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Once-more scattered next event estimation for volume rendering
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Figure 1: Two cases where highly forward scattering phase functions deliver a distinct look. Left: atmospheric haze, right: ocean water.
The slices compare our specialised sampling technique to equiangular sampling and a reference image. The characteristic glow around the
objects submerged in the medium disappears in noise for equiangular sampling, since it is caused by the phase function that is not importance
sampled in this case. The images other than the reference are equal sample count and approximately equal time.

Abstract
We present a Monte Carlo path tracing technique to sample extended next event estimation contributions in participating
media: we consider one additional scattering vertex on the way to the next event, accounting for focused blur, resulting in
visually interesting image features. Our technique is tailored to thin homogeneous media with strongly forward scattering phase
functions, such as water or atmospheric haze. Previous methods put emphasis on sampling transmittances or geometric factors,
and are either limited to isotropic scattering, or used tabulation or polynomial approximation to account for some specific phase
functions. We will show how to jointly importance sample the product of an arbitrary phase function with analytic sampling in
the solid angle domain and the two reciprocal squared distance terms of the adjacent edges of the transport path. The technique
is fast and simple to implement in an existing rendering system. Our estimator is designed specifically for forward scattering, so
the new technique has to be combined with other estimators to cover the backward scattering contributions.
CCS Concepts
• Computing methodologies → Rendering;

1. Introduction

When rendering computer generated imagery, it is our goal to im-
merse the viewer in a virtual environment. Due to the sophistication
of the human visual system, often times such immersion depends
on subtle features in the image that are subconsciously recognised
as familiar light transport effects. Volumetric scattering plays a crit-
ical role in conveying scale and atmosphere. For example, Figure 1
(right) shows an underwater object, lit by sun rays travelling through

the shallow water. The whale appears slightly blurred with distance,
and its bright back features some glow around it. These effects are
due to scattering in the water between the object and the observer
and have a characteristic shape that depends on the phase function
of the medium. The effect is not limited to underwater though, it can
be seen in hazy atmospheres where it will change the appearance
of landscapes and causes glow around the reflections off specular
objects (see Figure 1, left).
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Figure 2: A visual comparison of the same scene with mean cosine 𝑔 = 0.98 and 𝑔 = 0.5. To avoid challenging light transport paths, a common
approach is to widen the forward peak of the phase function, resulting in an unwanted change in contrast and loss of the characteristic glow
around highlights. Our new method makes the left simulation practical and efficient.

Scattering in such media often has a highly-peaked forward com-
ponent with only small backscattering part. While the backward
scattering is comparably uniform and easy to sample, the forward
scattering becomes close to Dirac, which makes the scattering espe-
cially difficult to sample with existing techniques. Unwanted fireflies
are the result, which will cause extremely long render times. The
visual importance of peaked phase functions can be seen in Figure 2
where we show a comparison of low order scattering (max. 4 path
vertices) with a forward scattering phase function 𝑔 = 0.98 and with
only moderately forward scattering 𝑔 = 0.5. As illustrated in Fig-
ures 3 and 4, the fireflies are caused by a lack of sampling density
around contributions of high throughput: importance sampling the
phase function addresses only one peak in the distribution, while
a stronger concentration occurs around directions towards the end
vertex. As it can be seen, the common practice to reduce the for-
ward scattering to allow for better convergence results in a different
appearance and important features are lost.

In this paper we design an estimator specifically for the forward
scattering part. We present a simple yet powerful specialised Monte
Carlo sampling technique for thin, homogeneous, forward scatter-
ing media. The method is a form of extended next event estimation,
adding a vertex on the emitter or sensor, as well as one additional
scattering vertex in between. With this, we analytically sample two
geometry terms and any phase function with existing solid angle
sampling routine. Our analysis and sampling is based on homoge-
neous media, but we briefly discuss heterogeneous media too.

2. Background and previous work

Light transport in a volume can be described as path space integral∫
P
𝑓 (𝒙) d𝒙 (1)

where 𝒙 = (𝒙0,𝒙1, · · ·𝒙𝑘) ∈ P are light transport paths consisting of
a list of vertices, connecting the sensors and the light sources. The
integrand is the measurement contribution function and is a product
of multiple relevant terms that we will detail later.

An effective way to solve this equation is with Monte Carlo
algorithms. However, their stochastic nature can result in high vari-
ance and different approaches exist to decrease noise. Due to the
amount of literature we would like to point the reader to Novák et

4

Figure 3: Left: Classic light tracing with next event estimation
or equiangular sampling samples a direction at a volume vertex
𝒙1

0 or surface vertex 𝒙3
0 towards 𝒙1

1 and 𝒙3
1, respectively, typically

by importance sampling the BSDF. The high throughput 2-segment
connections (green) that bend at these vertices toward the eye and
create an intermediate vertex 𝒙1

1 or 𝒙3
1 are sampled with low prob-

ability and thus suffer from variance. Our technique is tailored to
sample these connections efficiently. Right: The path tracing case
analogously samples such 2-segment connections towards the light.

our PDF

Figure 4: In the volumetric double scattering case, the outgoing
radiance 𝐿𝑜 (𝒙0) is a result of scattering at 𝒙0 and an intermedi-
ate vertex 𝒙1. The main product terms, the one-bounce incoming
radiance 𝐿𝑖 (𝒙0) and the phase function 𝑓0, are strongly compet-
ing in media with anisotropic phase functions. First sampling a
direction according to 𝑓0 and subsequently sampling 𝒙1 handles
the forward scattering of the phase function well but misses the
distinct peak centred around the direction towards 𝒙2. Our method
is tailored to sample paths (green) corresponding to this peak: the
dashed bordeaux-coloured line corresponds to the marginalised
solid-angle PDF at 𝒙0 of our sampling method.
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Table 1: Overview of the terms that individual techniques sample.
The checkmarks in parentheses indicate that these cannot be done
analytically but rely on approximation in the form of tabulation or
polynomial fits. In the case of thin homogeneous forward scattering
media, the phase function 𝑓𝑠 (𝒙1) and the reciprocal squared dis-
tances 𝑑−2

1 and 𝑑−2
2 are of highest importance. Previous methods

could not sample this combination analytically.

𝑓𝑠 𝑑2
1 𝑑2

2 𝑇1 𝑇2 𝑓0 cos
OMNEE (ours) ✓ ✓ ✓
std. NEE ✓ ✓ ✓
[KF12] ✓ ✓
[GKH*13] (✓) ✓ ✓ (✓)
[VGGN21] (✓) ✓ (✓)

al. [NGHJ18] for a better introduction and thorough review of all
aspects that we are not discussing.

(Semi)-analytic solutions. Closed-form solutions are rare and nor-
mally not general enough to be useful for computer graphics. For
our specific case, there exist approaches [Wil77; dEo16] but do not
generalise to arbitrary phase functions and are valid for point light
sources only. Furthermore, they do not allow for Monte Carlo sam-
pling of other sources of variation such as occlusion and general
emitter distribution functions.

A closely related direction of research is concerned with the air
light integral, collecting all the flux along a fixed viewing direction.
This has been explored for real time applications in homogeneous
volumes with isotropic phase function [SRNN05] as well as for
the more general case with arbitrary phase function and analytic
integration based on series expansion of the phase function and the
light source [PSP09; PSP10; PSS11].

Product sampling. Product sampling will importance sample the
product of several terms. Georgiev et al. [GKH*13] introduced a
method to importance sample volumetric paths of two bounces.
The sampling of the geometric terms is related to our approach,
but the phase function has to be tabulated and the method is best
suited for isotropic scattering. Villeneuve et al. [VGGN21] sam-
ple the product of transmittance, phase function and point normal.
Phase function and transmittance have to be approximated with a
polynomial equation, which becomes worse the more forward scat-
tering the phase function becomes. In contrast, we can use any phase
function sampling while still keeping the sampling of both geom-
etry terms analytic. Table 1 compares which terms are sampled by
different techniques.

Volume path guiding. Volume path guiding uses a data-driven
approach that comes with a significant implementation overhead
and their memory consumption often limit their usefulness when
rendering big scenes. Reibold et al. [SHJD18] proposed to use 3D
truncated Gaussians for volumes and a mix of path guiding for paths
with high variance and otherwise regular path tracing. Herholz et
al. [HZE*19] use von Mises-Fisher mixtures to sample scattering
directions according to the product of phase function and incident
radiance. Furthermore, the distance sampling accounts for learned

distributions of inscattering. Another approach [DWWH20] is to
use a spatio-directional tree to represent the incoming radiance dis-
tribution, though this approach does not include distance sampling.
Anisotropic volumetric scattering over more than one scattering
event is very challenging to learn in a guiding framework. The
spiky nature of the multidimensional integrand makes it difficult
to represent well in the guiding data-structure and the efficiency of
the training suffers from very noisy input samples. In contrast to
these memory-intensive methods, our approach does not account
for occlusion but is very lightweight and easy to implement.

Next event estimation (NEE). NEE simulates a path up to a cur-
rent end vertex 𝒙0 that is then in turn deterministically connected
to a point 𝒙2 sampled either on an emitter (path tracing) or the
camera aperture (light tracing). Distance sampling [LW96] samples
a distance and connects to the light source or camera. Kulla and
Fajardo [KF12] introduced equiangular sampling that samples the
inverse squared distance fall-off of a given point. NEE can be further
improved by selecting additional vertices along a path.

Manifold next event estimation [HDF15] (MNEE) allows sam-
pling through a refractive interface by finding a point on the surfaces
that satisfies specular constraints. Similarly, [WZHB09] address the
case of single scattering through a specular interface. Koerner et
al. [KNK*16] introduce an additional vertex to allow for better
sampling across a dielectric boundary after subsurface scattering.
Specular next event estimation [LZHJ20] builds upon an effective
parametrisation to construct a sampling data structure to handle
specular and glossy light transport over one vertex. Weber et al.
[WHD17] create sub-paths with multiple vertices. Our method en-
forces a geometric constraint on the path by first sampling the phase
function at the vertex location 𝒙1 and then filling in the rest of the
path, and may be seen as a volumetric analogue of MNEE.

Rays, beams, photon volumes. Novák et al. [NNDJ12] compute
global illumination in volumes using virtual ray lights, i.e. 1D line
primitives that act as light sources to connect transport paths from
the eye to. They also propose a scheme to importance sample the
phase function of the extra scattering vertex 𝒙1 using discretisa-
tion and tabulation along fixed ray light and viewing directions.
In contrast, we first sample the phase function in the middle and
adjust the directions at both other vertices accordingly. The idea of
using larger, non-point geometric primitives as loci of geometric
connections was later extended to planes and volumes [DJBJ19].

Once-more collided flux. The neutron transport literature contains
a few interesting and highly related works. In particular, Kalos
[Kal63] proposed a framework to extend next event estimation by
inserting an additional scattering vertex in between the current end
of the path history and the sensor, to estimate the once-more collided
flux. Our technique is similar in spirit, but they sampled a fixed
outgoing direction first and only considered a non-analog PDF for
the distance to the once-more collided vertex. Later works seem
to indicate that this approach does not work well for anisotropic
scattering [ABN01]. Kalli and Cashwell [KC77] combine Kalos’
once-more collided flux estimator with a directional resampling
technique, which, as we do, changes the outgoing direction at a
scattering vertex to a non-analog random walk [SK71]. This biasing
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scheme, however, does not explicitly sample the phase function but
aims to gently guide the random walk closer to a sensor.

3. Method

In this paper we will focus on improving next event estimation
within a homogeneous thin volume. We want to efficiently render
a single extra scattering step in a volume before the light reaches
the camera. This causes some characteristic blur, which, similar to
depth of field but with a larger radius, changes over depth. For this,
we extend next event estimation (NEE) for light tracing, connecting
a path vertex to the camera aperture. It can be applied completely
analogously, to path tracing, constructing connections to the light
source. Specifically, we introduce once-more scattered next event
estimation (OMNEE), augmenting the NEE segment with an addi-
tional scattering vertex.

𝒙2𝒙0

𝒙1
𝜃

𝑅𝑅

𝑟

𝑡

Figure 5: The geometry of the three path vertices 𝒙0,𝒙1,𝒙2 and the
angle 𝜃 between the two segments, sampled according to the phase
function 𝑓𝑠 (𝒙1). The arc radius 𝑅, the polar coordinate 𝑟 and the
fractional distance 𝑡 assume the path geometry has been normalised
such that 𝒙0𝒙2 = 1.

Overview. We call the last path vertex of the light path 𝒙0. This can
be for instance a vertex on the caustic on the back of the whale in
Figure 1 or a vertex on a sunbeam in the medium. The NEE vertex
on the camera aperture is called 𝒙2. We will insert a third vertex 𝒙1
between these.

First, we sample the phase function 𝑓𝑠 (𝒙1) to obtain an angle 𝜃

between the segments 𝒙0𝒙1 and 𝒙1𝒙2 (see Figure 5). This factors
out the material and enables us to use standard sampling routines
for any forward scattering phase function. This ensures that one of
the dominant terms can be handled effectively.

Next, we sample the centre vertex 𝒙1 somewhere on a plane or-
thogonal to 𝒙0𝒙2, sliding the plane between the two end vertices.
We know where to look for 𝒙1 given 𝜃: the inscribed angle theo-
rem tells us it will be on a circular arc from 𝒙0 to 𝒙2 with centre
somewhere off the direct connection. The radius 𝑅 of this arc can be
inferred from the angle 𝜃. In homogeneous media, the flux through
the vertex 𝒙1 will also be rotationally symmetric around the axis
𝒙0,𝒙2 if the phase function depends on 𝜃 only.

Analysis of the integrand. To compute this flux transported from
𝒙0 to 𝒙2 we need to integrate over all possible 𝒙1 in (3D) vertex
area measure:

𝐼 (𝒙0 ↔ 𝒙2) =
∫
𝒙1

𝑓 (𝒙0 ↔ 𝒙1 ↔ 𝒙2) d𝒙1, (2)

where the integrand is the measurement contribution function

𝑓 (𝒙0 ↔ 𝒙1 ↔ 𝒙2) = 𝑓𝑟 (𝒙0) ·𝐺 (𝒙0,𝒙1) ·𝐺 (𝒙1,𝒙2) · 𝜇𝑠 ·
𝑓𝑠 (𝒙1) ·𝑇 (𝒙0,𝒙1) ·𝑇 (𝒙1,𝒙2) ·𝑊 (𝒙2), (3)

where 𝐺 and 𝑇 denote the geometry terms and transmittance be-
tween two vertices. We observe that in the setting of classic, for-
ward scattering scattering media, the following terms do not usually
change rapidly i.e. are less important to sample:

𝜇𝑠 ·𝑇 (𝒙0,𝒙1) ·𝑇 (𝒙1,𝒙2) ·𝑊 (𝒙2). (4)

The scattering coefficient 𝜇𝑠 will only change in heterogeneous
media. The transmittances are more or less constant because they
depend on the total distance travelled, i.e. 𝑑1 + 𝑑2 if we call 𝑑1 =

|𝒙1 − 𝒙0 |, 𝑑2 = |𝒙2 − 𝒙1 |. This is not varying significantly for very
forward scattering media. In this case, for typical values of 𝜃, the
triangle 𝒙0,𝒙1,𝒙2 is very flat. For instance, for cos𝜃 = 0.98 we have
a maximum of 𝑑1 + 𝑑2 ≈ 1.005 · |𝒙2 − 𝒙0 |. The camera responsivity
𝑊 is essentially the sensor’s vignetting.

This leaves us with the following terms to sample:

𝐺 (𝒙0,𝒙1) ·𝐺 (𝒙1,𝒙2) · 𝑓𝑠 (𝒙1) =
cos𝜃0

𝑑2
1

· cos𝜃2

𝑑2
2

· 𝑓𝑠 (𝒙1) (5)

= cos𝜃0 · cos𝜃2︸          ︷︷          ︸
not varying much

· 𝑓𝑠 (𝒙1)
𝑑2

2 · 𝑑
2
1

(6)

The cosine part in the 𝐺 terms remains roughly invariant, again
because the angular spread is very focused in highly forward scat-
tering media. Finally, we split the measurement contribution into an
almost constant part 𝑓𝑐 and an interesting part 𝑓𝑖 :

𝑓𝑐 (𝒙0 ↔ 𝒙1 ↔ 𝒙2) =cos𝜃0 · cos𝜃2·
𝜇𝑠 ·𝑇 (𝒙0,𝒙1) ·𝑇 (𝒙1,𝒙2) ·𝑊 (𝒙2), (7)

𝑓𝑖 (𝒙0 ↔ 𝒙1 ↔ 𝒙2) =
𝑓𝑠 (𝒙1)
𝑑2

2 · 𝑑
2
1
. (8)

Note that 𝑓𝑖 has singularities on both ends (at the vertices 𝒙0 and
𝒙2), where either of the distances 𝑑 approaches zero. In contrast
to the sum of both distances, this term is important to sample. To
derive a sampling strategy, we will need to sample three dimensions
to arrive at all possible 𝒙1:

𝐼 (𝒙0 ↔ 𝒙2) =
∫
𝑤

∫
𝑣

∫
𝑢
𝑓 (𝒙0 ↔ 𝒙1 ↔ 𝒙2) d𝑢d𝑣 d𝑤 (9)

where 𝑢, 𝑣,𝑤 are defined by an orthonormal coordinate system that
aligns 𝑤 with the direct connection between 𝒙0 and 𝒙2.

3.1. A change of variables

We intend to sample 𝜃 according to the phase function first, and then
fill in the required two dimensions to yield a 3D vertex 𝒙1. That is, we
are looking for a change of variables (𝑢, 𝑣,𝑤) to (𝜃,?,?). We chose
to sample a normalised, fractional distance 𝑡 ∈ (0,1) along 𝑤 and –
as an intermediate step – express the other two dimensions in polar
coordinates, since the scattering is rotationally symmetric around
the axis 𝒙0𝒙2. Thus, we introduce a new local coordinate system
to parameterise 𝒙1: 𝑡 ∈ (0,1) is the fractional distance between 𝒙0
and 𝒙2, 𝑟 is the radius (i.e. related to the distance from 𝒙1 to the
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𝑣

𝑤
𝑢

𝜙
𝑠 · 𝑟

𝜃
𝒙0

𝒙2

𝒙1

𝑠 · 𝑡

Figure 6: The local vertex area measure coordinate frame (𝑢, 𝑣,𝑤)
and the rotationally symmetric scattering along 𝜙.

line 𝒙0𝒙2), and 𝜙 is the polar angle (see Figure 6). This radius 𝑟

can be expressed in terms of fractional distance 𝑡 as well as phase
function angle 𝜃 to complete our change of variables from vertex
area measure (𝑢, 𝑣,𝑤) to (𝜃, 𝑡, 𝜙).

Also, we introduce a scaling variable 𝑠 = 𝒙0𝒙2, the distance from
the shading point 𝒙0 to the camera vertex 𝒙2. We use this to nor-
malise the geometry of the scattering events by dividing out this
scale factor. This affects 𝑅,𝑟 and 𝑡 (see Figure 5).

We proceed by expressing the normalised polar coordinate radius
𝑟 in terms of 𝜃 (i.e. we assume the geometry has been scaled by 𝑠 for
unit distance between 𝒙0 and 𝒙2). The radius 𝑅 of the circumcircle
of the triangle 𝒙0𝒙1𝒙2 (see Figure 5) can be determined as

𝑅(𝜃) = 𝒙0𝒙2
2𝑠 sin(𝜋− 𝜃) =

1
2sin(𝜃) . (10)

From this we can compute the normalised polar radius 𝑟 as

𝑟 (𝑡, 𝑅) =
√︃
𝑅2 − (1/2− 𝑡)2 −

√︃
𝑅2 −1/4, (11)

𝑟 (𝑡, 𝜃) =

√︄
1

4sin2 𝜃
− (1/2− 𝑡)2 −

√︄
1

4sin2 𝜃
−1/4. (12)

As another intermediate step, we will next go to regular spherical
coordinates (𝑟, 𝜃, 𝜙 = 𝜙) (see Figure 7):∫

𝑆
𝑓 d𝒙 =

∫
𝜙̂

∫
𝜃

∫
𝑟
𝑓 ·

����� 𝜕𝒙

𝜕 (𝜃,𝑟, 𝜙)

�����d𝑟 d𝜃 d𝜙 (13)

=

∫
𝜙̂

∫
𝜃

∫
𝑟
𝑓 · |𝑟2 sin𝜃 | d𝑟 d𝜃 d𝜙. (14)

This change of variables separates out the rotation angle 𝜙 and can
naturally limit the domain of integration to a sphere with centre in
the middle between 𝒙0 and 𝒙2 and radius 𝑠/2. This is the locus of
all forward scattering events, i.e. with 𝜃 ≤ 𝜋/2.

To complete our change of variables from 𝒙1 to (𝜃, 𝑡, 𝜙), we need
to express 𝜃 and 𝑟 in terms of 𝜃 and 𝑡. We use the following identities:

𝜙 = 𝜙 (15)

𝑠(𝑡 −1/2) = 𝑟 cos𝜃 (16)

sin𝜃 = 𝑠 · 𝑟/𝑟 (17)

𝑟2 = 𝑠2 (𝑡 −1/2)2 + 𝑠2𝑟2. (18)

To compute the Jacobian determinant, we are now looking for a few

𝜃

𝑠 · 𝑡

𝑟

𝜃
𝑠 · 𝑟

𝑠 · 𝑡

Figure 7: The spherical coordinate system (𝜃,𝑟, 𝜙), illustrated for
two values of 𝜃. Left: close to 𝜋/2, right: more forward scattering.
The longitudinal 𝜙 = 𝜙 rotates this 2D illustration around the axes
of 𝑠 · 𝑡.

𝑠

𝜃

𝑟

𝜃

𝑑1 𝑑2

Figure 8: To compute 𝜃, we can use the law of cosines: 𝑠2 = 𝑑2
1 +

𝑑2
2 −2𝑑1𝑑2 cos𝛾 where 𝛾 = 𝜋− 𝜃 is opposite of the edge 𝑠.

partial derivatives:

|𝐽 | =
����� 𝜕 (𝜃, 𝑡)𝜕 (𝑟, 𝜃)

����� = ���� 𝜕𝜃𝜕𝑟 · 𝜕𝑡
𝜕𝜃

− 𝜕𝜃

𝜕𝜃
· 𝜕𝑡
𝜕𝑟

���� . (19)

The fractional distance 𝑡 and its derivatives are simple:

𝑡 (𝑟, 𝜃) = 𝑟

𝑠
cos𝜃 +1/2 (20)

𝜕𝑡/𝜕𝜃 = − 𝑟

𝑠
sin𝜃 (21)

𝜕𝑡/𝜕𝑟 = 1
𝑠

cos𝜃. (22)

We compute 𝜃 from 𝑑1, 𝑑2 and 𝑠 using the law of cosines (Figure 8).
It remains to express the distances 𝑑1 and 𝑑2 in terms of 𝜃 and 𝑟:

𝑑2
2 = 𝑟2 + 𝑠2

4
− 𝑟𝑠 cos𝜃 (23)

𝑑2
1 = 𝑟2 + 𝑠2

4
− 𝑟𝑠 cos(𝜋− 𝜃) = 𝑟2 + 𝑠2

4
+ 𝑟𝑠 cos𝜃, (24)

and we also simplify the expression for their product

𝑑2
1 · 𝑑

2
2 = −16𝑟2𝑠2 cos2 𝜃 − 𝑠4 −8𝑟2𝑠2 −16𝑟4

16
(25)

= − 1
16

(
8𝑟2𝑠2 (2cos2 𝜃 −1) −16𝑟4 − 𝑠4

)
(26)

=
1
16

(
16𝑟4 + 𝑠4 −8𝑟2𝑠2 cos2𝜃

)
. (27)
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Now we are ready to compute 𝜃 from 𝜃 and 𝑟 as

𝜃 (𝑟, 𝜃) = 𝜋− arccos©­«
𝑑2

1 + 𝑑
2
2 − 𝑠2

2𝑑1𝑑2

ª®¬ (28)

= 𝜋− arccos

(
𝑟2 − 𝑠2/4
𝑑1𝑑2

)
(29)

= 𝜋− arccos

(
4𝑟2 − 𝑠2√︁

16𝑟4 + 𝑠4 −8𝑟2𝑠2 cos2𝜃

)
, (30)

as well as the partial derivatives required for the Jacobian in Equa-
tion (19)

𝜕𝜃/𝜕𝑟 = 4𝑠(4𝑟2 + 𝑠2) sin𝜃
16𝑟4 + 𝑠4 −8𝑟2𝑠2 cos2𝜃

, (31)

𝜕𝜃/𝜕𝜃 = 4𝑟𝑠(𝑠2 −4𝑟2) cos𝜃
16𝑟4 + 𝑠4 −8𝑟2𝑠2 cos2𝜃

. (32)

3.2. A preliminary estimator

With the identities we collected so far, we construct the following
Monte Carlo estimator, by sampling the angle 𝜙 ∼ 𝑈 (0,2𝜋) uni-
formly on the circle, 𝑡 ∼𝑈 (0,1) uniformly between 𝒙0 and 𝒙2, and
𝜃 ∼ 𝑓𝑠 (𝜃) sin𝜃 by the phase function 𝑓𝑠 . For the latter, we use the
standard solid angle sampling procedures as are presumably already
present in a rendering system for analog Monte Carlo random walks.
Since this samples a direction 𝜔 on the sphere, it also accounts for
the Jacobian determinant sin𝜃, which will thus be part of our PDF.
The estimator for the interesting part 𝑓𝑖 becomes

𝐼 =
𝑓𝑖 (𝒙1)
𝑝(𝒙1)

=
1

𝑑2
1 · 𝑑

2
2 · |𝐽 |

· |𝑟
2 sin𝜃 |
sin𝜃

, (33)

and we furthermore insert the Jacobian determinant |𝐽 | and analyt-
ically cancel with the other terms. A bit of rearranging yields

𝑑2
1 · 𝑑

2
2 · |𝐽 | =

���𝑟3 cos2𝜃 − 𝑟𝑠2

4

���. (34)

and inserting this into Equation (33) yields an estimator that no
longer requires evaluating the reciprocal squared distances

𝐼 =

�����𝑟3 cos2𝜃 − 𝑟𝑠2

4

�����−1

· 𝑟
2 | sin𝜃 |
sin𝜃

(35)

=

����� 4𝑟 sin𝜃
4𝑟2 cos2𝜃 − 𝑠2

����� · 1
sin𝜃

. (36)

We can compute all the variables in this estimator from the sam-
pled (𝜃, 𝑡, 𝜙) random variables as defined above. They range in the
following intervals 𝑟 ∈ [0, 𝑠/2], 𝜃 ∈ [0, 𝜋], and 𝜃 ∈ [0, 𝜋/2]. This
works, but Equation (36) has an unpleasant singularity at 𝜃 = 0, the
important forward scattering case.

3.3. Sampling the fractional distance

We have one more degree of freedom to sample the remaining
weight in the estimator, by changing the PDF of the fractional
distance 𝑡. We have established that sampling 𝜃 according to the
phase function, and uniformly sampling 𝑡 results in Equation (36).

We can express this in terms of (𝜃, 𝑡), and for fixed 𝜃 sample 𝑡

conditional on 𝜃.

Inserting Equations (12) and (15) to (18) and simplifying using
a computer algebra program (see math.pdf in the supplemental
material), these are the results:

𝐴 := cot𝜃 −
√︃

sin−2 𝜃 − (2𝑡 −1)2 (37)

𝑝(𝑡 |𝜃) = 𝐴

𝑠 sin𝜃 (4(𝑡 −1)𝑡 − cot𝜃 · 𝐴) (38)∫
𝑝(𝑡 |𝜃) d𝑡 =

𝜃

𝑠 sin𝜃
=: 𝑐 (39)

𝑝(𝑡 |𝜃) = 𝑝(𝑡 |𝜃)/𝑐 = 𝐴

𝜃 (4(𝑡 −1)𝑡 − cot𝜃 · 𝐴) (40)

𝑃−1 (𝜉 |𝜃) = cos(𝜃 − 𝜉𝜃) sin(𝜉𝜃)/sin𝜃. (41)

In summary, the full estimator is constructed in the following steps:

• sample an outgoing direction at 𝒙1 via the regular solid angle
phase function sampling routine, store 𝜃,

• sample the fractional distance 𝑡 ∼ 𝑝(𝑡 |𝜃) via Equation (41)
• sample 𝜙 ∼ 1

2𝜋 (or reuse from phase function sampling)
• reconstruct location of 𝒙1 using 𝑡 and 𝑟 from Equation (12).

The vertex area measure PDF and the estimator are

𝑝(𝒙1) = 𝑓𝑠 (𝒙1)
𝑠

𝑑2
1 · 𝑑

2
2

sin𝜃
𝜃

(42)

𝐼 = 𝑓𝑐 (𝒙0 ↔ 𝒙2) ·
𝜃

𝑠 sin𝜃
. (43)

Note how the weight of the Monte Carlo estimator contains
𝜃/sin𝜃. This suggests that even better importance sampling can
be achieved by not using a generic phase function sampler that
perfectly samples the phase function in solid angle (incurring the
spherical Jacobian determinant | sin𝜃 |) but one that samples by 𝜃

instead. However, lim𝜃→0 sin𝜃/𝜃 = 1 and for highly forward scat-
tering media sin𝜃 ≈ 𝜃, so we expect only moderate advantages for
a significant implementation effort here. In a similar note, when
evaluating the inverse CDF 𝑃−1 (𝜉 |𝜃) for 𝜃 = 0, we consider that
lim𝜃→0 sin(𝜉𝜃)/sin𝜃 = 𝜉.

3.4. Forward scattering phase functions

Phase functions in thin, homogeneous media like water or fog tend
to be strongly forward scattering with only a small backscattering
component. Dedicated phase functions are used to describe such
media; a Mie phase function can simulate scattering of small dielec-
tric spheres like water droplets and a Fournier-Forand [FF94] phase
function can describe ocean water. Figure 9 illustrates their shape
and shows a fit to the more commonly used Henyey-Greenstein
phase function. While the mean cosine of ocean water or water
vapour is normally around 𝑔 = 0.85, it should be noted that the
forward scattering, when separated from the backward scattering
component, often has a mean cosine of 𝑔 = 0.95 and higher, which
makes classic NEE techniques very inefficient.

Our technique works best for phase functions that are purely
forward-scattering phase functions. However, one advantage of our
method is that we can use it with any phase function that has at least
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Figure 9: Fournier-Forand (left) and Mie (right) phase func-
tions fitted to a single Henyey-Greenstein (orange) and a two-term
Henyey-Greenstein (blue) phase function [GSMA08]. For the sin-
gle, 𝑔 = 0.99527 resp. 𝑔 = 0.988264; the double has 𝑔1 = 0.997229
and 𝑔2 = 0.959952 with a weight of 0.339242 and 𝑔1 = 0.990344
and 𝑔2 =−0.439579 with a weight of 0.712146. The green line is the
ground truth phase function. A good summary of existing analytical
phase functions can be found in [Sha15].

Figure 10: A point emitter in an infinite homogeneous volume with
𝑔 = 0.5. Left: Sampling the full phase function and rejecting samples
from the backward hemisphere. Right: Samples are drawn from the
forward hemisphere only.

some forward-scattering. For phase functions that have a backscat-
tering component like the classic Henyey-Greenstein (HG) phase
function

𝑓𝐻𝐺 (𝜇) = 1
2

1−𝑔2

(1+𝑔2 −2𝑔𝜇)3/2
(44)

this means that we need to use rejection sampling for our NEE
technique. See Section 5 for a more detailed discussion on how to
handle this case.

However, for some phase functions like HG it is easy to derive
a routine that only considers its forward hemisphere, which avoid
wasting samples. Note that this is a pure performance optimisation;
a special phase function is not needed for our technique, and we can
always fall back to rejection sampling. By introducing the constraint
𝜇 ≥ 0, we will get HG forward (HGF):

𝑓𝐻𝐺𝐹 (𝜇) = − (−1+𝑔)𝑔
√︁

1+𝑔2

(−1+𝑔 +
√︁

1+𝑔2) (1+𝑔2 −2𝑔𝜇)3/2
(45)

which integrates to unity over [0,1]. The CDF of Equation (45) is

invertible and allows us perfect importance sampling:

𝜇 =
𝜉 (1+𝑔2) (1+ 𝑦 +𝑔(−2+ 𝜉 +𝑔− 𝑦))
1+ 𝑦 +𝑔(𝑧−2𝜉 (−1+𝑔) (1−𝑔 + 𝑦)) (46)

𝑦 =

√︃
1+𝑔2 (47)

𝑧 = 4𝑔 +2𝜉2𝑔−3(1+ 𝑦) − (−3+𝑔)𝑔(−𝑔 + 𝑦) (48)

where 𝜉 is a random number. As it can be seen in Figure 10, parti-
tioning the phase function into its hemispheres will further decrease
noise. For sake of completeness, a similar formula can be found for
the backward component:

𝜇 =
(−1+ 𝜉) (1+𝑔2) (−𝜉 +𝑔2 + 𝜉𝑦 +𝑔𝑦)

𝑔(2𝜉 −2𝜉2 +𝑔 +2𝜉𝑔2 +𝑔3 + 𝑦−2𝜉𝑦 +2𝜉2𝑦 +2𝜉𝑔𝑦 +𝑔2𝑦)
(49)

4. Results

We evaluate our technique in two settings: a spectral CPU rendering
framework and an isolated unit test simulating a point light source
in an infinite thin homogeneous medium and paths with just three
vertices (sensor, scattering, light).

Figure 13 shows a final frame comparison of a render of a whale
under water. Both the distance in the water and the brightness of
the object influence the characteristic blur. The bottom row shows
filtered images, where firefly noise has been removed. This shows
how the blur effect disappears for other methods, i.e. is unrenderable.

The beauty renders in Figures 1, 2 and 13 to 15 are computed
via light tracing, i.e. starting transport paths at the light sources
and connecting to the camera via next event estimation. On top of
this, equiangular sampling introduces a two-vertex connection to
the camera, and our technique does the same but chooses the centre
vertex 𝒙1 according to our once-more scattering equations. We use
the forward-only HG phase function from Equation (44). Render
times were about 310ms for one progression with one sample per
pixel (plain light tracing), 430ms for equiangular sampling, and
410ms for our technique. The difference between the last two is not
significant, the extra work to construct a two-vertex path suffix and
combine it using MIS is mostly equivalent.

Figure 11 presents a unit test comparison of our work to Vil-
leneuve et al. [VGGN21]. Here we use the classic full HG phase
function form Equation (44). We compare against two different ap-
proaches, one better suited for a low 𝑔 and the other one better for
higher 𝑔. In this setting, we combined our method (forward scat-
tering) with equiangular sampling [KF12] (backward scattering) to
yield an unbiased estimator for the complete domain. All images
use 4spp. The render time of our method is split roughly equally
between equiangular and once-more scattering NEE. Note that we
do not perform MIS in this test, our goal is solely to obtain an unbi-
ased estimator. The figure shows results for different mean cosines
between isotropic and highly forward scattering. Our method is sim-
pler and faster, and a lot more efficient at sampling for large mean
cosines.

A comparison of just our technique without backscattering can
be seen in Figure 12. Here we evaluate only the forward scattering
hemisphere (i.e. only the domain of our sampling technique, the
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Figure 11: Comparison of Villeneuve et al. [VGGN21] with (top) their B𝑃 (T𝑇 ) (Bézier warp for phase function and Taylor series for
transmittance) and their B𝑇 (T𝑃) (Bézier warp for transmittance and Taylor series for phase function) and ours (bottom). 𝑔 increases from
0.0 to 0.99 in 0.2 steps from left to right, all images use 4spp. While our method is less suited for the isotropic case where backward scattering
is significant and we cannot use our technique, it starts to overtake [VGGN21] once the forward scattering becomes dominant. Note that our
method has a better performance, even when combined with the overhead from equiangular sampling for the backward component.

EquiangularEquiangular

RSME: 0.102RSME: 0.102

Distance+NEEDistance+NEE

RSME: 0.173RSME: 0.173

[VGGN21]B𝑇 (T𝑃 )[VGGN21]B𝑇 (T𝑃 )

RSME: 0.111RSME: 0.111
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RSME: 0.013RSME: 0.013

Figure 12: A unit test with an infinite homogeneous medium and a point emitter, mean cosine 𝑔 = 0.9. Here, only forward scattering is enabled
and 4 samples per pixel are simulated. The images show only three path vertices, i.e. single scattering in the medium. The reference for the
RMSE numbers was distance sampling with next event estimation at 10k samples per pixel.

backward scattering hemisphere has been set to zero) with 𝑔 =

0.9. The images show single scattering, they are limited to max. 3
path vertices. This test shows the performance of our estimator in
isolation, without diluting the differences by MIS combination.

When scattering off an object, our technique works best on diffuse
surfaces. Figure 14 shows the same scene but the whale has now a
glossy gold material with Beckmann roughness 0.01. We consider
this as a failure case for our method, since we do not sample the
BSDF at the vertex 𝒙0 on the whale. Indeed variance increases, but
our method will still produce less noise compared to others. This
can be seen when removing firefly noise, which shows that we can
still capture more of the glow than equiangular sampling or light
tracing.

Figure 15 shows low order highly forward scattering in atmo-
spheric haze. The glow around specular highlights as well as the
more subtle glow above the desert surface in the background can
only be reproduced by importance sampling the phase function.

As an additional result, Figure 16 shows our technique inte-

grated in a production rendering system. These images showcase
the adjoint connection, next event estimation applied to path trac-
ing, connecting to the emitters. In this scene with torchlights under
water, the visual features and the noise reduction of our technique
are comparable to what we demonstrated with light tracing before.

5. Discussion and Limitations

We presented a technique to efficiently render a specialised effect:
the point-spread-function-like glow around objects in thin, homo-
geneous, forward scattering media.

We disregard transmittance in our sampling scheme. As discussed
briefly earlier, the total distance travelled from the shading point 𝒙0
to the next event 𝒙2 via a once-more scattered vertex is not much
longer than the direct connection in the case of highly forward
scattering. For isotropic or backward scattering, this is not the case
and thus our method will likely not present an optimal estimator
in this setting. Likewise, phase functions that do not pose a strong
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light tracinglight tracing 1kspp1kspp equiangularequiangular 1kspp1kspp OMNEE (ours)OMNEE (ours) 1kspp1kspp kmltkmlt 4kspp4kspp

light tracinglight tracing filteredfiltered equiangularequiangular filteredfiltered OMNEE (ours)OMNEE (ours) filteredfiltered kmltkmlt filteredfiltered

Figure 13: A whale rendered with max. five path vertices. While equiangular sampling [KF12] improves the quality of the sunbeam towards
camera a bit, it does not sample the phase function explicitly. The characteristic glow around objects under water is thus extremely noisy and
has to be filtered out for final frames. The bottom row is filtered via density based outlier rejection [ZHD18].

light tracinglight tracing 1kspp1kspp equiangularequiangular 1kspp1kspp OMNEE (ours)OMNEE (ours) 1kspp1kspp kmltkmlt 10kspp10kspp

light tracinglight tracing filteredfiltered equiangularequiangular filteredfiltered OMNEE (ours)OMNEE (ours) filteredfiltered kmltkmlt filteredfiltered

Figure 14: A failure case for our method. The glossy whale presents another important directional constraint at the shading vertex on its
back. Since we do not importance sample this, variance is increased. Again, as in Figure 13, the bottom row shows the images with fireflies
filtered out (i.e. no spatial denoising has been applied). The last column shows primary sample space Metropolis light transport (kmlt) used
on top of our sampling strategy.
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light tracinglight tracing 2kspp2kspp equiangularequiangular 2kspp2kspp OMNEE (ours)OMNEE (ours) 2kspp2kspp kmlt+ourkmlt+our 4kspp4kspp

light tracinglight tracing filteredfiltered equiangularequiangular filteredfiltered OMNEE (ours)OMNEE (ours) filteredfiltered kmlt+ourkmlt+our filteredfiltered

Figure 15: A desert scene with glossy metal objects, enclosed in an infinite homogeneous forward scattering medium (𝑔 = 0.98). Even though
the additional glossy constraint on the metal surfaces (𝑔 around 0.1) is not importance sampled, we can reproduce the glow in the medium
here. The last column shows primary sample space Metropolis light transport (kmlt) used on top of our sampling strategy.

classic NEE once-more collided (ours) single scatter

Figure 16: Once-more scattered next event estimation evaluated towards a light source, i.e. in path tracing from the camera. The images show
the importance of the extra scattering vertex on top of single scattering only (right), and also demonstrate how out technique can robustly
reduce the noise in this setting. All images are 1024 samples per pixel.

angular constraint on the path are not crucial to sample and thus
transmittance and our sampling are complementary.

We are not explicitly addressing heterogeneous media but treat
it by Monte Carlo sampling. The improved importance sampling
can still be expected to yield faster convergence over the base line,
similar to what has been evaluated before [GKH*13, Fig. 10].

The adjoint effect blurs out shadows for pathtracing, but in our
evaluation we focused on the more prominent visual features to-
wards the camera. Thus, light tracing or pathtracing with camera
reconnections [BSH02; WGGH20; THD17] are a prerequisite for
the application of our technique.

We made some assumptions about the phase functions. In par-
ticular, our technique only handles the forward scattering part of a
phase function and only the circularly symmetric case (i.e. the phase
function only depends on 𝜃, there cannot be an anisotropic medium
in the sense of Jakob et al. [JAM*10]). For now we need to either
renormalise the importance sampling to only the forward scattering

hemisphere or discard samples that are generated in the backward
facing hemisphere. For highly forward scattering media, such as
we are interested in analysing in here, the amount of backward
scattering is usually very small.

The sampling method is unbiased in the sense that NEE is un-
biased too: it is an estimator only for the domain it samples. NEE
will only sample the light sources and requires another technique to
sample indirect contributions. Similarly, once-more scattering NEE
requires another technique to sample the backward scattering con-
tributions. Only the combined estimator via MIS will be an unbiased
estimate for the whole transport domain (see Figure 11).

We do not consider the BSDF at the path vertex 𝒙0. In case of
glossy BSDFs this may be a dominating term. Equiangular sampling
will consider this BSDF, however, this does not on its own present
a good estimator (see Figure 14).
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𝒙1
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𝜃1 < 𝜋/2

𝜃2 > 𝜋/2

Figure 17: Illustration of the extended geometry required to include
backward scattering (𝜃 > 𝜋/2) in our framework. The part of the
drawing above the 𝒙0𝒙2 line is the case we consider: the centre of
the circle is on the other side of the line as 𝒙1

1. If the centre is on the
line, the resulting 𝜃 will be exactly 𝜋/2 everywhere on the circle. In
the bottom part, 𝒙2

1 results in 𝜃2 > 𝜋/2, but the angle 𝜃 will again be
constant for all 𝒙1 on the lower arc. This arc unfortunately bulges
outside the reach of our parameter 𝑡 on both sides, so an angular
parameterisation has to be chosen.

6. Conclusion and Future work

We demonstrated the once-more scattered next event estimation
technique for light tracing. To efficiently simulate subtle blurs on
shadows it can also be used for next event estimation in path tracing,
to connect to the light sources (not to the camera as in light tracing).

For the special case of connecting to the environment map, the
sampling routine would simplify substantially because the vertex
𝒙2 on an environment map is really a directional constraint then.
It is thus possible to directly sample the outgoing direction at 𝒙0
following the BSDF.

Our choice of the parameterisation of 𝑡 ∈ (0,1) may not be the
optimum. It is plausible that an angular parameter on the circum-
circle around 𝒙0,𝒙1,𝒙2 could serve the same purpose, and at the
same time generalise to backscattering contributions, i.e. allow us
to sample vertices 𝒙1 outside the sphere defined by 𝜃 ∈ [0, 𝜋/2],
see Figure 17. This circumcircle would grow larger than radius 𝑠/2
for 𝜃 > 𝜋/2, and it would be necessary to re-derive the formulas in
Section 3.3, which may be possible.

Furthermore, it would be interesting to extend the sampling to
include the product with the BSDF at 𝒙0, to improve glow around
glossy objects. In fact this could be a starting point to extend the
scattering geometry to longer paths, using cascades of intertwined
circles. This would be potentially useful for highly scattering and
dense media such as skin.
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