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Abstract
Numerically solving partial differential equations (PDEs) is central to many applications in computer graphics and scientific
modeling. Conventional methods for solving PDEs often need to discretize the space first, making them less efficient for complex
geometry. Unlike conventional methods, the walk on spheres (WoS) algorithm recently introduced to graphics is a grid-free
Monte Carlo method that can provide numerical solutions of Poisson equations without discretizing space. We draw analogies
between WoS and classical rendering algorithms, and find that the WoS algorithm is conceptually equivalent to forward path
tracing. Inspired by similar approaches in light transport, we propose a novel WoS reformulation that operates in the reverse
direction, starting at source points and estimating the Green’s function at “sensor” points. Implementations of this algorithm
show improvement over classical WoS in solving Poisson equation with sparse sources. Our approach opens exciting avenues for
future algorithms for PDE estimation which, analogous to light transport, connect WoS walks starting from sensors and sources
and combine different strategies for robust solution algorithms in all cases.

CCS Concepts
• Computing methodologies → Ray tracing; Modeling and simulation; • Mathematics of computing → Stochastic processes;

1. Introduction

Monte Carlo methods have been very successful in rendering.
They provide accurate solution estimates to the rendering equation
[Kaj86] in very complex scenes with an often simple implementa-
tion compared to mesh based methods such as radiosity [CW93;
GTGB84]. While initially Monte Carlo methods were comparatively
slow and of mostly academic interest, they now form the predomi-
nant rendering methodology in movie production [CJ16; FHF*17]
and increasingly in interactive applications such as games.

Catalyzed by the recent introduction of the walk-on-spheres
(WoS) algorithm [Mul56] to graphics [SC20; SSJC22], a similar
development is now happening for numerical solvers of partial dif-
ferential equations (PDEs). Analogous to path tracing in rendering,
WoS uses random walks to compute point estimates of the solution
of harmonic PDEs [Eva10]. These equations are of great importance
in many areas of science since they can model natural phenomena
such as heat dissipation, diffusion of electrostatic charges, and dis-
tribution of water in soil. Additionally, diffusion equations are often
used in rendering and related fields to approximate the behaviour of
light in highly scattering media [JMLH01; Sta95].

Analogous to path tracing, existing WoS algorithms start “paths”
(i.e. walks) at “sensor points” and end them at “lights” (i.e. boundary
points). This works well when the probability of finding source
points is high, but produces high variance for sparse sources.

Because of the apparent parallels between the Monte Carlo algo-
rithms used for solving rendering problems and those solving PDEs,

we hope to leverage the decades of rendering research and apply
them to PDEs to develop new robust and efficient Monte Carlo
PDE solvers. A major step in rendering was the transition from
unidirectional “forward” methods like path tracing to “backward”
methods such as light tracing, photon mapping [Jen96] and virtual
point lights (VPLs) [Kel97]. This precipitated the comprehensive
framework of bidirectional rendering methods [Vea97] and, ulti-
mately, the wealth of transport methods available today [PJH16]. In
this paper, we mirror this development and propose extensions of
WoS in both forward and backward directions.

The standard “forward” WoS algorithm leverages the mean value
theorem to form recursive estimators for the solution. We instead
formulate a mean value theorem for the Green’s function. This
allows us to derive a new class of WoS algorithm that start paths
“backwards” from source and boundary points, distributing energy
more evenly throughout the domain, before connecting either to
sensor points directly, or to short sensor subpath, mimicking a form
of “final gather” [Rei92] to reduce structured sampling artifacts.

We demonstrate the effectiveness and correctness of our method
both by solving the diffusion equation in highly scattering media,
and by rendering diffusion curve images [OBW*08]. Much like in
light transport, we hope that the development of these algorithms
opens the path to comprehensive bidirectional methods in the future
for fully robust Monte Carlo solution of PDEs.

For simplicity, we limit ourselves to a particular class of elliptic
PDEs called the Poisson equation with Dirichlet boundary condi-
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tions, which we review in Sec. 3. We only handle homogeneous
coefficients, but expect that our method can be extended to heteroge-
neous coefficients without much additional work by incorporating
concurrent advances in WoS solvers [SSJC22]. Finally, Neumann
boundary conditions are, to the best of our knowledge, not supported
in any WoS algorithm to date and handling these is orthogonal to
the contribution of our paper.

2. Related Work

Deterministic solvers vs. Monte Carlo. The trade-offs between
traditional, finite element method (FEM)-based PDE solvers and
Monte Carlo solvers are well explored, and we refer to Sawhney
and Crane [SC20] and Sawhney et al. [SSJC22] for a thorough
discussion. In this paper, we focus on problems with sparse sources.
For these scenarios, traditional FEM-based solvers solvers do not
work well out of the box, and their discretization must instead
be adapted to faithfully incorporate high-frequency sources and
boundaries. In the limit case of delta-sources, the source points must
be explicitly incorporated into the mesh; failing to do so will result
in missing their contribution entirely. Mirroring early finite-element
radiosity methods in rendering, finite-element methods for PDEs
have to continually grow in complexity to handle such challenging
inputs. Much like in rendering, our belief is that the generality
and simplicity of Monte Carlo solvers will make this complexity
redundant for PDEs, and our new reverse formulations are a first
step to making these methods robust enough for general use.

Bidirectional/two-pass rendering methods. Two-pass algorithms
have a long tradition in rendering. In a first “backward” pass, these
algorithms simulate transport starting at light sources and then cache
illumination in a view-independent structure. A second “forward”
pass then simulates transport from sensors to gather the cached illu-
mination and generate the final image. Initially developed for radios-
ity [CGIB86; CW93; Rei92], this approach has found wide success
in Monte Carlo rendering in the form of photon mapping [Jen01;
Jen96] and VPL/many-light rendering [DKH*14; HPB07; Kel97;
WABG06; WFA*05; WKB12]. These methods exploit that some
transport is more easily simulated starting from lights and amortize
much of the transport computation by caching and reusing it across
sensor paths. We take inspiration from these methods, particularly
variants developed for scenes with volumetric media [BJ17; DJBJ19;
JC98; JNSJ11; JNT*11; JZJ08; NNDJ12a; NNDJ12b], and develop
related WoS methods for solving PDEs. Much like the initial for-
mulations of the aforementioned rendering methods, our current
algorithms rely on ad hoc heuristics to choose when to connect
sensor subpaths with light subpaths. A particularly exciting avenue
for future work would be to develop a unified path space [GKDS12;
HPJ12] that allows combining all these strategies automatically us-
ing multiple importance sampling (MIS) [VG95b]. We believe that
these approaches applied to solving PDEs would lead to greatly
improved robustness in the future.

Shell tracing. A method called shell tracing [LO07; MWM07] has
been used in rendering to accelerate transport in a variety of (often
dense) media. Shell tracing has been studied in particular in the
context of granular media [MPG*16; MPH*15], but more recently
there has been effort to use it for general volume rendering as well

[LHW21]. There are very strong parallels between shell tracing
and walk on spheres. In both methods, one expands the largest ball
that fits inside the medium/domain and then picks a point on the
boundary of the ball to recursively continue the path. This point is in
both cases picked according to the exit distribution of the underlying
random process. In walk on spheres, this distribution is uniform, but
in shell tracing one has to sample from a more complicated shell
transfer function. The techniques we develop here should to a large
degree also apply to shell tracing and could lead to bidirectional
shell tracing techniques.

Diffusion in graphics and rendering. The Poisson equation we
solve is directly applicable to approximating multiple scattering in
participating media [Sta95]. In rendering, this equation has tradition-
ally been solved approximately with dipole or multi-pole diffusion
methods [dEI11; DWdE*08; JB02; JMLH01], which make subsur-
face scattering practical at the cost of additional error on top of the
diffusion approximation. Hybrid rendering methods [DJ07; HCJ13],
which inject sources into a diffusion domain via a backward tracing
pass, are most similar to our proposed WoS algorithm. However,
our approach applied to subsurface scattering could solve the same
diffusion equation without additional error or complex mirroring
heuristics needed by prior methods. We show proof-of-concept re-
sults of our method applied to diffusion for multiple scattering,
indicating fruitful future avenues for transferring our WoS work
back into rendering. Diffusion problems in rendering have also
been solved with FEM methods [AWB11; KPS*14], which solve
the diffusion equations exactly (down to discretization error) and
can handle heterogeneity. However, the FEM-based nature of these
methods does not fit well with Monte Carlo rendering methods. We
believe that in the future, these methods could be replaced by our
proposed WoS algorithm extended to heterogeneous domains using
the concurrent work of Sawhney et al. [SSJC22].

3. Background

In the following we will go over the fundamental mathematical con-
cepts needed to understand our method and introduce the notation
we use going forward. A reader familiar with PDE literature might
want to skip to Sec. 3.2.

3.1. Partial Differential Equations

A partial differential equations (PDE) is an equation describing
the property of the partial derivatives of a multi-variable function
u(x) where x ∈ Rn. In this paper, we will use U ⊂ Rn to denote the
domain of the function we are solving and ∂U to be the boundary
of U . We use ∆ to denote the Laplace operator, which is the sum
of all the unmixed second partial derivatives. Our method is mainly
focused on solving the Laplace and Poisson equations.

The Laplace equation. Given a Dirichlet boundary condition g,
which is a function prescribing the value of the solution u on ∂U ,
the Laplace equation on U is:

∆u(x) = 0 if x ∈U,

u(x) = g(x) if x ∈ ∂U .
(1)
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If we interpret u as a physical quantity such as heat, then the con-
dition ∆u(x) = 0 prescribes that the solution be at equilibrium: No
energy is added or removed within the domain. The values of u
within the domain are entirely defined by (and are convex combina-
tions of) its values at the boundary ∂U .

The Poisson equation. A more general form of the Laplace equa-
tion allows for the addition of sources within the domain by modify-
ing the equilibrium condition to include a source term f . This is the
Poisson equation:

∆u(x) = f (x) if x ∈U,

u(x) = g(x) if x ∈ ∂U .
(2)

This is the equation we are interested in solving for this paper.

Green’s Function. The method of Green’s functions [Eva10] is a
general approach for solving linear PDEs. In this approach, we first
consider a reduced problem where we compute the solution GU

y (x)
to a Poisson problem where the source term is a delta impulse δy
centered at y and the boundary value is 0:

∆u(x) = δy(x) if x ∈U,

u(x) = 0 if x ∈ ∂U .
(3)

Notably, the solution of this linear PDE is symmetric (GU
y (x) =

GU
x (y)), so we will write it as G(x↔ y) and omit the superscript

when it is the entire domain U . We define the Green’s function to be
0 if x or y are not in the interior of the considered domain.

Intuitively, we can interpret the Green’s function as representing
the amount of energy transported from point source y to x via all
possible paths within the domain. Given the Green’s function, we
can therefore easily write down the solution for any Poisson problem
with boundary values of 0 by integrating over all source points y in
the domain and computing the energy transported to x:

u(x) =
∫

U
f (y)G(x↔ y) dy. (4)

Poisson Kernel. Special care needs to be taken to incorporate
boundary values into Eq. (4). This is accomplished using the Poisson
kernel, which is the normal derivative of the Green’s function:

P(x→ z) =P(z← x) :=
∂G(x↔ z)

∂n(z)
, (5)

where x ∈U , z ∈ ∂U and n(z) is a vector normal to ∂U at z. Unlike
the Green’s function the Poisson kernel is not symmetric, and the
directed arrows always point to the position on the boundary. For the
Poisson and Laplace equations, the Poisson kernel integrates to one:∫

∂U
P(x→ z) dz = 1. (6)

Representation Formula. Given the Green’s function and its Pois-
son kernel, the solution for general Poisson equations can be ex-
pressed using the representation formula [Eva10]

u(x) =
∫

U
f (y)G(x↔ y) dy+

∫
∂U

g(z)P(x→ z) dz, (7)

which is equivalent to Eq. (4) with an additional boundary term.

For the Laplace equation (1), there are no source terms in the
domain ( f (x) = 0), and the representation formula simplifies to:

u(x) =
∫

∂U
g(z)P(x→ z) dz. (8)

The Mean Value Theorem. It is also possible to write an integral
equation for the solution [Eva10]:

u(x) =
∫

Bx

f (y)G(x→ y) dy

volume term

+
∫

∂Bx

=g(z) when z∈∂U

u(z) P(x→ z) dz

boundary term

. (9)

This equation looks superficially similar to Eq. (7), but has two
important differences. Firstly, the integration, Green’s function
G(x→ y) and Poisson kernelP(x→ z) are now defined with respect
to the largest ball Bx and sphere ∂Bx centered at x. This is attractive
because these functions are known analytically. We use non-bold
symbols for these functions now to indicate they are not over the
entire domain, and, since the largest ball at x and y are generally
different, we use a directed arrow that starts at the center of the ball.
Secondly, the boundary term in Eq. (9) is now defined recursively
in terms of u, resulting in a Fredholm integral equation much like
the rendering equation [Kaj86].

The Poisson kernel on the ball is a function of only radius, so,
lacking any source terms, this equation states that the solution u(x)
is equal to the weighted average of u over the boundary of the ball.

3.2. The Walk on Spheres Algorithm

The classical walk on spheres algorithm can now be derived by
applying Monte Carlo integration to Eq. (9). We sample a yi ∼
pBxi

(yi) inside ball Bxi to estimate the volume term, sample xi+1 ∼
p∂Bxi

(xi+1) on the corresponding sphere to estimate the boundary
term, and evaluate

⟨u(xi)⟩=
f (yi)G(xi→ yi)

pBxi
(yi)

+
⟨u(xi+1)⟩P(xi→ xi+1)

p∂Bxi
(xi+1)

. (10)

This is a single-sample estimator of solution u, which we denote
⟨u⟩. Notably, ⟨u(xi+1)⟩ appears on the right-hand side, requiring a
recursive evaluation of Eq. (10): For each sample xi+1, we select


a new ball Bxi+1 centered on xi+1

and recurse, as illustrated in the in-
set figure. This process continues
until we generate a sample xi+1
sufficiently close to the boundary
∂U of the domain (when the dis-
tance to the boundary at that point
is less than ε), at which point we
evaluate g(xi+1) instead of recursing (see the inset figure).

4. Our Method

A major issue with the walk on spheres algorithm presented in the
previous section is that we have very little control over where in
the domain the walks end up. We can locally control the sample
positions y and xi+1 in Eq. (10), but we are restricted to the interior
and boundary of the ball Bx respectively, which might only cover a
small part of U . There is no global way to steer walks towards areas
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of high contribution (i.e. where f and g take on large values). This
poses a problem in scenes with sparse (or even delta-) sources. As
discussed in Sec. 1, a similar issue appears with forward path tracing
in rendering which was addressed by “reverse” methods such as
photon mapping. In the following we will derive a “reverse” version
of the walk on spheres algorithm that is able to start walks at source
points, sampled freely according to a global criterion, and distributes
source contribution over the whole domain. This contribution can
then be directly evaluated at sensor points or looked up during a
forward walk. In particular, going back to Eq. (7) we can see that
here we have two terms that integrate over the whole domain U
and boundary ∂U respectively and thus cover the whole support of
f and g. This gives us a starting point for a method that reasons
about the global distribution of sources, but leaves us with the
issue of computing G(x↔ y) and P(x→ y), which are not known
analytically for arbitrary domains.

Recursive integrals for Green’s functions. Luckily it is easy to
find an equivalence to the mean value theorem in Eq. (9) for the
Green’s function. In particular, recall from Sec. 3 that the Green’s
function is a solution to the Poisson equation (3). As such we can
simply plug its definition (3) into Eq. (9) as follows

G(x↔ y) =
∫

Bx

δy(y′)G(x→ y′) dy′+
∫

∂Bx

P(x→ x′)G(x′↔ y) dx′

= G(x→ y)+
∫

∂Bx

P(x→ x′)G(x′↔ y) dx′. (11)

Due to the symmetry of the Green’s function in our problems, we
can swap x and y and perform the same process on a ball By centered
at y to obtain a dual mean value theorem on By:

G(x↔ y) = G(x← y)+
∫

∂By

G(x↔ y′)P(y′← y) dy′. (12)

Source and sensor expansions. This now gives us the freedom to
make progress along a path both from sensor points (using Eq. (11))
and source points (using Eq. (12)), similar to the expansion of the
3-point form of light transport.

For simplicity we will illustrate this using the Poisson equation
with a zero-boundary term (4) and describe how to incorporate a
non-zero boundary term in Sec. 5.3.

We can perform a “forward” unidirectional expansion by inserting
Eq. (11) into Eq. (4). Doing this twice gives

u(x0) =
∫
U

G(x0→ y0) f (y0) dy0

1 “bounce” transport

(13)

+
∫∫

U×∂Bx0

P(x0→ x1)G(x1→ y0) f (y0) dx1y0

2 “bounce” transport

+
∫∫∫

U×∂Bx0×∂Bx1

P(x0→ x1)P(x1→ x2)G(x2↔ y0) f (y0) dx2x1y0

3+ “bounce” transport

.

Alternatively, we could perform a unidirectional expansion in the

“reverse” direction “starting at y0”, by using Eq. (12). Doing this
twice gives a structurally similar, but distinct set of integrals:

u(x0) =
∫
U

G(x0← y0) f (y0) dy0

1 “bounce” transport

(14)

+
∫∫

U×∂By0

G(x0← y1)P(y1← y0) f (y0) dy1y0

2 “bounce” transport

+
∫∫∫

U×∂By0×∂By1

G(x0↔ y2)P(y2← y1)P(y1← y0) f (y0) dy2y1y0

3+ “bounce” transport

.

Finally, since we can freely choose between Eqs. (11) and (12)
at each step, we can perform “bidirectional” expansions by, for
instance, expanding first with Eq. (11) followed by Eq. (12):

u(x0) =
∫
U

G(x0→ y0) f (y0) dy0

1 “bounce” transport

(15)

+
∫∫

U×∂Bx0

P(x0→ x1)G(x1← y0) f (y0) dx1y0

2 “bounce” transport

+
∫∫∫

U×∂Bx0×∂By0

P(x0→ x1)G(x1↔ y1)P(y1← y0) f (y0) dy1x1y0

3+ “bounce” transport

.

This now suggests a multitude of new estimators that use a differ-
ent number of source and sensor segments.

Analogies to light transport, path spaces, and MIS. We illustrate
the three example expansions from Eqs. (13)–(15) in Fig. 1 (bot-
tom). Since both the Green’s function and the rendering equation
are recursive Fredholm integrals, there is a natural analogy between
these equations and different strategies of bidirectional light trans-
port Fig. 1 (top). In fact, repeatedly expanding the recursion in the
three-point form of the rendering equation is the typical process to
obtain Veach’s path integral formulation [Vea97], which provides
methods like bidirectional path tracing [LW93; VG95a] with a pow-
erful way to combine all these strategies into one algorithm using
MIS [VG95b].

Unfortunately, the analogies depicted in Fig. 1 are imperfect.
While the Green’s function itself is symmetric, Eqs. (11) and (12)
use different domains of integration (a sphere ∂Bx or ∂By). This
means that each distinct sequence of expansion directions results
in a different path space! This is easy to confirm by observing that
the domains of integration for 3+ “bounce” transport in Eqs. (13)–
(15) are all distinct. This is in contrast to the rendering equation,
where using surface area measure ensures that expansion from either
direction produces the exact same path space.

This means that while MIS can still be performed within a single
path space choice, it is not immediately clear how to MIS across
these different path space choices. Doing so would be akin to using
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2 sensor segments, 0 source segments 1 sensor segment, 1 source segment 0 sensor segments, 2 source segments
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Figure 1: Top row: We show the different ways our new formalism lets us construct WoS paths, corresponding to Eq. (13), Eq. (15) and
Eq. (14) (left to right respectively). Bottom row: These methods correspond closely to forward path tracing, bidirectional path tracing and
light tracing (left to right respectively).

MIS to combine VPLs, photon mapping, and bidirectional path trac-
ing within a unified path space [GKDS12; HPJ12]. Nevertheless,
even before being cast into a unified path space, photon mapping and
VPL methods proved highly successful using hand-crafted criteria
for determining how many steps to take along a camera subpath
before connecting to a light subpath. In the next sections we ex-
plore several such possible bidirectional combinations, and leave
the exciting prospect of a unified path space for future work.

5. Algorithms

In the previous section, we showed a formalism for estimating the
Green’s function by performing step-wise recursive expansion in
either the forward or backward direction. In this section, we will
use this formulation to derive practical algorithms for solving the
Poisson equation.

We begin by separating the full Poisson problem as u(x) =
v(x) + w(x), where v and w are source-only and boundary-only
sub-problem respectively:

∆v(x) = f (x) ∆w(x) = 0 if x ∈U,

v(x) = 0 w(x) = g(x) if x ∈ ∂U.
(16)

We then solve for v and w separately using different algorithms.
From the linearity of the Laplace operator, we can see that the
solution u(x) = v(x)+w(x) satisfies the original Poisson problem
(Eq. (2)), with ∆(v+w) = ∆v+∆w = f and v+w = g. Solutions to
the Poisson equation are unique [Eva10], allowing us to retrieve the
original solution u exactly via the subproblems v and w.

In the remaining subsections, we will first show how to estimate

the Green’s function using forward and backward walks (Sec. 5.1),
which we then use to estimate the partial solutions v and w with back-
ward walk on spheres (Sec. 5.2, Sec. 5.3). We then show how to use
backward walks efficiently through reuse (Sec. 5.4), before show-
ing how to combat bias (Sec. 5.5) and how to selectively combine
forward and backward walks with a practical heuristic (Sec. 5.6).

5.1. Estimating the Green’s Function

We can easily obtain both forward and backward estimators of the
Green’s function by taking a one-sample Monte Carlo estimate of
Eqs. (11) and (12):

⟨G(x↔ y)⟩= G(x→ y)+
P(x→ x′)⟨G(x′↔ y)⟩

p∂Bx(x′)

⟨G(x↔ y)⟩= 0 if x ∈ ∂U or y ∈ ∂U
(17)

⟨G(x↔ y)⟩= G(x← y)+
P(y→ y′)⟨G(x↔ y′)⟩

p∂By(y′)

⟨G(x↔ y)⟩= 0 if x ∈ ∂U or y ∈ ∂U

(18)

where x′ and y′ are points sampled on the boundary of the ball Bx
and By, with densities p∂Bx(x′) and p∂By(y′).

Eqs. (17) and (18) recursively estimate the Green’s function. At
each recursion step, we are free to estimate the next expansion using
Eq. (17) or Eq. (18), allowing us great flexibility in mixing forward
and reverse steps. The recursion terminates when samples x′ or y′

land on the boundary. In general, the probability of this event is
almost zero, and we follow prior WoS work [SC20; SSJC22] and
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Figure 2: We can estimate the Green’s function by either (left)
following a “forward” path {xi} and estimating ⟨G(x0↔ y0)⟩ =
G(x2→ y0), or (right) following a “reverse” path {yi} and estimat-
ing ⟨G(x0↔ y0)⟩= G(x0← y2).

instead terminate if the sample lands within a small distance ε of
the boundary, at the cost of a small amount of bias. Fig. 2 shows an
example of a purely forward and purely reverse walk.

Eqs. (17) and (18) form the building blocks of our algorithms, and
we will now use them to estimate solutions of Poisson problems.

5.2. Estimating the Source Solution v

We begin by writing the representation formula for the Poisson
equation of the sources-only term v (Eq. (16)). Because the boundary
term is zero, we obtain

v(x) =
∫

U
f (y)G(x↔ y) dy. (19)

We obtain a Monte Carlo estimator of this integral in two steps.
First, we take a one-sample estimate of Eq. (19) by choosing point y
with density pU(y) (e.g. proportional to source term f (y)). We then
estimate G(x↔ y) with either Eq. (17) or Eq. (18) to obtain

⟨v(x)⟩= f (y)⟨G(x↔ y)⟩
pU(y)

. (20)

By reducing the Poisson problem to estimating the Green’s function,
we get great flexibility in estimating v in any combination of forward
and backward steps. Notably, unlike the classical forward WoS
algorithm, Eq. (20) allows us to sample y proportional to the source
term f (y) over the whole domain.

5.3. Estimating the Boundary Solution w

Writing the same representation formula for the boundary-only
Poisson equation of w (Eq. (16)), we obtain

w(x) =
∫

∂U
P(x→ z)g(z) dz. (21)

Estimating this requires knowing the Poisson kernel P(x → z)
over the whole domain. However, we can reduce it to the Green’s
function by noting that the Poisson kernel is the normal derivative

of the Green’s function. Letting n denote the normal at z, we have:

P(x→ z) =
∂G
∂n

(z) (22)

= lim
ξ→0

G(x↔ z+ξn)−G(x↔ z)
ξ

(23)

= lim
ξ→0

G(x↔ z+ξn)
ξ

(24)

where the last step used the fact that G(x↔ z) = 0 for z ∈ ∂U .

z

y = z + n




We can approximate Eq. (24) at the cost
of bias by choosing a finite ξ instead of tak-
ing the limit, which is equivalent to taking
the finite differences of the Green’s function
(see the figure on the right). This allows us
to estimate the Poisson function with the
Green’s function estimators introduced in
Sec. 5.1:

⟨P(x→ z)⟩= ⟨G(x↔ z+ξn)⟩
ξ

(25)

By inserting Eq. (25) into Eq. (21) and ap-
plying Monte Carlo integration to z, we obtain the estimator

⟨w(x,z)⟩= g(z)⟨P(x→ z)⟩
p∂U (z)

=
g(z)⟨G(x↔ z+ξn)⟩

p∂U (z)ξ
(26)

for w, where z is sampled from density p∂U(z) on the boundary ∂U
(e.g. proportional to boundary term g(z)). Much like the estimator
for v, we have great flexibility in estimating the Green’s function
using any combination of forward- and backward steps. Unlike the
classical forward WoS algorithm, Eq. (26) allows us to sample z
proportional to the boundary term g(y) over the entire boundary.

5.4. A Two-Pass Reverse Walk-on-Spheres Algorithm

In practice, we are usually interested in not only in estimating the
solution f (x) at a single point, but over a dense region. This allows
for an efficient algorithm that reuses reverse walks.

If we recursively expand Eq. (20) or Eq. (26) using the reverse
estimator Eq. (18), then at each step yi the walk contributes to all
points x within the ball Byi . This is analogous to VPLs, where at
each bounce the VPL contributes its flux to all points in the scene,
modulated by a geometry term. The equivalent of the geometry term
for reverse WoS is the Green’s function on the ball, G(x← yi).

We exploit this by first performing a large number of reverse
walks from the boundary and sources in the domain, and store
the ball and Green’s function estimate of each step of each walk
in a spatial data structure, as shown in Alg. 1. To estimate the
solution at x, we then simply look up into the data structure to obtain
all balls that overlap with x and accumulate each of their Green’s
function-weighted contributions. The pseudo-code for the look up
pass is shown in Alg. 2. This is analogous to two-pass many-light
algorithms common in rendering [DKH*14]. Suppose we know
all the points we want to evaluate in advance, for example when
solving a Poisson’s equation in 2D where we want the solution for
each pixel, we can rasterize all the disks directly when generating
the walks without storing them and performing the look up. We
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Algorithm 1 generate_reverseWoS(): Generate and store walks

/* Sample N reverse source walks and store into V . */
V ← vertex_storage()
for i← 0 to N do

y, py← sample_source() // Sample y according to pdf py.
fy← f (y) // Evaluate the source term at y.
ry← distance_to_boundary(y)

/* Loop until the path hits the boundary. */
while ry > ε do

V .store(y, pyN, fy,ry)
y← sample_sphere_uniform(y,ry) // Continue the walk.
ry← distance_to_boundary(y)

end while
end for

/* Sample M reverse boundary walks and store into W. */
W ← vertex_storage()
for j← 0 to M do

z, pz← sample_boundary() // Sample z according to pdf pz.
gz← g(z) // Evaluate the boundary value at z.
n← calculate_normal(z) // Calculate the local normal n.
y = z+ξn // Push the point away from the boundary.
ry← distance_to_boundary(y)

/* Loop until the path hits the boundary. */
while ry > ε do

W .store(y, pyM,gz/ξ,ry)
y← sample_sphere_uniform(y,ry) // Continue the walk.
ry← distance_to_boundary(y)

end while
end for
return V,W

Algorithm 2 look_up_reverseWoS(x,V,W ): Look up solution u(x)

Input: x,V,W
u← 0
for (y,wy,hy,ry) in V or W do // hy is fy for V and gy for W.

if |x− y|< ry then
u← u+hyG(x← y)/wy

end if
end for
return u

show an example of a solution estimate using an increasing number
of reverse walks in Fig. 3. In contrast to two-pass light transport
algorithms like photon mapping, our algorithm does not introduce
extra bias for the source solution except the ε boundary.

5.5. Bias Compensation

Although the finite difference method in Sec. 5.3 makes it possible
to estimate the Poisson kernel via the Green’s function, the finite
step ξ introduces additional bias. This is made worse by the fact that
ξ must be larger than ε for practical reasons: If ξ≤ ε, then reverse

1 sample 64 samples Converged result

Figure 3: Estimating the Poisson equation for a single point source
in a disk domain with a black boundary using 1, 64, and 160K
reverse walks.

walks starting at the boundary will immediately terminate; larger
values of ξ are needed to “push off” walks away from the boundary.

In practice, the bias from finite differences manifests as darkening
of the solution due to reverse walks terminating early (Fig. 4). This
means that, unlike Eq. (6), the finite difference Poisson kernel no
longer integrates to 1.

We can compensate for this fact by renormalizing the Poisson
kernel. While evaluating reverse walks, in addition to the solution
w we also estimate the integral of the Poisson kernel at each point
using a second Monte Carlo estimate,∫

∂U
⟨P(x→ z)⟩ dz≈ 1

M

M

∑
j=0

⟨P(x→ z j)⟩
p∂U (z j)

= ⟨Pnorm(x)⟩, (27)

where z1, . . . ,zM are the boundary samples generated in the course
of solving for w. Note that care should be taken that p∂U (z) > 0
over the entire boundary. Even if the boundary term g(z) = 0 for
some of the boundary, the Poisson kernel is not.

Dividing Eq. (26) by the estimate of the normalization factor
⟨Pnorm(x)⟩ then allows us to compensate for the systematic darken-
ing caused by the finite difference Poisson kernel:

⟨w(x,z)⟩= g(z)⟨P(x→ z)⟩
p∂U (z)⟨Pnorm(x)⟩

(28)

Although this estimate is still biased, the apparent error is much
reduced (Fig. 4, right).

5.6. Combining Forward and Reverse Walks

Forward- and reverse walk on spheres share some of the same
tradeoffs as forward and reverse transport simulation in rendering.

no normalization reference with normalization

Figure 4: Reverse WoS without normalization (left) is darker than
the ground truth (mid). With normalization, the result (right) has the
same brightness as the reference.
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Reverse WoS Reverse WoS w/ renormalization Reverse WoS w/ renormalization Boundary values
Runtime: 13.3s (T = 0.9) Runtime: 17.4s (T = 0.5) Runtime: 61.3s

Mean variance: 5.19e-3 Mean variance: 4.35e-3 Mean variance: 3.60e-3 Normalization factor

Figure 5: Here we are solving a Laplace equation for the diffusion curve images [OBW*08], the boundary value is shown in the top right and
the normalization factor is showed in the bottom right. If using purely reverse walks, insufficient samples of boundary values will lead to
structured artifacts, especially in the region where reverse walks can hardly reach (left most). These artifacts can be fixed by doing a final
gather with the Poisson’s kernel heuristic (middle two).

Reverse WoS Reverse WoS + 4 forward WoS steps Reverse WoS + 16 forward WoS steps Forward WoS
Runtime: 14.7s Runtime: 25.5s Runtime: 37.0s Runtime: 96.2s

Figure 6: Forward-and reverse walks can be combined when there is source term, these images are solutions to a source-only problem with
one point source inside a black square boundary. Since we are reusing reverse walks and solving the equation for the entire domain, the
reverse WoS algorithm will provide a smooth and noise-free image (left most). Combining walks from both directions with different choices of
forward steps (middle two) or using only forward walks (right most) will introduce more noise.

Sparse, high frequency sources are much more difficult to find for
forward methods than reverse methods; simultaneously, it is much
more difficult to get even coverage of the sensor points for reverse
methods than forward methods.

For example, if we are interested in computing the solution in only

a small subset of a scene, it may be more difficult for reverse walks
to contribute to the solution. This is analogous to light tracing per-
forming poorly when the camera only views a small part of a scene.

Although the different path spaces preclude robustly weighted
combinations of all forward and reverse strategies using MIS
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(Sec. 4), we take inspiration from early light transport work [Jen01]
and choose between different combinations of forward and reverse
strategies based on heuristics.

For the boundary solution w, we already have access to a metric of
how well reverse WoS performs: The integral of the finite difference
Poisson kernel, ⟨Pnorm(x)⟩. If this estimate deviates significantly
from 1, reverse WoS is performing poorly. This leads to a simple but
effective heuristic for combining forward and reverse walks: Instead
of computing the solution f (x) from the data structure directly as in
Sec. 5.4, we first evaluate |⟨Pnorm(x)⟩−1|< T to see if the Poisson
kernel norm deviates from unity by more than a threshold T . If
it does, the reverse WoS solution is unreliable, and we perform
one forward WoS step and repeat the procedure. This continues

x

y0

2

y1 y2

y3

x0

x1

until the heuristic succeeds, at which
point we look up into the data structure
to estimate the solution (see the inset
figure). This is exactly analogous to fi-
nal gather methods in graphics [Rei92],
and helps greatly to reduce artifacts at
little extra cost (Fig. 5). For the source
solution v, we can still perform a “final
gather” though we currently set the num-
ber of forward steps explicitly (Fig. 6).
We show the pseudo-code for combining
forward- and reverse WoS in Alg. 3.

6. Implementation and Results

6.1. Algorithm implementation

As with the forward WoS algorithm, generating a reverse walk
only requires querying the closest point to the boundary in order
to expand the largest sphere. We implemented a 2D version of
reverse WoS entirely on the CPU and use a standard acceleration
structure [Saw*21] to make closest point query efficient. The main
bottleneck in this case is drawing the Green’s disks, which we
currently do naively by testing all pixels within each disk’s bounding
box. Performing the reverse walk on the CPU but then splatting the
Green’s disks using rasterization on the GPU would likely result in
a dramatic speedup. To implement our method one needs to evaluate
G(x→ y) and P(x→ y). The concrete values of these depend on
the PDE one is solving and we refer to the appendix in Sawhney
et al. [SSJC22] for a comprehensive listing.

6.2. Bias

Our algorithm uses two parameters to solve the boundary solution
w(x) and both introduce a small bias to the result which we analyze
in Fig. 7. The first is the stopping tolerance ε, which is used to
terminate the random walk in both forward and reverse WoS. In
forward WoS, using a large ε results in a thick boundary, but it
has little effect on the reverse WoS result. The dominant bias in
reverse WoS is caused by ξ: the finite difference step size and also
the distance we push the start of the reverse walk off the boundary.
Large ξ make the boundary values look like they are inside the
domain (Fig. 7, top right), while small ξ lead to results that are too
dark (Fig. 7, 2nd column). If we choose ξ = ε, roughly half of the
walks will be terminated after the first step.

Algorithm 3 bidirectional_WoS(x,V,W ): Combine forward- and
reverse walks

Input: x,V,W
u← 0
rx← distance_to_boundary(x)
while True do

/* If we hit the boundary when doing forward walk. */
if rx < ε then

u← u+g(x)
break

end if

if terminate_forwardWoS(x) then
/* Evaluate the solution using Alg. 2. */
u← u+ look_up_reverseWoS(x,V,W )
break

end if
/* Continue the forward walk */
/* Sample a source point inside the ball B(x,rx). */
y, py← sample_source(x,rx)
u← u+G(x→ y) f (y)/py
x← sample_sphere_uniform(x,rx)
rx← distance_to_boundary(x)

end while
return u

Forward
WoS

Reverse WoS with different ξ

ξ = ε ξ = 2ε ξ = 4ε ξ = 8ε

ε
=

8
ε
=

4
ε
=

2
ε
=

1

Figure 7: An equal-time comparison of the forward WoS (1st col-
umn) and the reverse WoS with different ξ and ε. Using large ξ will

“push” the boundary values into the domain, making them appear
like sources inside the domain (top right corner). Setting ξ too close
to ε will cause the algorithm to underestimate the Poisson’s kernel
(2nd column). Changing ε while keeping ξ fixed (moving diagonally
down and right on the grid) has little effect on reverse WoS.
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Figure 8: We compare forward WoS (left) to reverse WoS (right) at
equal time with few samples (top) and with 16× as many samples
(bottom). Reverse WoS produces a smooth result even with few
samples, converging more quickly than forward WoS.

6.3. Comparison between forward and reverse WoS

We compared our method with forward WoS algorithm in multi-
ple scenes to evaluate the efficiency, quality and robustness of our
method. We found our method works better than the forward WoS
in several cases because reverse WoS is able to importance sample
the source term f and boundary value g in Eq. (7) globally, making
the algorithm focus more on the sources with high impact to the
entire scene.

Sparse boundary values. Fig. 8 shows the estimated solution of
a Laplace’s equation of both algorithms using the same amount of
time. In this example we set the boundary value to be 0 (black)
at most boundary locations, leaving only a few small regions with
colorful values along the circular boundary. A forward walk has
no control of where the path will hit the boundary, so in a scene
with sparse boundary values, most walks are unlikely to receive
a large contribution, resulting in high variance. Just as in purely
unidirectional path tracing, the variance for forward WoS would get
arbitrarily worse if we were to make the “lights” (boundary values)
even more concentrated. In contrast, reverse WoS can importance
sample the boundary values, dramatically reducing variance.

Sparse sources. Fig. 9 shows the estimated solution by reverse and
forward WoS on a Poisson equation with black boundary, but three
differently sized disk-shaped sources inside the domain. Since the
source terms are spatially sparse, it is difficult for a forward WoS
path to hit those disks sources and evaluate their contribution along
the forward path. In the reverse WoS, however, we know where the
disks are located, so we can easily importance sample f in Eq. (7)

when sampling the starting points of our paths. This importance
sampling is essentially choosing global optimal sampled source
points, while forward WoS can only sample local optimal choices at
each step.

6.4. Reverse WoS for the diffusion approximation

Subsurface scattering is an effect that is expensive to reproduce
accurately using forward path tracing. In dense, high albedo media,
distances between scattering events are short, but light very rarely
gets absorbed. This can lead to paths with hundreds of vertices, even
when using techniques such as Russian roulette. Tracing all of these
paths fully results in long render times, and in particular render
times can strongly depend on the choice of medium parameters. To
circumvent this, practical renderers often approximate subsurface
scattering via a diffusion equation. While this introduces some error,
especially when the medium is not very dense, it has the potential
to greatly reduce render times. For an overview of related work on
diffusion approximation in rendering, see Sec. 2. In the following
we discuss a straightforward application of the algorithms discussed
in the previous section to rendering diffusive media.

As in Sec. 5.4, we use a two-pass algorithm. In the first pass
we generate photons on light sources
(just as in photon mapping) and start
tracing paths through the scene (shown
in orange on the right). The first time
we scatter inside a medium, we deposit
a point source contribution there. That
is, we start a reverse walk until we
reach the medium boundary and store
balls with the photons contribution at-
tenuated by the Poisson kernel. In the

Forward WoS

Reverse WoS

Converged reference Source terms

Figure 9: Here we perform an equal-time comparison of forward
(top of split) vs. our reverse (bottom of split) WoS on a scene with
three sparse sources (bottom right) and zero boundary conditions.
Compared to the converged reference (bottom left), our approach
with only 4e4 sampled paths produces visually better results than
forward WoS with 3.24e6 total paths.
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single scattering
mult. scattering
(via diffusion) Ours VPTsingle scattering
mult. scattering
(via diffusion) Ours VPT+ =+ =

Figure 10: We use path tracing to quickly compute the single scatter-
ing contribution (carefully excluding multiple-scattering paths, left)
and our reverse WoS algorithm to compute the multiple-scattering
part of the solution (middle-left). Adding these together gives us the
full light transport (middle-right), albeit with error introduced by
the diffusion approximation compared to VPT (right).

forward pass we trace rays starting at the camera (shown in blue on
the right). When we scatter inside the medium, we look up the mul-
tiple scattering contribution based on the stored diffusion solution.
We also continue tracing the path to integrate any additional single
scattering contribution. Our method is able to easily handle complex
geometry and cases such as thin features which are often problem-
atic with approaches based on further dipole approximations. Still,
the results do not match the ground truth perfectly (see Fig. 10), but
this is to be expected since we do still approximate light transport us-
ing a diffusion approximation. In scenes with small and directional
light sources VPT will not be able to resolve an image, even with
next event estimation. Our method produces a recognizable image
even with few photons and quickly converges (see Fig. 11).

Ours (1,000) Ours (10,000) Ours (100,000) VPM (100,000)

Figure 11: Our method especially shines in scenes with sparse,
strongly directional light sources such as the one shown above. In
the left three images we show the impact of tracing more photons
and the image quickly resolves. At the same number of photons,
volumetric photon mapping (VPM) still shows clear artifacts. This
is because each photon in our method can spread energy over much
larger area without negatively affecting the quality of the solution.

7. Conclusion, Limitations and Future Work

Conclusion. In this work we have presented a bidirectional for-
mulation for the Walk on Spheres algorithm, taking the first steps
towards a path integral formulation for Monte Carlo PDE solvers.
The set of estimators and algorithms that we derive based on this
outperform tradition walk on spheres on many scenes, as shown in
Sec. 6. Going full circle, we can even use our method in a rendering
context to speed up path tracing of volumetric media. We are par-
ticularly excited about the deep structural similarities to rendering

and hope that these continue to inspire fruitful transfer of research
between the two fields.

Limitations and Future Work. There are several topics that we do
not address in this paper. Practically, the bias introduced by the tech-
nique we use to start walks on the boundary is unfortunate. While
this does not affect source-term only problems, we would still prefer
to find a more elegant way to estimate the Poisson kernel of the
domain in a backwards fashion. In particular, it is desirable to find a
method to step off the boundary without using the finite-difference
approximation of the normal derivative. On the theoretical side, we
do not extend the family of PDEs that WoS can solve. In particular,
the restriction to Dirichlet boundary conditions restricts the prob-
lems we can solve and limits the practicality of our method. That
said, the theory presented in Sec. 4 is very general and should easily
be able to incorporate Neumann and Robin boundary conditions
once they are integrated into the WoS framework. Finally, an ob-
vious next step related to our contribution is to establish a single
path integral formulation for all path construction strategies to allow
for robust combination of strategies via MIS as discussed in Sec. 4.
We expect that this will unlock a large step forward in Monte Carlo
PDE estimation and our work provides a starting point to do so.
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