenly sample the entire volumetric
radiance field, the palette extraction is easily affected by its noise or
under/overestimate some color samples. This is because, whereas
all pixels of images and videos are visible as they are, a consider-
able portion of the radiance field is not visible from the outside ow-
ing to the volume rendering which typically remains unsupervised
after training (see Figure 3). As the density field is continuous, the
extent of visibility varies continuously in the spatial and directional
domains. To address this problem, we propose assigning a contin-
uous weight to each color sample based on the density and using it
in the palette extraction stages. We refer to the weight volumetric
visibility.

For each pair of spatial points x and view direction d, we define

high

low

Figure 3: Visualization of radiance and volumetric visibility. There
is a low-visibility region as shown in the middle of the right-bottom
image owing to the occlusion by the hot dog. The radiance in the
corresponding region (right-top image) has noisy colors (e.g., blue,
pink, and green). Such unsupervised color noise can be a challenge
in automatic palette extraction.



154 Kenji Tojo & Nobuyuki Umetani / Recolorable Posterization of Volumetric Radiance Fields

the volumetric visibility w(x,d) as

w(x,d) =T (co; r)o(x)
o 8
— exp (-/0 G(r(t))dt> o(x), ®)

where r(f) = x —td is the ray starting at X in the inverted direction
—d. The reciprocity of the transmittance allows us to consider this
quantity as an infinitesimal weight in the volume-rendering integral
in (1) of the emitted color L(x,d) viewed in the direction d from
an infinitely distant observer at x 4+ cod. We hypothesize that this
volumetric visibility can be used as an estimate of the importance
of the radiance sample in the synthesized views and use it to adjust
the contribution of each sample to the palette extraction algorithm.
In our experiments, we efficiently computed the value w(x,d) using
the PlenOctree via the quadrature rule in (4).

Density-adaptive Radiance Sampling To analyze the RGB-space
geometry, we first need to discretely sample colors from the con-
tinuous volumetric radiance field. We draw such samples by gen-
erating spatial-directional inputs and evaluating the radiance field
for these inputs. We call the color samples generated with this
method radiance samples to clarify that the colors were produced
from a radiance field, and each of them is associated with a
spatial-directional point. As brute-force sampling from such a five-
dimensional domain can easily produce a prohibitively large num-
ber of samples, we leverage the sparsity of the density field and
adaptively generate Nsp spatial sampling points at locations with a
non-zero density value. The Ny;, viewing directions are then regu-
larly sampled at each of the generated locations. We hence generate
NspNgir radiance samples in total. In terms of the volumetric visibil-
ity, this adaptive sampling can be justified as any radiance sample
at location x with zero density 6(x) = 0 has zero visibility in (8).
Because most of the pre-trained volumetric radiance fields used in
our experiments were optimized by training views seen from the
upper hemisphere, we generate the viewing directions seen from
the upper hemisphere.

Spatial sampling points are efficiently generated using the
PlenOctree. Because of its construction, spatial positions that are
not included in the non-empty leaf nodes of the tree can be consid-
ered to have zero density. In contrast, every non-empty leaf voxel
has a positive average density. Hence, we perform a tree search and
place the spatial sampling points at the center of all the non-empty
leaf voxels. In this case, Nsp is the number of non-empty leaves in
the PlenOctree model, representing the input volumetric radiance
field.

Regular sampling of a specified number of directions is not
straightforward. In our experiments, we project the hemispherical
domain to the unit square using the cylindrical map as in [MGN17]
and regularly generate view directions on the square. We further
anti-alias the radiance samples through multisampling around each
view direction. For specific details of the directional sampling, see
Appendix A.

As our experiments use PlenOctree models with 9 spherical har-
monic bases per channel, it is not worth sampling substantially
more than 9 directions (note that the bases are slightly more ex-
pressive because of the sigmoid function applied at the top). Nev-

ertheless, a large number of raw direction samples is still useful
considering the geometric complexity. For further efficient genera-
tion of the radiance samples, we consider the density and the volu-
metric visibility under corresponding thresholds to be zero. We use
1 x 1072 for the thresholds following the similar parameter used
for rendering the PlenOctree in [YLT*21].

Visibility-weighted Sample Filtering The radiance samples still
contain a considerable portion of invisible (and thus noisy) colors.
This is partly because we do not consider volumetric visibility to
generate view directions but regularly sample them. It is desirable
to remove such noise before extracting a palette via RGB space
geometry as the shape of a convex hull can be easily affected by
outlier colors, which leads to a palette that does not respect the
true color distribution. For palette extraction from images, an out-
lier removal technique based on k-means clustering [CSG21] ex-
ists. However, radiance samples are significantly noisier and sev-
eral orders of magnitude larger in number than image pixels, which
limits the effectiveness of the k-means algorithm in terms of its
noise-reduction effect and computational cost.

To overcome this problem, we use a histogram of the radiance
samples weighted by their volumetric visibility. Specifically, we
compute a histogram in the RGB space where each bin stores the
total volumetric visibility of the samples inside it. This not only
drastically reduces the number of samples but also lowers the ef-
fect of less visible colors. The non-empty bins are then clustered
using k-means with a large K to further eliminate remaining outlier
colors. In our experiments, we use a histogram with 32 x 32 x 32
bins.

As it is not always straightforward for users to choose an appro-
priate number K of clusters for a given volumetric radiance field,
we offer a method for automatically determining the value of K
with respect to a threshold parameter T € R. Specifically, we first
compute a coarse histogram with 8 x 8 x 8 bins from the radiance
samples weighted by the volumetric visibility. We normalize the
bin weights and use the centers of bins whose weights are above
7T as the initial cluster centers. Note that such carefully chosen ini-
tial cluster centers also help the k-means algorithm to efficiently
and robustly find the final cluster centers. We empirically use the
threshold T = 8 x 103 consistently for generating our results.

Finally, the obtained cluster centers are passed to the convex hull
analysis and we use the generated palette in our runtime posteriza-
tion algorithm. We specify the final palette size of the convex hull
method to be 6 in our experiments.

4.2. Run-time Posterization

At runtime, we posterize the synthesized views using a precom-
puted palette. We follow the approach of Chao et al. [CSG21] to
define discrete color labels using a palette in (7). In this study, we
consistently use d = 3 in (7) and also add the original palette col-
ors to the labels. Posterization is then computed by assigning one
of the labels to each pixel. However, producing abstracted images
with smooth regional boundaries is not straightforward. Previous
works [CSG21,XKO08] formulated the label assignment as a combi-
natorial optimization problem to obtain smooth region boundaries,
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Figure 4: Gallery of stylization results. Original renderings were posterized using the palettes extracted by our visibility-weighted method

and recolored changing the marked palette colors (left-to-right).

but it can take minutes to process a single image and can be too
costly for the interactive free-view synthesis. Notably, the video
stylization approach of Winnemdoller et al. [WOGO6] utilizes effi-
cient iterative bilateral filtering to obtain smoothly stylized images
in real-time. However, their workflow relies on a thresholding of the
luminance channel to reproduce a posterized look and thus does not
support arbitrary color labels.

Inspired by the video abstraction approach [WOGO06], we ab-
stract synthesized frames with iterative bilateral filtering and then
assign labels to each pixel using nearest-neighbor projection. We
use an efficient separated-kernel approximation [PvV05] of the bi-
lateral filter. For the nearest-neighbor projection, we use the RGB

: v o - 4
L2 ’B«L 28 "1
ip o D >
Original RGB CIELAB

Figure 5: Comparison of label assignment results using the RGB
(middle) and the CIELAB (right) color spaces. Both approaches
generate a palette in the RGB space. The label assignment in the
CIELAB space leads to the loss of details in several regions.
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distance. Although the percepturally uniform CIELAB color space
can potentially be used, our color labels are defined using the RGB
space geometry, and we sometimes see that the CIELAB space dis-
tort the original geometry, resulting in loss of details (Figure 5).
Even though the label assignment in the RGB space can potentially
produce inaccurate colors, we observe that it is often not severely
problematic.

Soft Label Assignment Smooth transition between discrete color
labels is useful for reducing abrupt boundaries and a temporal flick-
ering. We incorporate this to our label assignment by smoothly
blending the second-nearest label when the distances D; and D,
to the first-and second-nearest labels are nearly equal. We allow
the user to specify a step width parameter D and normalize the dif-
ference D, — Dy as & = 0.5+ (D, — Dy)/2D € [0.5,00]. We then
smoothly clamp the @ to the range [0.5, 1] using a smoothstep func-
tion as o = 3% (1 — 26.), and assign the linear blending of first-and
second-nearest labels with weights oo and 1 — o to the pixel. We use
D € ]0.1,0.4] to generate the stylization results in our experiment.
We evaluate the effect of different values of D in the result section.

To save computation time, we do not convert the pixels with zero
accumulated transmittance Ty in (4) as they already have a constant
background color. We also avoid modifying the pixels with an ac-
cumulated transmittance Ty below a threshold A € R. Converting
these pixels sometimes allows semi-transparent regions with col-
ors similar to the background to appear in the result as undesirable
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D=02

Figure 6: Evaluation of the step width parameter D in our la-
bel assignment. Different values of D results in different boundary
sharpness. See text for more discussion.

colored floating clouds. Note that such semi-transparent regions
are often seen in volumetric radiance fields, owing to the under-
constrained nature of the visual supervision. In our experiment, we
set L = 80/255 empirically.
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Figure 7: Temporal coherency. The mean absolute difference be-
tween adjacent image frames of stylized animations produced using
different palette extraction approaches are compared. The anima-
tion sequence is generated by rotating the camera by approximately
90° around the center of the model. We show two example frame
transitions that causes a flickering in the animation generated by
the image-space method. Please refer to our supplemental mate-
rial for the entire videos.

5. Results

We apply our method to pre-trained PlenOctree models published
by the authors of [YLT*21] and show the results in Figures 1
and 4. Our method abstracts the rendering into constant color re-
gions while also fairly preserving fine details such as the fine tex-
ture on the MIC and LEGO models. Palette-based color labels nat-
urally allow for localized recoloring of the stylized rendering. In
these Figures, we illustrate this by modifying the colors of each
palette. For instance, we can see that the red drum can be turned
blue or the blue highlight in the SHIP model can be made orange to
produce a look and feel of a sunset.

Temporal Coherency We evaluate the temporal coherency of our
posterization approach with a single pre-computed palette by com-
paring it to the baseline approach where a palette is recomputed for

Chao et al.

Original

Figure 8: Comparison with palette extraction from example views.
We posterized a rendered view (a) using palettes generated by three
methods: the method of Chao et al. [CSG21] applied to one view
(b), applied to the concatenation of seven views (c), and our method
(d). The input views for (c), shown above the corresponding re-
sults, were evenly selected from the test poses in the NeRF-synthetic
dataset, and one among them is used for (b). Due to directional
color variations and spatial effects such as occlusion and camera
distortion, we observe that the baseline approaches (b) and (c) re-
sult in less accurate colors (see areas indicated by the arrows) than
those produced by our method (d). Note that these test poses are
not readily available when the models are streamed to end-users or
created using generative models [CMK*20]. See Appendix B for
specific experimental conditions.
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Original Tan et al.

Wang et al.

Figure 9: Robustness of different palette extraction approaches to noise. Our method based on volumetric visibility better deals with
radiance samples compared to naive application the algorithm of Tan et al. [TLG16] via the RGB convex hull or a more sophisticated
geometric palette extraction approach of Wang et al. [WLX19] based on optimization. To create the results for the baseline methods, we
used 640000 (= 800 x 800) colors from the raw radiance samples as input. Consequently, our palette produces stylization effects with more

accurate colors than those extracted using other techniques.

each rendered frame. Short animations were created by interpolat-
ing key camera poses. We use the method of Tan et al. [TLG16] to
extract a palette from the rendered frames. To make the comparison
fair and clear, we always use our label assignment based on nearest
neighbor projection to generate posterization using the computed
palettes.

Figure 7 plots the average magnitude of the pixel-wise differ-
ence between adjacent stylized frames produced by the different
methods. We can see that the baseline approach generally has a
higher difference value and frequent spikes in the plot. This in-
dicates that recomputing a palette frame by frame leads to inco-
herent and unstable posterization results. In contrast, our single-
palette approach consistently exhibits small difference values, sug-
gesting that it can produce more temporary coherent results. We
also present an error for the recolored animations and the results
show that our method enables temporary coherent recoloring ef-
fects. We provide the videos used for creating the plots in our sup-
plemental material. Note that palettes varying each frame also make
the recoloring much less straightforward.

Note that one can also pre-compute a palette from one or a set
of example views. We observe that this approach can produce sim-
ilar results to ours when the views are carefully chosen. However,
for models with a rich directional color variation or complicated ge-
ometry, finding a set of camera projections that accurately represent
the distribution of visible colors in the 5D spatial-directional space
is not always trivial. In contrast, our approach directly works in the
spatial-directional space, allowing users to capture the actual color

© 2022 The Author(s)
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distribution without manually specifying representative views. In
Figure 8, we compare our method with baseline approaches ex-
tracting a palette from one view or the concatenation of seven
views. The views were created using camera poses in the NeRF-
synthetic dataset [MST*20] which the models in our experiments
were trained with. We present a few examples where the baseline
methods result in less accurate colors than ours for a view not in-
cluded in the example views.

Comparison of Palette Extraction Methods We compare our
palette extraction based on visible radiance samples to other state-
of-the-art approaches for natural images based on the RGB space
geometry. The palettes extracted using these methods are shown
in Figure 9. Directly applying the method of Tan et al. [TLG16],
the simplified convex hull is severely affected by noisy colors and
resulting in a palette with spurious colors. This suggests that vol-
umetric radiance fields trained via visual supervision can still con-
tain a considerable portion of noisy colors even though they are not
apparent owing to occlusion. As the noise in the raw radiance sam-
ples are significantly more intense than that in natural images the
optimization-based approach, Wang et al. [WLX19] fails to com-
pletely remove the noisy palette colors. In contrast, our visibility-
weighted method effectively captures the geometry of the visible
colors, which results in posterization results with more accurate
colors.

We also conducted an ablation study of visibility weights used in
our sample filtering. Figure 10 shows palettes and the correspond-
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w/o visibility

w/ visibility (Ours)

Figure 10: Ablation of the use of visibility weights in our sample
filtering based on k-means. For the method without the visibility
weights, we run k-means on 640000 (= 800 x 800) colors randomly
sampled from the raw radiance samples. For a clear comparison,
we use the initial cluster centers generated using our full filtering
method also in the baseline method. In the results, we can see that
the palettes extracted using our visibility-weighted k-means (right)
more plausibly captures the RGB space geometry of the radiance
samples than those generated by method without visibility (center).
Consequently, the palettes extracted using our full method more
faithfully preserve the original colors in the posterization results.

ing stylization results generated using the sample filtering with or
without the visibility weights. Although the method without the
visibility weights exhibits a noise reduction effect, our full method
generates more compact and plausible geometric palettes. Conse-
quently, our palettes results in posterization that more faithfully
captures the color of the original renderings.

Evaluation of Soft Label Assignment We evaluate the parame-
ter D of our runtime soft label assignment. In Figure 6, we present
posterization results generated using different values of D. Without
the soft label assignment, the result exhibits sharp boundaries be-
tween colors with high contrast. Our label assignment using a small
D allows us to smooth these boundaries by allowing for smooth
transitions between color labels. It is interesting to see that a large
D introduces hard boundaries again owing to the discontinuity of

Rad. Hull
Model Nsp K samp. Filt. simp.  Total FPS
CHAIR 3.0M 38 4.02s 1.6ls 0.46s 6.09s 60
DruMs 3.8M 34 7.56s 2.10s 0.15s 9.82s  30-60
Ficus 35M 42 9.87s 1.87s 0.17s 11.9s  30-60
Hor. 43M 38 7.84s 238 0.19s 10.4s  30-60
LEGO 45M 36 771s 2.67s 0.11ls 10.5s  30-60
MAT. 34M 23 6.12s 1.87s 0.34s  8.33s  30-60
Mic I.5SM 26 2.60s 0.81ls 0.07s 3.49s 60
SHIP 55M 26 14.0s 3.46s 0.11s 17.6s  20-30

Table 1: Performance breakdown of our palette extraction. We
report the execution time of radiance radiance sampling (Rad.
sampl.), sample filtering (Filt.), and convex-hull simplification
(Hull simpl.), along with the spatial sampling size Nsp and the num-
ber of the clusters K in sample filtering. We also present typical
frame rates (FPS) of our runtime interactive posterization. We im-
plemented the radiance sampling using CUDA and the sample fil-
tering using C++ for the histogram construction and SciPy for k-
means. For the convex hull simplification, we use the Python code
published by the authors of [TEG18]. The running times were gen-
erated on a 3.60 GHz Intel Core i7-6850K and an NVIDIA GeForce
GTX 1070. Note that the sample filtering stage takes dozen minutes
(or even an hour) without using a histogram. The abbreviations
HOT. and MAT. in the table represent HOTDOG and M ATERIALS.

second-and third-nearest neighbors. However, these boundaries are
more natural than those generated by the hard label assignment
because of intermediate colors additionally introduced as a linear
blending of the first-and second-nearest labels. The parameter D
works as a handle for users to tweak between smooth (thus more
temporary coherent) boundaries and harder ones that produce a
look and feel of cartoon animations.

Performance Table 1 presents the timing analysis of our palette
extraction and run-time posterization. Both volumetric visibility in
palette pre-computation and an original rendering at runtime can
be efficiently computed owing to the sparse hierarchical structure
of the PlenOctree. It is noteworthy that the volumetric visibility can
be computed fully in parallel for each radiance sample. Our GPU
implementation can generate radiance samples within a few sec-
onds. In addition, sample filtering based on a histogram drastically
reduces the subsequent K-means clustering and the palette extrac-
tion via the RGB space convex hull. As a result, given a PlenOctree
model, the entire palette extraction does not take too long (typically
around ten seconds).

Our runtime stylization method can be efficiently implemented
as a GPU shader, which allows us to interactively posterize and
recolor views rendered using the PlenOctree. In our supplemental
material, we present a screen capture of our run-time application.

6. Discussion and Future Work

We used volumetric visibility and successfully filtered noise in ra-
diance samples. Although we used simple weighted k-means with
a large cluster count, other mode-seeking methods such as mean
shift [Che95], which outperforms k-means in several tasks, could
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Figure 11: A failure case. Palette extraction based on the RGB
convex hull can fail to include an important color.

be used. However, it is not obvious how to adapt these more sophis-
ticated methods for our noise elimination purpose. In the future, we
plan to consider these methods to achieve higher-quality results.

Our approach based on convex hull analysis produced plausible
palettes in most tested cases. However, palette extraction purely
based on a convex hull can fail to find important color that does
not have geometric saliency in the RGB space (e.g., colors on or
inside the convex hull). We see one such failure case in our ex-
periments (Figure 11). To overcome such situations, incorporating
optimization-based approach [WLX19, AASP17] will be a promis-
ing direction. We believe that it will be interesting to use the vol-
umetric visibility to extend such optimization-based color analysis
to volumetric radiance fields.

Incorporating other non-photorealistic styles is also an interest-
ing future direction. For example, we plan to support the feature
lines commonly seen in cartoon animations. To visualize the feature
lines consistently across different views, utilizing geometric infor-
mation in the density field, as done in previous studies [BKR*05]
will be interesting. However, the density field is often noisy due to
under-constrained visual supervision to train the volumetric radi-
ance field. Addressing such geometric noise will be an important
future direction to extend the vocabulary of NPR styles for visual-
izing volumetric radiance fields.

In this study, we only use synthetic scenes with the constant
background color. In a future work, we plan to test our method on
models with a rich background trained by real photographs. To sup-
port these scenes, we need to devise a more sophisticated radiance
sampling strategy. We also plan to apply our method to other data
structures, such as the one using small neural networks [RPLG21]
to represent the entire volumetric radiance field.

7. Conclusion

We present a method to render volumetric radiance fields with a
non-photorealistic posterization style that can be intuitively recol-
ored using a palette. We have shown that precomputing the palette
from the volumetric radiance field leads to a coherent stylization
across different views. We propose using volumetric visibility to
eliminate noisy radiance samples that otherwise affect the palette
extraction quality. Compared with alternative approaches, our sys-
tem produces more temporary coherent and natural posterization
effects for interactive free-view synthesis.
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A. Implementation Details of Directional Sampling

To uniformly sample view directions, we first project the hemi-
spherical domain to the unit square using the cylindrical map
(6,0) — (¢/2m,cosB) and regularly sample directions on the
square. Sampling on a square is much easier than on a sphere, and
the cylindrical map ensures that each direction sample covers ap-
proximately the same area in the directional domain. We use the
resolution ratio 4 : 1 for sampling points on the square to have the
same aspect ratio as the original spherical coordinates. Specifically,
the directional sampling count is in the form Ny, = 4n?, and the ra-
diance sample is generated at the center of each 4n x n regular grid
on the square.

We perform multisampling to generate anti-aliased radiance
samples. We regularly sample 2 x 2 directions in each grid and
compute the color and volumetric visibility. The final radiance sam-
ples passed to the subsequent filtering stage are obtained as the av-
erage of these 2 x 2 raw samples. The average color is computed
using visibility as a weight. In our experiments, we empirically set
Ngir = 16 (n = 2) and use the same sampling scheme for every spa-
tial location.

B. Specific Experimental Conditions

To create Figure 8, we selected the 10, 40, 70, 100, 130, 160, and
190th camera poses in the test data of the NeRF-synthetic dataset
as example views. To extract a palette from a single image, we used
the 160th view for the SHIP model and the 70th view for the HOT-
DOG model. We set K = 40 for the k-means stage in the method of
Chao et al. [CSG21].
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